⑴ 4 16 15 8 19 2 21 22 13 2 21 10 16 15-1 凯撒密码是什么
在密码学中,恺撒密码(英语:Caesar cipher),或称恺撒加密、恺撒变换、变换加密,是一种最简单且最广为人知的加密技术。它是一种替换加密的技术,明文中的所有字母都在字母表上向后(或向前)按照一个固定数目进行偏移后被替换成密文。例如,当偏移量是3的时候,所有的字母A将被替换成D,B变成E,以此类推。这个加密方法是以罗马共和时期恺撒的名字命名的,当年恺撒曾用此方法与其将军们进行联系。
(以上摘自网络,更多详情请自行学习了解)
然后这些数字,分别指代英文26个字母,比如4指代d,16指代p等等。以此类推,则除了“-1”以外的其他数字转换成字母依次是:dpohsbuvmbujpo
-1指的是偏移量为1,即明文中的所有字母分别向右偏移一位继而得到上述密文。因此若想得到明文,须将dpoh...的所有字母分别向左偏移一位,即d变成c,p变成o等等。以此类推,明文即是:
congratulation
祝贺
至于那个“-1”,个人猜想还有一种理解,就是指4 16……那些数字分别减去1。这样理解也能得出同一个答案,只是我不确定那个“-”究竟是减号还是普通的短破折号。
⑵ 谁知道怎么解凯撒等类型的密码有什么技巧
凯撒密码很简单,其实就是单字母替换。我们看一个简单的例子:
明文:a b c d e f g h i j k l m n o p
密文:d e f g h i j k l m n o p q r s
若明文为student,对应的密文则为vwxghqw。在这个一一对应的算法中,凯撒密码将字母表用一种顺序替代的方法来进行加密,此时密钥为3,就是每个字母顺序推后3位。由于应为字母为26个,因此凯撒仅有26个可能的密钥,非常不安全。
类似的算法就是使替代不是有规律的,而是随机生成的一个对照表。比如置换移位算法里的维吉尼亚密码。
⑶ 凯撒密码对应表内容是什么
根据苏维托尼乌斯的记载,恺撒曾用此方法对重要的军事信息进行加密: 如果需要保密,信中便用暗号,也即是改变字母顺序,使局外人无法组成一个单词。如果想要读懂和理解它们的意思,得用第4个字母置换第一个字母,即以D代A,余此类推。
同样,奥古斯都也使用过类似方式,只不过他是把字母向右移动一位,而且末尾不折回。每当他用密语写作时,他都用B代表A,C代表B,其余的字母也依同样的规则;用A代表Z。
(3)如何用凯撒密码破译以下十六进制数扩展阅读:
密码的使用最早可以追溯到古罗马时期,《高卢战记》有描述恺撒曾经使用密码来传递信息,即所谓的“恺撒密码”,它是一种替代密码,通过将字母按顺序推后起3位起到加密作用,如将字母A换作字母D,将字母B换作字母E。因据说恺撒是率先使用加密函的古代将领之一,因此这种加密方法被称为恺撒密码。这是一种简单的加密方法,这种密码的密度是很低的,只需简单地统计字频就可以破译。 现今又叫“移位密码”,只不过移动的为数不一定是3位而已。
⑷ 谁懂计算机的凯撒码 我想知道怎么代换
这里有方法,自己看吧,比较多,呵呵
[凯撒介绍]
凯撒密码(kaiser)是罗马扩张时期朱利斯"凯撒(Julius Caesar)创造的,用于加密通过信使传递的作战命令。它将字母表中的字母移动一定位置而实现加密。
[加密原理]
凯撒密码的加密算法极其简单。其加密过程如下:
在这里,我们做此约定:明文记为m,密文记为c,加密变换记为E(k1,m)(其中k1为密钥),解密变换记为D(k2,m)(k2为解密密钥)(在这里k1=k2,不妨记为k)。凯撒密码的加密过程可记为如下一个变换:
c≡m+k mod n (其中n为基本字符个数)
同样,解密过程可表示为:
m≡c+k mod n (其中n为基本字符个数)
对于计算机而言,n可取256或128,m、k、c均为一个8bit的二进制数。显然,这种加密算法极不安全,即使采用穷举法,最多也只要255次即可破译。当然,究其本身而言,仍然是一个单表置换,因此,频率分析法对其仍是有效的。
[加密算法]
我们预定义基本字符个数为 #define MAX 128
凯撒加密函数可以表示为
[Copy to clipboard]
CODE:
char cipher(char plain_char, int key)
{
return (plain_char + key) % MAX;
};
凯撒解密函数:
[Copy to clipboard]
CODE:
char decipher(char cipher_char, int key)
{
return (cipher_char - key + MAX) % MAX;
};
加密后,原所有的ASCII码偏移key位,解密则移回key位。
如果要对一个文本文件进行加密,则只要依次逐个字符逐个字符地读取文本文件,进行加密后,逐个字符逐个字符写入密文文本文件中,即可:
[Copy to clipboard]
CODE:
FILE *fp_plaintext;
FILE *fp_ciphertext;
char plain_char;
... ...
while((plain_char=fgetc(fp_plaintext))!=EOF)
{
fputc(cipher(plain_char,key),fp_ciphertext);
}
对文件的解密也同样方法。
[破解原理]
一篇包含字符的英文文章,其各ASCII码字符出现,都有一定的频率,下面是对Google上随意搜索到的英文文章进行分析的结果,见表:
QUOTE:
=================================================
FileName : 01.txt
[1] 32: times:204
[2] 101:e times:134
[3] 116:t times:91
[4] 105:i times:87
[5] 111:o times:77
[6] 108:l times:75
[7] 97:a times:75
[8] 110:n times:69
[9] 10:
times:67
[10] 115:s times:63
=================================================
FileName : php.si.source.txt
[1] 32: times:576
[2] 101:e times:162
[3] 115:s times:153
[4] 110:n times:141
[5] 114:r times:138
[6] 105:i times:135
[7] 10:
times:134
[8] 116:t times:129
[9] 42:* times:116
[10] 111:o times:103
=================================================
FileName : work.txt
[1] 32: times:51322
[2] 101:e times:30657
[3] 116:t times:23685
[4] 97:a times:19038
[5] 111:o times:17886
[6] 105:i times:16156
[7] 110:n times:15633
[8] 114:r times:15317
[9] 115:s times:15226
[10] 104:h times:12191
=================================================
FileName : 02.txt
[1] 32: times:299
[2] 101:e times:217
[3] 110:n times:136
[4] 105:i times:133
[5] 111:o times:124
[6] 116:t times:116
[7] 97:a times:110
[8] 115:s times:98
[9] 114:r times:92
[10] 108:l times:82
=================================================
FileName : 03.txt
[1] 45:- times:404
[2] 32: times:394
[3] 101:e times:237
[4] 116:t times:196
[5] 114:r times:173
[6] 97:a times:163
[7] 105:i times:161
[8] 110:n times:153
[9] 111:o times:142
[10] 115:s times:129
=================================================
FileName : 04.txt
[1] 32: times:326
[2] 101:e times:179
[3] 116:t times:106
[4] 105:i times:101
[5] 111:o times:96
[6] 110:n times:94
[7] 97:a times:92
[8] 115:s times:78
[9] 100:d times:61
[10] 114:r times:60
=================================================
FileName : 05.txt
[1] 32: times:441
[2] 101:e times:191
[3] 111:o times:151
[4] 116:t times:120
[5] 97:a times:112
[6] 110:n times:108
[7] 105:i times:91
[8] 114:r times:84
[9] 117:u times:79
[10] 115:s times:79
有此分析可知,一篇英文文章中,出现较高频率的两个字符是 ' ' (空格) 和 'e',而且它们的ASCII码分别是32和101,差值是69。
既然凯撒密码利用的是单表替换的一种简单加密算法,所以,我们的主角, ' ' 和 'e' ,在解密后,依然会保持相同的ASCII码差值,69。
|c1 - c2| = |'e' - ' '| = |101 - 32| = 69
|m1 - m2| = | ((c1 + k) mod 256)-((c2 + k) mod 256)| = |c1 - c2| = |'e' - ' '| = 69
现在可以得到破解凯撒密码的原理了,我们统计一片经过凯撒加密的密文字符信息,在出现频率较高的字符里面寻找差值是69的2个字符,这两个必定是 ' ' 和 'e' 字符的加密字符,计算偏移量(既密钥key),通过解密运算,还原出明文。
[破解算法]
任何一片英文加密后的密文,我们统计出所有字符的个数:
[Copy to clipboard]
CODE:
#define MAX 128
... ...
FILE *fp_ciphertext;
char cipher_char;
int i; //密文文件长度,包含多少字符
unsigned int size_file=0; //申明num数组,存储各个ASCII字符在密文中出现的个数
num[MAX];
... ...
for(i = 0;i < MAX; i++) //初始化num数组中的值
num[i] = 0;
... ...
while((cipher_char=fgetc(fp_ciphertext))!=EOF)
{
num[cipher_char]++;
size_file++;
}
统计出现最多次数的字符,定义#define GETTOP 10,统计最多的前10位字符:
[Copy to clipboard]
CODE:
//统计前10位
#define GETTOP 10
... ...
int temp,i,j;
int maxascii[GETNUM]; //申明maxascii数组,存储统计出的概率前10位的字符ascii码
int maxtimes[GETNUM]; //申明maxtimes数组,存储统计出的概率前10位的字符的出现次数
... ...
for(i=0;i<GETTOP;i++)
{
temp=0; //临时变量temp里面来存储出现最多次数的字符的ascii码
for(j=1;j<MAX;j++) //依次比较所有的字符次数,获得最多字符的ascii码
{
if(num[j]>=num[temp])
temp=j;
}
maxascii[i]=temp; //把出现最多次数字符的ascii存储到相应的maxascii数组中
maxtimes[i]=num[temp]; //把最多次数字符的出现次数存储到相应的maxtimes数组中
num[temp]=0; //把最多次数字符的次数赋值成0,
//进行循环运算,同样的算法,第二次循环得到的值,肯定是出现第二多的字符
//避免了对256或128个字符进行排序的复杂运算
//当年我用汇编编写成绩排序的程序时,也用这套排序算法:-)
}
找出出现最多字符中,ASCII码差别是69的两个字符,计算出密钥key的长度:
[Copy to clipboard]
CODE:
for(i=0;i<GETTOP;i++)
{
for(j=0;j<GETTOP;j++)
{
if((max[i]-max[j])==69)
{
key=(max[j] - 32 + MAX ) % MAX;
printf("Key : %d\n",key);
break;
}
}
}
既然得到了密钥长度,算完成了对凯撒密码的破解了,那就进行解密吧,大功告成!