Ⅰ 基因表达载体中的启动子和终止子决定着翻译的开始与结束
A、基因表达载体的组成包括启动子、目的基因、标记基因和终止子等,A错误;
B、启动子在基因的首段,它是RNA聚合酶的结合位点,能控制着转录的开始,所以只有存在启动子才能驱动基因转录出mRNA,B正确;
C、终止子的作用是使转录在所需要的地方停止,终止密码子的作用是使翻译在所需要的地方停止,C错误;
D、由于受体细胞有植物、动物以及微生物之分,以及目的基因导入受体细胞的方法不同,因此基因表达载体的构建是不完全相同的,D错误.
故选:B.
Ⅱ 氨基酸密码子中终止密码是干什么的 知道是终止翻译的 不过能不能详细点说明
终止密码子就是mrna碰到那个密码子就停止翻译了,通俗点就是,复制的好好的,到那儿就断了
Ⅲ (悬赏二十分)终止子和终止密码子的区别
启动子与起始密码子、终止子与终止密码子看起来似乎差不多,实际上却是两组截然不同的概念,根本就没有共同点。简单地说,启动子和终止子都是一段特殊的DNA序列,属于基因的非编码区,分别位于编码区的上游和下游,负责调控基因的转录。而起始密码子和终止密码子都是mRNA上的三联体碱基序列,分别决定翻译的起始和终止。
启动子——DNA分子上能与RNA聚合酶结合并形成转录起始复合体的区域,在许多情况下,还包括促进这一过程的调节蛋白的结合位点。
起始密码子——蛋白质翻译过程中被核糖体识别并与起始tRNA(原核生物为甲酰甲硫氨酸tRNA,真核生物是甲硫氨酸tRNA)结合而作为肽链起始合成的信使核糖核酸(mRNA)三联体碱基序列。大部分情况下为AUG,原核生物中有时为GUG等。
终止子——转录过程中能够终止RNA聚合酶转录的DNA序列。使RNA合成终止。
终止密码子——蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列。一般情况下为UAA、UAG和UGA,它们不编码氨基酸。
Ⅳ 终止密码子原理
根本就不和tRNA配对
mRNA翻译时,读码框到达“终止密码子”时,会与释放因子RF1 和RF2结合,而不是与另一种带有一个氨基酸的tRNA相结合,同时一个新合成的蛋白被释放出来。
PS:释放因子:
原核生物和真核生物都有三种终止密码子:UAG、UAA和UGA,没有一个转移核糖核酸(tRNA)能够与之相互作用,而是由特殊蛋白质因子识别,促使合成终止,这类蛋白质因子被称为释放因子。
Ⅳ 终止密码子是哪三个
起始密码子有两个。是AUG和GUG,分别对应的是甲硫氨酸和缬氨酸。终止密码子有三个,UAA、UGA和UAG,不对应氨基酸。
DNA和mc都只含有四种碱基而组成生物体蛋白质的氨基酸有20种,这四种碱基是怎么决定蛋白质的20种氨基酸的呢?如果一个碱基决定一个氨基酸,那么四种碱基只能决定四种氨基酸,这种组合显然是不够的。上述推测只是破解遗传密码过程中的一部,后来科学家又通过一步步的推测与实验,最终破解了遗传密码的是mc上,三个相邻碱基决定一个氨基酸,每三个这样的碱基又成一个密码子,科学家将64个遗传密码子偏子城下面密码子表。●所以终止密码子为什么有三个是科学家推测与实验得来的。
在人类基因这本天书上,我们要能够读懂这本书,必须先了解书写这本书的文字。
人类的基因
那么人类这本天书上的文字又叫做密码子。其实我们知道组成人体的基本元素——碱基,只有四种:即腺嘌呤A、鸟嘌呤G、胞嘧啶C和胸腺嘧啶T。
碱基互补配对
用这四个基本元素要书写遗传的天书,就必须要有不同的组合,这样才能被我们所读懂,其实这本书很简单,密密麻麻的全是这四个字母,就像下面的这种一长串由“ATCG”组合形成的字符:
CTGTATACTTTGCTTACTA……。那么我们就要仔细地去分析,肯定不是一种字母代表一个意思,否则就只有四种可能,即A代表什么,T代表什么,C代表什么,G代表什么;要是两个字母代替一种意思,那么有十六种可能,分别是AT、TA、AC、CA、AG、GA、CT、TC、CG、GC、TG、GT、AA、CC、GG、TT组合;要是三个字母代替一种意思,那么有六十四种可能,这里就不一一列举了。
碱基
这样的话,人类的天书由64个密码子组成,那么这种情况是最符合实际的。并且在64个密码子中,还存在着一些起始的密码子和终止的密码子。
DNA遗传密码互补配对
人类的天书起始是一本长达30亿个字母的密密麻麻的书,每个人的遗传密码字母数量已经达到我们全世界人口的一半了。这么繁杂的内容,其中很多都是没有作用的,也就是对我门的生命活动没有任何帮助的,其中只有约10万个基因,这些基因都是分散在这30亿个字母中。那么我们如何去识别它们呢,这就要利用到起始密码子和终止密码子。起始密码子起到释放开始信号的作用,当人体自身的阅读机制遇到起始密码子之后就会立刻开启,进行转录和翻译,这也说明之后一长串的字母是我们要阅读的基因,三个三个密码子的分别转录和翻译,一直阅读到终止密码子结束。
DNA
也许有人要问了,真正有用的基因只有10万来个,为什么人体的天书中还存在那么多无用的字母呢?
染色体
这就要感慨大自然的能力了,在人类进化的过程中,无时无刻不在受到外在环境的影响,比如外界的辐射、病毒的破坏、自身的突变等。
同时我们的身体还在不停地变化着,也就是说密码子会有一定的概率发生突变,如果都是有用的基因序列,很有可能就会对我们的遗传和身体健康产生很大的影响,如果在有用的序列之外存在大量的无用基因,即使基因受到外界环境的影响,突变率不发生变化的情况也可以极大的保护有效的基因不会受到伤害,这样就能保证基因的稳定,这也正是大自然的伟大所在吧!
Ⅵ 什么是起始密码子什么是终止密码子它们都有何作用
起始密码子:蛋白质翻译过程中被核糖体识别并与起始tRNA(原核生物为甲酰甲硫氨酸tRNA,真核生物是甲硫氨酸tRNA)结合而作为肽链起始合成的信使核糖核酸(mRNA)三联体碱基序列。大部分情况下为AUG,原核生物中有时为GUG等。
终止密码子:蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列。一般情况下为UAA、UAG和UGA,它们不编码氨基酸。
Ⅶ 终止密码子是什么
1.蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列。
2.mRNA翻译过程中,起蛋白质合成终止信号作用的密码子。
3.mRNA分子中终止蛋白质合成的密码子。
终止密码: UAG,UAA,UGA是终止密码子。
Ⅷ 人教版高中生物必修二当中什么是起始密码子什么是终止密码子它们的概念分别是什么它们有什么作用
起始密码子 initiation codon mRNA上的碱基顺序每3个碱基用解读框架划分开,可决定其所生成蛋白质的氨基酸顺序,为了使碱基顺序作为遗传信息能正确转译,通常需要从某个特定的位置开始转译。这个起始点的密码子就叫做起始密码子
终止密码子
1.蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列。2.mRNA翻译过程中,起蛋白质合成终止信号作用的密码子。3.mRNA分子中终止蛋白质合成的密码子。
Ⅸ 起始密码子和终止密码子的问题
遗传密码指的是mRNA上的密码(起始密码子为AUG(甲硫氨酸) GUG(缬氨酸),
终止密码子为UAA、UAG、UGA)
起始:ATG,终止:TGA,TAA,TAG,指的是被转录的DNA上与遗传密码相对应的序列。
终止密码: UAG,UAA,UGA是终止密码子。相应的DNA上的终止密码子序列是TAG,TAA,TGA。
只含U的密码子对应的是RNA上的三联密码子,但是往往不是讨论RNA的密码子,讨论的对象往往是DNA序列,故把U换成T就是DNA的起始、终止密码子。
(9)终止密码子终止翻译机理是什么扩展阅读:
起始密码子:
信使RNA(mRNA)的开放阅读框架区中,每3个相邻的核苷酸为一组,代表一种氨基酸,这种存在于mRNA开放阅读框架区的三联体形式的核苷酸序列称为密码子(codon)。
由A、U、C、G四种核苷酸可组成64个密码子,其中有61个密码子可编码氨基酸。AUG既编码甲硫氨酸,又作为多肽链合成的起始信号,作为起始信号的密码子称为起始密码子。
绝大多数生物的起始密码子 (initiation codon)都是AUG,作为多肽链合成的起始信号,同时编码一种氨基酸,原核生物的起始密码子AUG翻译对应的是甲酰甲硫氨酸(fMet),真核生物的起始密码子AUG翻译对应的是甲硫氨酸(Met)。某些原核生物也以GUG和UUG为起始密码子。
终止密码子:
1.蛋白质翻译过程中终止肽链合成的信使核糖核酸(mRNA)的三联体碱基序列。
2.mRNA翻译过程中,起蛋白质合成终止信号作用的密码子。
3.mRNA分子中终止蛋白质合成的密码子。
Ⅹ 翻译中的终止密码
可以让该细胞中缺少肽链1中一个特殊的氨基酸,让tRNA携载为空,该段肽链1就会合成终止,比如像ser的操纵子模型
另外,如果肽链1和肽链2的mRNA编码区域重合较少的话,在细胞内是可以同时合成2条肽段的