当前位置:首页 » 服务存储 » 荧光材料信息存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

荧光材料信息存储

发布时间: 2022-10-19 21:47:12

① 荧光材料的介绍

荧光材料是由金属(锌、铬)硫化物或稀土氧化物与微量活性剂配合经煅烧而成。无色或浅白色,是在紫外光(200~400nm)照射下,依颜料中金属和活化剂种类、含量的不同,而呈现出各种颜色的可见光(400~800nm)。

② 求一些荧光材料的发展介绍

纳米荧光技术包括具有荧光性质的各种纳米材料的制备,检测和应用。例如半导体荧光纳米材料,稀土荧光纳米材料和荧光蛋白等等。半导体纳米材料多为ii,vi族iii,v族的化合物,其中0维的就是量子点,此外还有一维的半导体纳米棒和纳米线,二维的各种膜等。而稀土荧光化合物则可以分为常见的(下转换)和上转换荧光材料。

③ 荧光材料的分类

荧光材料分无机荧光材料和有机荧光材料。
无机荧光材料
无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。由于稀土离子具有丰富的能级和 4f 电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。常见的无机荧光材料是以碱土金属的硫化物(如 ZnS、CaS)铝酸盐(SrAl2O4, CaAl2O4, BaAl2O4)等作为发光基质,以稀土镧系元素[铕(Eu) 、钐( Sm) 、铒(Er) 、钕(Nd)等] 作为激活剂和助激活剂。
无机荧光体的传统制备方法是高温固相法,但随着新技术的快速更新,发光材料性能指标的提高需要克服经典合成方法所固有的缺陷,一些新的方法应运而生,如燃烧法、溶胶—凝胶法[、水热沉淀法、微波法等。 在发光领域中,有机材料的研究日益受到人们的重视。因为有机化合物的种类繁多,可调性好,色彩丰富,色纯度高,分子设计相对比较灵活。根据不同的分子结构,有机发光材料可分为:(1) 有机小分子发光材料;(2) 有机高分子发光材料;(3) 有机配合物发光材料。这些发光材料无论在发光机理、物理化学性能上,还是在应用上都有各自的特点。
有机荧光材料
有机小分子发光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料[7]、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。
有机高分子光学材料通常分为三类:(1) 侧链型:小分子发光基团挂接在高分子侧链上,(2) 全共轭主链型:整个分子均为一个大的共轭高分子体系,(3) 部分共轭主链型:发光中心在主链上,但发光中心之间相互隔开没有形成一个共轭体系。所研究的高分子发光材料主要是共轭聚合物,如聚苯、聚噻吩、聚芴、聚三苯基胺及其衍生物等。还有聚三苯基胺,聚咔唑,聚吡咯,聚卟啉[8]及其衍生物、共聚物等,研究得也比较多。
还可以把发光基团引入聚合物末端或引入聚合物链中间,Kenneth P. Ghiggino等把荧光发色团引入 RAFT 试剂,通过 RAFT 聚合,把荧光发色团连在聚合物上。从以上的各种发光聚合物中可以看出,多数是主链共轭的聚合,主链聚合易形成大的共轭面积,但是其溶解性、熔融性都降低,加工起来比较困难;而把发光基团引入聚合物末端或引入聚合物链中间时,又只有端基发光,分子量不会很大,若分子量很大,则发光基团在聚合物中含量低,荧光很弱。而侧链聚合物发光材料,是对主链共轭聚合物的有力补充。
3. 自发光体 这种材料经常被当作光致发光物体。自发光物体在黑暗中可发光,但事先不需要暴露在日光下。这些材料通常作为表盘上的发光标记以及用于长期发光的物体的制作,它们含有放射性元素。
4. 磷光物体 由于含有磷元素而发光,这种材料也经常被当成光致发光材料。
光致发光材料的应用: 光致发光粉是制作发光油墨、发光涂料、发光塑料、发光印花浆的理想材料。发光油墨不但适用于网印各种发光效果的图案文字,如标牌、玩具、字画、玻璃画、不干胶等,而且因其具有透明度高、成膜性好、涂层薄等特点,可在各类浮雕、圆雕(佛像、瓷像、石膏像、唐三彩)、高分子画、灯饰等工艺品上喷涂或网印,在不影响其原有的饰彩或线条的前提下大大提高其附加值。发光油墨的颜色有:透明、红、蓝、绿、黄等。

④ 化学家创造出最亮荧光材料,到底是什么材料

化学家创造出最亮荧光材料,这材料是一种合成材料。这种合成出来的荧光材料是通过将带正电荷的荧光染料合成到一种新型材料中,这种新型材料是小分子离子隔离格(SMILES),这种方式制成的化合物,它灿烂的光芒可以“完美地”转化为固态结晶状态。

化学家在研发出一种新型材料时,会有很多的困难。整个研究过程也经历了很多失败和不确定性。一次又一次的失败并没有消磨他们的自信心。化学家制造出来的一切新型材料,其实也是一个复杂的过程。

科学家在研发这个最亮的荧光材料时,会经历一系类比较复杂的实践操作步骤。化学家的研发过程,也是一种尝试的过程,一种探索的过程。这种研发出来的新型材料,就是要将其使用,让这个材料发挥出自己的性能。这就要进行一些材料性能的研究。

根据这个材料的外观,就可以看出它是一种很特殊的材料。这种材料,其实也具有很大的应用潜力。这是我们最欣喜的地方。

⑤ 荧光材料会不会影响手机信号

不会。

荧光材料多数都是含氮有机物,不具有铁磁性,不能影响电磁波,所以不会干扰手机信号。

⑥ 求一些荧光材料的发展介绍

光转换材料。光转换材料是吸收太阳光中于植物生长不利的紫外光,再转换为有利植物生产的可见光,主要是400~480nm的兰光和600~680nm的红光,从而促进作物的光合作用,达到作为增产早熟的目的。常见的有稀土有机配合物光转换剂和稀土无机发光材料光转换剂,如TTA-TOPO:Eu3+, 364nm紫外线激发下发红光,稀土(Eu、Tb)螯合物光转换剂;CaS:Eu、Cl、CaS:Cu、Eu。

电致发光(EL)荧光粉。电致发光是将电能直接转化为光能,它的特点是工作电压低、能量转换效率高、体积小、重量轻、工作范围宽、响应速度快,可做成全固体化的器件。稀土掺杂的ZnS,CaS和SrS薄膜电致发光器件在平面显示中崭露头角。

场致发射显示(FED)用荧光粉。FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度快(≤20μs), 而功耗仅是LCD的1/3,平板显示的厚度和重量也仅为LCD的1/2,其应用前景引人关注。
同时,应用市场的不断扩大,也促使这一领域的研究十分活跃。

光转换材料。光转换材料是吸收太阳光中于植物生长不利的紫外光,再转换为有利植物生产的可见光,主要是400~480nm的兰光和600~680nm的红光,从而促进作物的光合作用,达到作为增产早熟的目的。常见的有稀土有机配合物光转换剂和稀土无机发光材料光转换剂,如TTA-TOPO:Eu3+, 364nm紫外线激发下发红光,稀土(Eu、Tb)螯合物光转换剂;CaS:Eu、Cl、CaS:Cu、Eu。

电致发光(EL)荧光粉。电致发光是将电能直接转化为光能,它的特点是工作电压低、能量转换效率高、体积小、重量轻、工作范围宽、响应速度快,可做成全固体化的器件。稀土掺杂的ZnS,CaS和SrS薄膜电致发光器件在平面显示中崭露头角。

场致发射显示(FED)用荧光粉。FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度快(≤20μs), 而功耗仅是LCD的1/3,平板显示的厚度和重量也仅为LCD的1/2,其应用前景引人关注。

由于发光材料的特殊晶体结构和特殊的化学物理性质决定的发光材料的生产设备必然是耐高温、弱还原、高纯、低金属、高硬度的特殊生产设备,是一般的机器设备生产厂家所没有办法生产的,故此我本中心依据多年的生产实践经验及科学的研究成果,特别生产了年产10T、50T、100T蓄能发光材料的生产设备,并可以根据客户的特殊用途进行设计生产各种荧光生产设备。
随着近年来发光材料行业的快速发展,国内检测发光材料的设备还没有形成系统,只有几所大学在实验室实验成功少数仪器,但多不能够与其他的相统一。基本上是个空白,我研究人员依据多年的生产实践经验及科学的研究成果研究开发成功了系列检测设备,可以满足国内外需求,也可以根据可户要求定做。

⑦ 没有光源荧光材料是什么

荧光材料,如日光灯管内白色硫化锌涂层,受紫外线照射就会发光。也属于光电现象。光是有频率变化的电磁力,光照在荧光材料时,紫外线,高频电磁力传递给电子,转变成可见光,频率较低的电磁力。

1、没有光源荧光材料不会发光。

2、荧光材料是由金属(锌、铬)硫化物或稀土氧化物与微量活性剂配合经煅烧而成。无色或浅白色,是在紫外光照射下,依颜料中金属和活化剂种类、含量的不同,而呈现出各种颜色的可见光。

3、一旦没有了光源,荧光材料就不会发光了。

无机荧光材料的代表:

为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。

由于稀土离子具有丰富的能级和 4f 电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。常见的无机荧光材料是以碱土金属的硫化物(如 ZnS、CaS)铝酸盐(SrAl2O4, CaAl2O4, BaAl2O4)等作为发光基质,以稀土镧系元素[铕(Eu) 、钐( Sm) 、铒(Er) 、钕(Nd)等] 作为激活剂和助激活剂。

⑧ 田禾的研究成果

田禾教授长期从事精细化工研究,主要从事有机功能材料的合成及其光物理、光化学研究,至重点为功能染料。他从产品工程的基础研究入手,针对染料分子内弱相互作用可控转换与其多尺度功能调控的关键科学问题,提出染料分子设计新概念,发展了多尺度体系的精细荧光表征方法,探索多功能应用新体系,解决了产品清洁高效合成工艺的关键难题,取得系列研究成果,至今在国外学术刊物发表SCI论文288篇,申请中国发明专利49项,获34项授权中国发明专利,SCI他引7100多次。
田禾教授提出以荧光作为读出信号的可擦式光信息存储新概念,创新合成一系列具有高信噪比的光致变色荧光材料,大幅度提高其应用稳定性;创新合成可用荧光信号表征的可“锁”的光驱动分子梭和多构型逻辑功能分子机器等,解决了分子尺度上精确表征分子机器运动的关键问题;在国际上首先报道高选择性汞的荧光比率传感体系,在荧光探针和高性能有机太阳电池染料等方面进行了创新探索。通过20年的研究积累,他形成了以“共轭π体系结构与多尺度功能精细调控”为主要特色的研究体系。
田禾教授针对功能染料新品种、关键生产工艺和应用开展了深入研究,构筑了具有自主知识产权的产品体系,在产品工程的应用和产业化方面解决了一系列工艺难题;发明了新型多枝结构稀土金属盐多相催化剂,形成高性能颜料清洁生产的创新工艺;开发出系列全新结构的高性能光盘染料,解决了低成本合成生产技术难题,突破了光盘染料的国外技术壁垒。这些创新的生产工艺和已实施的发明专利技术,创造出显着的经济与社会效益。
曾获得2007年国家自然科学二等奖;2006年上海市自然科学一等奖;2000年度国家科技进步二等奖;2002年度上海市科技进步二等奖(发明类)等。 《吴中名贤谱》 苏 文 编绘

⑨ 阴极射线管(CRT)

为什么想到研究CRT呢?

电视机显示器
阴极射线管显示器(CRT),是实现最早、应用最为广泛的一种显示技术,具有技术成熟、图像色彩丰富、还原性好、全彩色、高清晰度、较低成本和丰富的 几何失真 调整能力等优点,主要应用于电视、计算机显示器、工业监视器、 投影仪 等 终端 显示设备。

阴极射线管显示器(CRT)是一种使用阴极射线管(Cathode Ray Tube)的显示器,主要有五部分组成:电子枪(Electron Gun), 偏转线圈 (Deflection coils), 荫罩 (Shadow mask),荧光粉层(Phosphor)及玻璃外壳。它是应用最广泛的显示器之一,CRT纯平显示器具有可视角度大、无坏点、色彩还原度高、 色度 均匀、可调节的多分辨率模式、响应时间极短等 LCD 显示器难以超越的优点,而且CRT显示器价格要比LCD显示器便宜不少 。

阴极射线管(CRT)是一种包含一个或多个电子枪和一个磷光屏的真空管,用于显示图像。它调节、加速和偏转电子束到屏幕上以产生图像。图像可以代表 波形(示波器) 图片(电视,电脑显示器) 雷达目标 ,或 其他现象 。阴极射线管也被用作 存储设备 ,在这种情况下,荧光材料发出的可见光(如果有的话)对视觉观察者没有重大意义(尽管管面上的可见图案可能会秘密地表示存储的数据)。

在电视机和计算机显示器中,整个电子管的前部区域以一种被称为 光栅 的固定模式被重复和系统地扫描。在彩色设备中,图像是通过控制三束电子束每束的强度而产生的,每束电子束对应一种 加性基色(红、绿、蓝) ,并以视频信号作为参考。虽然静电偏转通常用于示波器,一种电子测试仪器,但在所有现代的CRT显示器和电视中,电子束都是由于磁偏转而弯曲的。
磁偏转是线圈产生的变化磁场,由环绕在电子管颈部的电子电路驱动。

典型的20世纪50年代美国单色电视机

用慢动作拍摄的阴极射线管电视。光线是从左到右以光栅模式绘制

1984年Sinclair FTV1袖珍电视内的平面CRT组件

电子枪
阴极射线管由一个大而深的玻璃外壳构成。,从前屏幕面到后端很长),比较重,比较易碎。CRT内部被疏散到大约0.01帕斯卡(9.9×10−8 atm)[3]至133纳米ascals(1.31×10−12 atm),[4]疏散是必要的,以促进电子从枪(s)自由飞行到管的表面。由于它是被疏散的,处理一个完整的阴极射线管有潜在的危险,因为有可能会破裂管,引起猛烈的内爆,从而可能会以极高的速度投掷玻璃碎片。为了安全起见,表面通常由厚铅玻璃制成,以具有高度的抗碎性,并能阻挡大多数x射线发射,特别是当阴极射线管用于消费产品时。

自2000年代末以来,crt已经被LCD、等离子显示器和OLED等较新的“平板”显示技术所取代,这些技术具有更低的制造成本和功耗,以及更轻的重量和体积。平板显示器也可以做成非常大的尺寸;38 - 40英寸(97 - 102厘米)是CRT电视机的最大尺寸,而85英寸(220厘米)甚至更大尺寸的平板电视机都有。

阴极射线是由朱利叶斯·普拉克和约翰·威廉·希托夫发现的。[5] Hittorf观察到从阴极(负电极)发射出一些未知的射线,这些射线可以在发光的管壁上投下阴影,表明这些射线以直线行进。1890年,Arthur Schuster证明阴极射线可以被电场偏转, William Crookes证明阴极射线可以被磁场偏转 。1897年,J. J.汤姆森成功地测量了阴极射线的电荷质量比,显示阴极射线由比原子还小的带负电荷的粒子组成,这是第一批“次原子粒子”,爱尔兰物理学家乔治·约翰斯通·斯托尼在1891年将其命名为电子。CRT最早的版本被称为“布劳恩管”,是由德国物理学家费迪南德布劳恩在1897年发明的。它是一种冷阴极二极管,是对带有磷光屏的Crookes管的改进。

第一个使用热阴极的阴极射线管是由约翰·伯特兰·约翰逊(Johnson noise一词就是由他命名的)和西方电气公司的哈里·韦纳·温哈特(Harry Weiner Weinhart)开发的,并于1922年成为商业产品。[引文需要]

1926年,Kenjiro Takayanagi展示了一台接收40线分辨率图像的CRT电视。1927年,他将分辨率提高到100行,这在1931年之前是无与伦比的。1928年,他成为第一个在CRT显示器上传输半音调人脸的人。到1935年,他已经发明了早期的全电子CRT电视。

它在1929年被发明者Vladimir K. Zworykin命名,[12],他受到了高野agi早期工作的影响。1932年[10]RCA公司获得了“阴极射线管”的商标;1950年,它自愿将这个词公开。

1934年,德国Telefunken公司制造了第一部商用的带有阴极射线管的电子电视机。

21世纪初, 平板显示器价格下跌 ,开始明显取代阴极射线管,2008年LCD屏幕超过了CRT。已知的最后一家(回收)显像管制造商Videocon于2015年停产。

在示波器的阴极射线管中,使用 静电偏转 ,而不是电视机和其他大型阴极射线管通常使用的 磁偏转 。在水平方向上,通过在左右一对平板之间施加电场,光束就会发生偏转;在垂直方向上,通过在上下两个平板上施加电场,光束就会发生偏转。电视机使用磁性偏转而不是静电偏转,因为当偏转角达到相对较短的电子管所需的大小时,偏转板会阻碍电子束。

各种荧光粉可根据需要的测量或显示应用。亮度、颜色和照明的持久性取决于在CRT屏幕上使用的荧光粉的类型。荧光粉的持久性从不到一微秒到几秒不等。对于短暂的瞬变事件的视觉观察,一个长持久性荧光粉可能是可取的。对于快速、重复或高频事件,短余辉荧光粉通常是可取的。

当显示快速的一次性事件时,电子束必须非常迅速地偏转,只有很少的电子撞击屏幕,导致显示上微弱或不可见的图像。为非常快的信号而设计的示波器CRTs可以在电子束到达屏幕之前通过一个微通道板,从而使显示更加明亮。该板通过二次发射现象,使到达荧光屏的电子数成倍增加,显着提高了书写率(亮度),提高了灵敏度和光斑尺寸。

大多数示波器都有一个十字线作为视觉显示的一部分,以方便测量。所述格子可以永久地标记在阴极射线管表面的内部,也可以是由玻璃或丙烯酸塑料制成的透明外部板。内部格栅消除了视差误差,但不能改变以适应不同类型的测量。示波器通常提供一种方法,使十字线从侧面被照亮,以提高其可见度。

这些在模拟荧光粉存储示波器中可以找到。它不同于数字存储示波器,后者依靠固态数字存储器来存储图像。

当一个简单的事件被示波器监测,这样的事件只有在它实际发生的时候才会被传统的电子管显示出来。使用长余辉荧光粉可以在事件发生后观察图像,但最多只能观察几秒钟。这一限制可以通过使用直接视图存储阴极射线管(存储管)来克服。在事件发生后,存储管将继续显示该事件,直到该事件被擦除为止。存储管与传统的管相似,除了它配备了金属栅格,栅格上涂有介电层,该金属栅格位于荧光屏的后面。一个外部施加在网格上的电压最初确保了整个网格处于一个恒定的电位。这个网格不断暴露在一个“注水枪”的低速电子束中,这个“注水枪”独立于主枪工作。这种喷枪不像主喷枪那样偏转,而是不断地“照亮”整个储存网。在储存网上的初始电荷是这样的,以排斥电子从洪水枪阻止打击荧光粉屏幕。

当主电子枪向屏幕写入图像时,主电子束中的能量足以在存储网格上产生一个“电位浮雕”。该地区,这是创造不再排斥电子从洪水枪现在通过网格和照亮荧光粉屏幕。因此,主炮短暂地描绘出来的图像在它发生后继续显示。图像可以'擦除'通过重新提供外部电压的网格恢复其恒定电位。图像显示的时间是有限的,因为在实践中,注水枪会缓慢地中和存储网格上的电荷。一种让图像保持更长的时间的方法是暂时关闭喷枪。然后就有可能将图像保留几天。大多数存储管允许一个较低的电压应用到存储网,缓慢恢复初始电荷状态。通过改变这个电压,可以得到一个可变的持久性。关闭注水枪和向存储网供电的电压,这样的管就可以像常规的示波器管一样工作。

彩色管使用三种不同的荧光粉,分别发出红色,绿色和蓝色光。它们以条状(如光圈格栅设计)或簇状(如阴影掩模阴极射线管)排列在一起。[26]彩色阴极射线管有三个电子枪,一个为每个原色,排列在一条直线或在一个等边三角形的配置(电子枪通常构造为一个单独的单位)。(三角配置通常被称为“delta-gun”,根据其与希腊字母的形状三角洲Δ.)格栅或掩膜吸收电子,否则这些电子会击中错误的荧光粉。[27]荫罩管使用小孔的金属板,放置,使电子束只照亮正确的荧光粉表面上管;[26]洞锥形的电子攻击任何孔的内部将会反射回来,如果不吸收(如由于局部电荷积累),而不是跳跃穿过洞罢工一个随机的(错误的)点在屏幕上。另一种彩色阴极射线管使用张力垂直导线的孔径格栅来达到同样的效果。

Cutaway rendering of a color CRT:

由于crt的尺寸精度的限制可以制造经济,它几乎没有可能建立彩色crt的三个电子束可以达到各自的荧光粉颜色一致接受的协调,完全的基础上的几何配置电子枪轴和枪孔位置,荫罩孔径,等等。荫罩确保一个梁只会触及某些颜色的荧光粉的斑点,但内部部件的物理对齐中细微的差异在个人crt将导致变化的准确对齐光束通过荫罩,允许一些电子,例如,红色光束击中,说,蓝色荧光粉,除非个别补偿是由个人管之间的方差。

色彩收敛性和色彩纯度是这一单一问题的两个方面。首先,为了正确的显色,有必要不管光束在屏幕上的哪个位置发生偏转,这三束光线都击中荫罩上的同一个点(也就是通过同一个孔或槽)。[需要澄清]这叫做聚合。更具体地说,屏幕中心处的收敛(无轭施加偏转场)称为静态收敛,屏幕其余区域的收敛称为动态收敛。光束可能会聚在屏幕的中心,但当它们向边缘偏转时,就会彼此偏离;这样的CRT静态收敛性较好,但动态收敛性较差。其次,每束光必须只击中它想要击中的颜色的荧光粉,而不能击中其他的。这就是纯度。和收敛一样,也有静态的纯粹性和动态的纯粹性,收敛的“静态”和“动态”含义相同。收敛性和纯度是截然不同的参数;一个阴极射线管可以有良好的纯度但差的收敛,反之亦然。差的收敛导致颜色“阴影”或“幽灵”沿显示的边缘和轮廓,好像在屏幕上的图像凹版印刷的配准不佳。纯度差会导致屏幕上的物体出现变色,而它们的边缘仍然锐利。在屏幕的相同或不同区域或在整个屏幕上同时出现纯度和收敛问题,在屏幕的不同部分上出现均匀或较大或较小的程度。

文件:TV.webm磁铁
用于阴极射线管电视的磁铁。注意图像的失真。
解决静态收敛和纯度问题是一套彩色对准磁铁安装在脖子上的CRT。这些可移动的弱永磁体通常安装在偏转轭总成的后端,并在工厂设置,以补偿任何静态纯度和收敛误差,这些误差是固有的未经调整管。通常有两对或三对两个磁体,它们是用浸染了磁性材料的塑料做成的环形,磁场平行于磁体的平面,而磁体的平面垂直于电子枪的轴。每一对磁环形成一个有效的磁体,其磁场矢量可以完全自由地(在方向和大小上)调整。通过相互旋转一对磁铁,可以改变它们的相对磁场排列,从而调整磁铁对的有效磁场强度。(当它们相对旋转时,每个磁铁的磁场都可以认为有两个直角相反的分量,这四个分量[两个磁体各两个]组成了两对,一对相互加强,另一对相互对立,相互抵消。当磁体偏离校准方向旋转时,相互增强的磁场分量会减少,因为它们被交换为增加的相反的、相互抵消的分量。)通过旋转一对磁铁,保持它们之间的相对角度,它们的集体磁场的方向可以改变。总的来说,调整所有的收敛/纯度磁铁允许细微调谐的电子束偏转或横向偏移,这弥补了微小的静态收敛和纯度误差内在的未校准管。一旦固定,这些磁铁通常被粘在适当的位置,但通常他们可以释放和重新调整在现场(如电视维修店),如果有必要。

在一些阴极射线管,额外的固定可调磁铁添加动态收敛或动态纯度在屏幕上的特定点,通常在角落或边缘。动态收敛性和纯度的进一步调整通常不能被动地完成,而需要有源补偿电路。

动态色彩收敛和纯度是导致阴极射线管在其历史后期一直是长颈(深)和双轴曲面的主要原因之一;这些几何设计特征是必要的内在被动动力。

如果遮光罩或孔径格栅磁化,其磁场就会改变电子束的路径。这就导致了“颜色纯度”的错误,因为电子不再只沿着它们预期的路径,而且一些电子会击中一些不同颜色的荧光粉。例如,来自红色光束的一些电子可能会击中蓝色或绿色的荧光粉,使图像中本应是纯红色的部分染上品红或黄色。(如果磁化是局域化的,此效果将局域化到屏幕的特定区域。)因此,重要的是荫罩或孔径格栅不磁化。

大多数彩色阴极射线管显示器,如电视机和电脑显示器,都有一个内置消磁电路,其主要组件是一个消磁线圈,安装在阴极射线管表面周围的边框内。当CRT显示电源接通时,消磁电路产生短暂的交流电通过消磁线圈,在几秒钟的时间内平滑地衰减强度(衰减)到零,从线圈产生一个衰减的交变磁场。在大多数情况下,这种消磁磁场足以消除阴影掩膜的磁化。在内部消磁场不足的强磁化异常情况下,可使用较强的便携式消磁器或消磁器在外部对荫罩进行消磁。然而,过强的磁场,无论是交变磁场还是恒磁场,都会机械地使阴影掩膜变形(弯曲),在显示器上造成永久性的颜色失真,看起来很像磁化效应。

消磁电路通常由一个热电(非电子)装置构成,该装置包含一个小的陶瓷加热元件和一个正热系数(PTC)电阻,该电阻与消磁线圈串联直接连接到交流开关电源线上。当电源接通时,加热元件加热PTC电阻,将其电阻增加到消磁电流最小的点,但实际上不是零。在老式的CRT显示器中,这种低电流(不产生显着的消磁场)只要显示器保持打开状态,就会随着加热元件的动作而持续。要重复消磁周期,必须关闭阴极射线管显示器至少几秒钟,以通过让PTC电阻冷却到环境温度来重置消磁电路;开关显示和立即恢复将导致弱消磁周期或有效地没有消磁周期。

这种简单的设计是有效的和廉价的建造,但它浪费一些能源持续。后来的型号,特别是能源之星级的型号,使用一个继电器来开关整个消磁电路,这样消磁电路只有在功能活跃和需要的时候才使用能量。继电器设计还可以根据用户的需求通过单元的前面板控制消磁,而无需再次开关单元的开关。在消磁周期结束几秒钟后监视器被打开,这个继电器经常可以听到点击关闭,在手动启动消磁周期的开关。

在高刷新率和决议,偏转线圈/轭开始产生大量的热量,由于需要快速移动电子束(因为电子束扫描更多每秒行),这反过来又需要大量的力量,迅速产生强磁场。这使得超出特定分辨率和刷新速率的阴极射线管不切实际,因为线圈需要主动冷却,以防止线圈的热量熔化用于连接到阴极射线管颈部的胶水。

矢量监视器被用于早期的计算机辅助设计系统,在70年代末到80年代中期的一些街机游戏如《小行星》中使用。他们点对点画图形,而不是扫描光栅。矢量显示器可以使用单色或彩色阴极射线管,其设计和操作的基本原理是相同的;主要的区别在于光束的偏转模式和电路。

尽管作为显示技术的支柱已经有几十年了,基于crt的电脑显示器和电视现在实际上已经是一种死气沉沉的技术。对阴极射线管屏幕的需求在2000年代后期下降。液晶平板显示器技术的快速发展和价格的下跌——先是用于电脑显示器,然后是电视——宣告了与之竞争的显示技术,如CRT、后置投影和等离子显示的末日。

大多数高端显像管的生产已经在2010年左右停止,包括[48]高端索尼和松下生产线。在加拿大和美国,高端CRT电视(30英寸(76厘米)屏幕)的销售和生产到2007年几乎全部结束。仅仅几年之后,便宜的组合CRT电视(20英寸(51厘米)屏幕和集成的VHS播放器)从折扣店消失了。

百思买(Best Buy)等电子零售商稳步减少了阴极射线管显示器(crt)的存储空间。2005年,索尼宣布他们将停止生产CRT电脑显示器。在2008年消费电子展(Consumer Electronics Show)上,三星没有在2008年推出任何CRT型号;2008年2月4日,他们从北美网站上撤下了他们的30寸宽屏显像管,并没有更换新型号

在英国,国内最大的电子设备零售商DSG (Dixons)报告称,2004年圣诞节CRT型号占电视机销量的80-90%,一年后占15-20%,预计到2006年底这一比例将低于5%。Dixons于2006年停止销售阴极射线管电视机

然而,阴极射电管的消亡在发展中国家发生得更为缓慢。根据iSupply,液晶显示器的产量直到2007年第四季度才超过了阴极射线管的产量,这主要是由于中国工厂的阴极射线管产量。[引文需要]

⑩ 夜光 是什么 化学物质他是如何 储存光的

荧光粉(俗称夜光粉),通常分为光致储能夜光粉和带有放射性的夜光粉两类。光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储存起来,在停止光照射后,在缓慢地以荧光的方式释放出来,所以在夜间或者黑暗处,仍能看到发光,持续时间长达几小时至十几小时。带有放射性的夜光粉,是在荧光粉中掺入放射性物质,利用放射性物质不断发出的射线激发荧光粉发光,这类夜光粉发光时间很长,但有毒有害和环境污染等应用范围小。人们在实际生活中利用夜光粉长时间发光的特性,制成弱照明光源,在军事部门有特殊的用处,把这种材料涂在航空仪表、钟表、窗户、机器上各种开关标志,门的把手等处,也可用各种透光塑料一起压制成各种符号、部件、用品(如电源开关、插座、钓鱼钩等)。这些发光部件经光照射后,夜间或意外停电、闪电后起床等它仍在持续发光,使人们可辨别周围方向,为工作和生活带来方便。把夜光材料超细粒子掺入纺织品中,使颜色更鲜艳,小孩子穿上有夜光的纺织品,可减少交通事故。 目前国内外夜光材料主要是以ZnS,SrS和CaS制成的,发出绿光和黄光。SrS,CaS材料易潮解,给广泛应用带来困难。所以市场上主要是以ZnS为基质的夜光材料。但它的余辉时间只有1~3小时,同时在强光(如太阳光)、紫外光和潮湿空气中容易变质发黑,所以在许多领域中应用受到限制。添加钻、铜共激活的ZnS夜光粉虽然有很长的余辉时间,但它有红外淬灭现象,在电灯光(包含较多的红光)照射下,余辉很快熄灭。