当前位置:首页 » 服务存储 » 时序存储助力打造
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

时序存储助力打造

发布时间: 2022-11-05 13:01:55

A. 内存时序高会怎么样影响电脑性能吗

内存时序高说明系统的性能较低,延迟大。

内存时序较低的数字通常意味着更快的性能。决定系统性能的最终元素是实际的延迟时间,通常以纳秒为单位。

内存时序是描述内存条性能的一种参数,一般存储在内存条的SPD中,简称为CL值,它是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。目前,一般好一些的内存条,在参数中都会标注CL值。

总的来说,时序是决定内存性能的一个参数,但并不是说时序越低,性能就一定越好,它还与内存容量、频率有关。只能说,在相同容量和频率下的两条内存,时序越低,性能就越好。

(1)时序存储助力打造扩展阅读:

内存时序具体含义:

内存时序是描述内存条性能的一种参数,一般存储在内存条的SPD中。一般数字“A-B-C-D”分别对应的参数是“CL-tRCD-tRP-tRAS”,它们的含义依次为:

1、CL:列寻址所需的时钟周期(表示延迟的长短)

确实是同频率下,CL值越小内存条性能越好。从DDR1-4随着内存条的频率越来越高,CL值也越来越大,但是其真实的CL延迟时间几乎没有什么变化。这说明并不是CL值越大,内存条的CL延迟就越大,内存条就越差。从DDR1-4 CL值越来越大,相反说明CL越大,能上去的频率越高。

2、tRCD:行寻址和列寻址时钟周期的差值。

tRCD值对内存最大频率影响最大。内存条想要上到一个高的频率,而如果不能加大电压和放宽CL值,那么就只能把tRCD值增大。

现在的DDR4一般的1.2V,想要CL值好看,还想要内存条能超频到更高,那就加大tRCD咯,还想要灯光效果,那就把时序统统的加大。所以tRCD大不代表内存条差,相反代表内存条可以超到一个很高的频率。

3、tRP:在下一周期之前,预充电需要的时钟周期。

虽然tRP的影响会随着频繁操作一个bank而加大,但是它的影响也会被bank交叉操作和命令调配所削弱。放宽tRP有利于提高行址激活、关闭的命中率,正确率。放宽tRP可让内存条的兼容性更好。

4、tRAS:对某行的数据进行存储时,从操作开始到寻址结束需要的总时间周期。

此操作并不会频繁发生,只有在内存空闲或开始新一个任务的时候才使用它。tRAS值太小有可能导致数据错误或丢失,太大的值则会影响内存性能。如果内存条负荷较大,一般可以稍微放宽tRAS值。

参考资料来源:网络--内存时序

B. Bios设置内存时序模式是什么意思

一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。

C. 计算机的存储器主要功能是什么

计算机存储器的功能:

计算机存储器根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。具体解释如下:

内储存器直接与CPU相连接,储存容量较小,但速度快,用来存放当前运行程序的指令和数据,并直接与CPU交换信息。

外储存器是内储存器的扩充。它储存容量大,价格低,但储存速度慢,一般用来存放大量暂时不用的程序,数据和中间结果,需要时,可成批的与内存进行信息交换。外存只能与内存交换信息,不能被计算机系统的其他部件直接访问

(3)时序存储助力打造扩展阅读

存储器分为内存储器与外存储器,简称内存与外存。内存储器又常称为主存储器(简称主存),属于主机的组成部分;外存储器又常称为辅助存储器(简称辅存),属于外部设备。CPU不能像访问内存那样,直接访问外存,外存要与CPU或I/O设备进行数据传输,必须通过内存进行。在80386以上的高档微机中,还配置了高速缓冲存储器(cache),这时内存包括主存与高速缓存两部分。对于低档微机,主存即为内存。

计算机中,存储器容量以字节(Byte,简写为B)为基本单位,一个字节由8个二进制位(bit)组成。存储容量的表示单位除了字节以外,还有KB、MB、GB、TB(可分别简称为K、M、G、T,例如,128MB可简称为128M)。其中:1KB=1024B,1MB=1024KB,1GB=1024MB,1TB=1024GB。

D. 内存时序的设置问题

内存时序 一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。

该参数对内存性能的影响最大,在保证系统稳定性的前提下,CAS值越低,则会导致更快的内存读写操作。CL值为2为会获得最佳的性能,而CL值为3可以提高系统的稳定性。注意,WinbondBH-5/6芯片可能无法设为3。

RAS# to CAS# Delay(tRCD)
可选的设置:Auto,0,1,2,3,4,5,6,7。
该值就是“3-4-4-8”内存时序参数中的第2个参数,即第1个4。RAS# to CAS# Delay(也被描述为:tRCD、RAS to CAS Delay、Active to CMD),表示"行寻址到列寻址延迟时间",数值越小,性能越好。对内存进行读、写或刷新操作时,需要在这两种脉冲信号之间插入延迟时钟周期。在JEDEC规范中,它是排在第二的参数,降低此延时,可以提高系统性能。建议该值设置为3或2,但如果该值设置太低,同样会导致系统不稳定。该值为4时,系统将处于最稳定的状态,而该值为5,则太保守。
如果的内存的超频性能不佳,则可将此值设为内存的默认值或尝试提高tRCD值。
Min RAS# Active Timing(tRAS)
可选的设置:Auto,00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15。

该值就是该值就是“3-4-4-8”内存时序参数中的最后一个参数,即8。Min RAS# Active Time (也被描述为:tRAS、Active to Precharge Delay、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay、RAS Active Time),表示“内存行有效至预充电的最短周期”,调整这个参数需要结合具体情况而定,一般最好设在5-10之间。这个参数要根据实际情况而定,并不是说越大或越小就越好。

如果tRAS的周期太长,系统会因为无谓的等待而降低性能。降低tRAS周期,则会导致已被激活的行地址会更早的进入非激活状态。如果tRAS的周期太短,则可能因缺乏足够的时间而无法完成数据的突发传输,这样会引发丢失数据或损坏数据。该值一般设定为CAS latency + tRCD + 2个时钟周期。如果的CAS latency的值为2,tRCD的值为3,则最佳的tRAS值应该设置为7个时钟周期。为提高系统性能,应尽可能降低tRAS的值,但如果发生内存错误或系统死机,则应该增大tRAS的值。
如果使用DFI的主板,则tRAS值建议使用00,或者5-10之间的值。
Row Precharge Timing(tRP)
可选的设置:Auto,0,1,2,3,4,5,6,7。
该值就是“3-4-4-8”内存时序参数中的第3个参数,即第2个4。Row Precharge Timing (也被描述为:tRP、RAS Precharge、Precharge to active),表示"内存行地址控制器预充电时间",预充电参数越小则内存读写速度就越快。
tRP用来设定在另一行能被激活之前,RAS需要的充电时间。tRP参数设置太长会导致所有的行激活延迟过长,设为2可以减少预充电时间,从而更快地激活下一行。然而,想要把tRP设为2对大多数内存都是个很高的要求,可能会造成行激活之前的数据丢失,内存控制器不能顺利地完成读写操作。对于桌面计算机来说,推荐预充电参数的值设定为2个时钟周期,这是最佳的设置。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRP值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。
如果使用DFI的主板,则tRP值建议2-5之间的值。值为2将获取最高的性能,该值为4将在超频时获取最佳的稳定性,同样的而该值为5,则太保守。大部分内存都无法使用2的值,需要超频才可以达到该参数。

Row Cycle Time(tRC)
可选的设置:Auto,7-22,步幅值1。
Row Cycle Time(tRC、RC),表示“SDRAM行周期时间”,它是包括行单元预充电到激活在内的整个过程所需要的最小的时钟周期数。
其计算公式是:row cycle time (tRC) = minimum row active time(tRAS) + row precharge time(tRP)。因此,设置该参数之前,应该明白的tRAS值和tRP值是多少。如果tRC的时间过长,会因在完成整个时钟周期后激活新的地址而等待无谓的延时,而降低性能。然后一旦该值设置过小,在被激活的行单元被充分充电之前,新的周期就可以被初始化。

Write Recovery Time (tWD),表示“写恢复延时”。该值说明在一个激活的bank中完成有效的写操作及预充电前,必须等待多少个时钟周期。这段必须的时钟周期用来确保在预充电发生前,写缓冲中的数据可以被写进内存单元中。同样的,过低的tWD虽然提高了系统性能,但可能导致数据还未被正确写入到内存单元中,就发生了预充电操作,会导致数据的丢失及损坏。

E. 如何解决存储器和CPU之间的时序配合问题,述说其详细过程

http://blog.21ic.com/user1/3794/archives/2007/40244.html
分享】存储器与CPU的连接2007-7-19 16:46:00
存储器与CPU的连接
存储器与CPU或系统总线的连接,这个题目很大。注意到以字节为单位组织的存储器是16位宽度、乃至32位宽度的存储器的基础,本着由易到难、由浅入深的原则,这里先考虑以字节为单位组织的存储器与8位CPU的连接,在下一节介绍16位宽度的存储器与16位CPU(以8086为例)的连接,在后面的章节再讨论32位CPU(以80386为例)的存储器组织。
在考虑存储芯片类型时,也是先考虑与CPU连接较为方便的SRAM和ROM,然后再指出DRAM与CPU连接时要特别考虑的地方。
在存储器与CPU连接时一般要考虑以下几个问题:
·CPU总线的负载能力。
·CPU与存储器速度的配合问题。
·存储器的地址空间分配。
·读/写控制信号的连接。
·数据线的连接。
·地址线的连接与存储芯片片选信号的产生。
1.CPU总线的负载能力
CPU总线的驱动能力有限,通常为一到数个,TTL负载,因此,在较大的系统中需要考虑总线驱动。一般做法是,对单向传送的地址和控制总线,可采用三态锁存器(如74LS373、8282等)和三态单向驱动器(如74LS244)等来加以锁存和驱动;对双向传送的数据总线,可采用三态双向驱动器(如74LS245、8286等)来加以驱动。三态双向驱动器也称总线收发器或数据收发器。
2.CPU与存储器速度的配合问题
每一种存储芯片都有自己固有的时序特性,这在前面已多次讲到。在和cPu相连时必须处理好时序的配合问题。处理这个问题应以CPU的时序为基准,从CPU的角度提要求。
例如,存储芯片读取时间应小于CPU从发出地址到要求数据稳定的时间间隔;存储芯片从片选有效到输出稳定的时间应小于系统自片选有效到cPu要求数据稳定的时间间隔。如果没有满足要求的存储芯片,或者出于价格因素而选用速度较慢的存储芯片时,则应提供外部电路,以产生READY信号,迫使CPU插入等待时钟Tw。看一个具体的例子,2114-2的读取时间最大为200 ns,而cPu要求的从地址有效到数据稳定的时间间隔为150 ns,则不能使用2114—2,可选用比它快的芯片。如果出于价格因素,一定要用2114—2,则需要设计READY产生电路,以便插入Tw。
3.存储器的地址空间分配
内存通常分为RAM和ROM两大部分,而RAM又分为操作系统占用区和用户区。另外,目前生产的存储器芯片,单片的容量仍然是有限的,即它的寻址空间是有限的,一般要由若干芯片组成一个存储器。所以,在和CPU连接时需进行存储器的地址空间分配,即需要事先确定每个芯片(或由“×l位”或“×4位”芯片组成的芯片组)所占用的地址空间。
4.读/写控制信号的连接
总的原则是CPU的读/写控制信号分别和存储器芯片的读/写信号输入端相连。实际上,一般存储器芯片没有读输入端,是用写无效时的片选信号兼作读信号。有的存储器芯片设有输出允许()引脚,一般将该引脚和CPU的读信号相连,以便该片被选中且读信号有效时将片内数据输出三态门打开。对于不需要在线编程的ROM芯片,不存在写信号的连接。

5.数据线的连接
这个问题与存储器的读/写宽度有关,而存储器读/写的最大宽度一般为CPU对外数据总线的位数。在考虑存储器与CPU的数据线连接时,总的原则是:如果选用芯片的芯片字和所要设计的存储器的读/写宽度相同,则直接将它的数据线分别和CPU的数据线相连;如果芯片字的位数小于所要设计的存储器的读/写宽度,则需进行“位扩展”,即用几片组合在一起,使它们的芯片字位数的总和等于存储器的读/写宽度,将它们的数据线分别和CPU的数据线按对应关系相连。
这里以8位CPU配8位宽度的存储器为例。若选用“×8位”存储芯片,则将它的8根数据线分别和CPU的8根数据线相连即可;而选用芯片字不足8位的存储芯片,则需要用几片(“×1位”芯片需8片,“×4位”位芯片需2片)才能构成一个8位宽度的存储器,这时,需将这些芯片的数据线按位的对应关系分别和CPU的8根数据线相连。
有些存储芯片,数据的输入和输出分别缓冲,一位数据设置DIN和DOUT两个数据线引脚。对于这种芯片,需将一位的DIN和DOUT引脚连起来,再和CPU的一根数据线相连。
6.地址线的连接及存储芯片片选信号的产生
一个存储器系统通常需要若干个存储芯片。为了能正确实现寻址,一般的做法是,将cPu或系统的一部分地址线(通常是低位地址线,位数取决于存储芯片的容量)连到所有存储芯片,以进行片内寻址(存储芯片内均设有地址译码器);而用另一部分地址线(高位地址线)进行芯片选择。存储器系统设计的关键在于如何进行芯片选择,即如何对高位地址译码以产生芯片的片选信号,常用以下三种方法:
(1)线选法
用一根地址线直接作一个存储芯片的片选信号。例如,一台8位微机,有16根地址线,现要配2 KB RAM和2 KB ROM,均选用2 K×8位的芯片,则各需一片。这时可采用一种最简单的地址选择方法,如图3.24所示。将CPU的地址线的低11位(A10~A0)和两个芯片的地址线分别相连,芯片的片选直接和其他的高位地址线中的一根相连,图中A15反相后接RAM的,A14反相后接ROM的。这样,A15、A14为1 0时选中RAM片,为0 1时选中ROM片。
这里分析一下RAM芯片占用地址空间的情况。未用的地址位(这里是A13~A11)通常取0,即RAM芯片的设计地址空间为8000H~87FFH。将A15、A14固定为1 0,A10一AO作片内寻址,当A13~A11取不同的组合时,可形成包括上述设计空间在内的8个区域。除去设计空间外,其他区域是:8800H~8FFFH,9000H~97FFH,…,B800H~BFFFH。由于A13~A11没有参加译码,访问这7个区域中的任何一个单元都会影响到设计空间中相应的单元,因此,这7个区域不得他用。可以认为这些区域也被该RAM芯片所占用着,称这些区域为设计空间的重叠区。对于该例中的ROM芯片,同样也存在7个重叠区,读者可自行分析。

线选法的优点是简单、无需外加选择电路;缺点是不能有效地利用地址空间,也不便于系统的扩充。该方法可用在存储容量需求小,且不要求扩充的场合,例如单片机应用系统。
(2)全译码
全部地址线参加译码,除去进行片内寻址的低位地址线外,其余地址线均参加译码,以进行片选。例如,一台8位微机,现要求配8 KB RAM,选用2 K×8位的芯片,安排在64 KB地址空间低端的8 KB位置。图3.25所示为该8 KB RAM与CPU(或系统总线)的连接。图中74Lsl38是3线一8线译码器。它有3个代码输入端c、B、A(A为低位)和8个译码输出端Y0~Y7。74LSl38还有3个使能端(或叫允许端)G1、和,第一个为高电平有效,后两个为低电平有效。只有当它们为l 0 0时,译码器才进行正常译码;否则,译码器不工作,所有的输出均无效(为高)。表3.5是74LSl38的真值表。此外,常用的3线一8线译码器还有8205,其输入/输出特性和74LS138完全一样,只是使用了另一组信号名称。

从图3.25中可以看到,除片内寻址的低位地址线外,高位地址都参与了译码。根据图中的接法,当A15~A1l为00000时,YO有效,选中左起第一片;为00001时,Y1有效,选中左起第二片,其他依此类推。
全译码的优点是可利用全部地址空间,可扩充性好;缺点是译码电路开销大。
(3)部分译码
它是前两种方法的综合,即除进行片内寻址的低位地址线外,其余地址线有一部分参加译码以进行片选。以图3.26所示为例,这里最高位A15没有参加译码。因为A15没有参加译码,所以也存在重叠区问题。
部分译码是界于线选法和全译码之间的一种方法,其性能也界于二者之间:可寻址空间比线选法大,比全译码小;而译码电路比线选法复杂,比全译码简单。

上面围绕存储芯片片选信号的产生,说明了三种译码方法。这些方法也适用于后面要介绍的I/O端口的寻址。

F. 时序数据库是什么解决什么问题的主要应用那些行业

时序数据库是一种按照时间存储的数据库。
解决是海量数据的高效插入查询。
应用在互联网的大规模数据统计分析上面,物联网的信息收集方面。

时间点对于时序数据库非常重要,而高吞吐量决定了它存在的价值。

G. 时序对内存影响多少

时序对内存影响如下:
时序的变化对内存寿命的影响很微小,但是频繁变化的时序,会改变内存的稳定性。而且超时序不加压也对内存没有什么影响,加压会有些影响,但只要别超过1.6V一般没有问题。

内存时序是描述内存条性能的一种参数,一般存储在内存条的SPD中。内存时序越小越好,内存频率越高,延时越小,这个延时其实是每个时钟周期的时间,内存时序可以理解为内存数据的读写时间,内存时序的单位就是时钟周期。比如ddr2 800,每个时钟周期的延时是2.5纳秒,当将ddr2 800超频至ddr1000时,每时钟周期延时是2纳秒,这样超频对内存体质是一个考验。

H. 内存时序怎么设置

内存时序是一种参数,一般存储在内存条的SPD上,设置方式如下:

1、F12进入BIOS,在BIOS设置中找到“DRAM Timing Selectable”。

1、较低的CAS周期能减少内存的潜伏周期以提高内存的工作效率。因此只要能够稳定运行操作系统,应当尽量把CAS参数调低。

2、tRCD(RAS To CAS Delay): 内存行地址控制器到列地址控制器的延迟时间,参数选项有2和3这两个选择,同样是越小越好。

3、tRP(RAS Precharge Time): 内存行地址控制器预充电时间,参数选项有2和3这两个选择,预充电参数越小则内存读写速度就越快。

4、tRAS(RAS Active Time): 内存行有效至预充电的最短周期,我们可选的参数选项有5,6或者7这3个,但是在一些nForce 2 主板上的选择范围却很大,最高可到 15,最低达到 1。调整这个参数最好设在5-11之间。

I. 数字财富投资分布式存储数据中心建设是真的吗

科技周报,为你精选过去一周(12.05~12.11)最值得关注的“科技”新闻
整理|周峰

编辑|白瑞
政策&市场
工信部发布《汽车雷达无线电管理暂行规定》

为推动汽车智能化技术应用和产业发展,加强汽车雷达无线电管理,维护空中电波秩序,近日,工业和信息化部发布了《关于印发汽车雷达无线电管理暂行规定的通知》(工信部无〔2021〕181号,下称《通知》)。《通知》依据《中华人民共和国无线电管理条例》《中华人民共和国无线电频率划分规定》等法规规章,并参考国际电信联盟《无线电规则》等相关规定,充分考虑了汽车雷达与其他无线电业务之间的频率兼容共存,兼顾产业现状和技术发展趋势,从规范管理、促进发展的角度出发,明确了汽车雷达使用频率、主要应用场景、射频技术要求、管理方式以及设置使用和干扰协调要求,以促进频率资源高效利用。(中华人民共和国工业和信息化部)
四部门:坚决避免数据中心盲目无序发展
12月8日,国家发展改革委、中央网信办、工业和信息化部、国家能源局等四部门发布《贯彻落实碳达峰碳中和目标要求推动数据中心和5G等新型基础设施绿色高质量发展实施方案》。《实施方案》提出,到2025年,数据中心和5G基本形成绿色集约的一体化运行格局。(证券时报)
欧盟反垄断机构暂停对英伟达收购ARM案调查
12月9日,《论坛报》《马赛新闻》报道,欧盟反垄断监管机构近期暂停了对英伟达收购ARM案的调查,并表示正在从各方搜集更多信息。(人民网)
英国:将于2033年前逐步淘汰2G和3G移动网络
路透社12月7日消息,英国政府周三表示,英国将在2033年前逐步淘汰2G和3G移动网络,为5G和最终的6G服务做准备,后者将为无人驾驶汽车、无人机和虚拟现实等技术提供动力。(界面新闻)
Gartner:第三季度全球智能手机销量同比下降6.8%
根据Gartner的数据,2021年第三季度全球智能手机销量同比下降了 6.8%。组件短缺扰乱了生产计划,导致库存减少和产品供应延迟,最终影响了销量。(财经网)
TrendForce:全球半导体代工主要市场Q3环比增长11.8%
市场研究公司TrendForce最近表示,占全球半导体代工市场97%的前10家公司的销售额在2021年第三季度环比增长11.8%至272.7亿美元。三星电子的代工销售额也较第二季度增长11.0%至48.1亿美元,继续位居第二。然而,这家韩国半导体巨头的市场份额从2020年的17.3%下降到17.1%。另一方面,台积电扩大市场份额,拉大与三星电子的差距。台积电第三季度销售额环比增长11.9%至148.84亿美元,占比53.1%。这一数字比第二季度的52.9%增加了0.2个百分点。(TechWeb)
IDC:中国物联网市场规模有望在2025年超3000亿美元
IDC近日发布《2021年V2全球物联网支出指南》。DC预测,2021年全球物联网支出将达到7542.8亿美元,并有望在2025年达到1.2万亿美元,五年(2021-2025)复合增长率(CAGR)11.4%。其中,中国市场规模将在2025年超过3000亿美元,全球占比约26.1%。(新浪财经)
IDC:三季度全球可穿戴设备出货同比增长9.9%至1.38亿
市场调研机构IDC发布的报告显示,2021年第三季度全球可穿戴设备出货量为1.384亿台,同比增长9.9%。其中,耳戴式产品出货量同比增长26.5%,占可穿戴设备总出货量的64.7%。其次是腕戴式产品,占据可穿戴设备市场的34.7%。(中国半导体行业协会)
Gartner:预计2023年移动应用隐私追踪退出率将从85%下降到60%
研究机构Gartner于12月2日发表了一份预告,预测了未来移动应用程序追踪用户数据提供个性化广告的情况。在苹果的带领下,App收集用户偏好数据的难度越来越大,因为苹果要求应用主动提示用户是否同意收集个性化的使用数据。2021年有大约85%的用户选择拒绝提供数据,预计2023年这一指标将降低至60%,意味着更多的用户同意App收集一定的偏好数据,来提供个性化广告或推荐。(电子工程世界)
大公司&大事件
2021年世界品牌500强发布,44个中国品牌入选

由世界品牌实验室(World Brand Lab)独家编制的2021年度(第十八届)《世界品牌500强》排行榜于12月7日在美国纽约揭晓。2020年的亚军谷歌(Google)击败亚马逊(Amazon)荣登榜首;亚马逊因受疫情影响业绩不及预期,退居第二;2021财年净利润大增的微软(Microsoft)继续保持第三。中国品牌入选数为44个,比2020年多1个,在所有国家中位列第四。在上榜的44个中国品牌中,前五位分别为国家电网(排名23)、腾讯(排名35)、海尔(排名37)、中国工商银行(排名40)、华为(排名56)。(扬子晚报)
2021全球最具创新企业公布:华为超三星拿下第一
日前Capital on Tap发布了2021年最具创新技术公司排行榜。TOP25中上榜的中国公司有7家,其中排名最高的是华为,拿下总榜第一,之后还有京东方(第三位)、腾讯、网络、台积电、小米和平安。此次排名按照的是2021年专利申请数来考察,其中华为的数量达到了9739件,几乎是第三名京东方的两倍。(快科技)
商汤科技港股IPO前,被美列入投资黑名单
当地时间周五(12月10日),美国财政部海外资产控制办公室(OFAC)OFAC还将商汤集团有限公司列入“非SDN中国军事综合体企业”(NS-CMIC,涉军企业)清单。按美国相关政策,一旦被列入该名单,则美国投资者将不能在市场上同商汤科技进行交易,此举可能使商汤科技本月的香港首次公开募股(IPO)计划复杂化。根据商汤科技IPO招股书,美国的银湖资本和高通公司参与了对商汤科技的投资。截至北京时间11日凌晨,银湖资本和高通都未对有关报道予以置评。
12月11日上午,商汤科技通过官微发布声明称,"对于这一决定与相关指控表示强烈反对。我们认为该决定与相关指控毫无根据,反映了对我公司根本性的误解。科技发展不应该受到地缘政治的影响。"
12月7日,商汤科技启动香港首次公开招股。上市文件显示,商汤科技本次上市共发行15亿股,其中90%为国际配售。市场消息显示,国际配售部分仅半日已获得超额认购,本次招股,基石认购占比六成。基石投资者分别是中国诚通发起设立的混合所有制改革基金、国盛海外香港、上海人工智能产业股权投资基金、上汽香港、广发基金、Pleiad基金、WT、Focustar及Hel Ved。按照计划,商汤科技将于12月17日上午挂牌上市,代码为“0020.HK”。(综合自环球时报、证券时报、北京商报)
联想控股:国有资产未流失,历次中央巡视未提异议
12月10日上午,联想控股在内网发布声明表示,2009年的股权转让,严格按照国有资产产权交易相关要求进行了审计、资产评估和备案。声明称,本次股权转让,实现了国有资产的保值增值,历次中央巡视和国家审计署审计均未对此提出过任何异议。早前,司马南公开质疑联想2009年将29%股权转让给泛海集团,“涉嫌国有资产流失”,引发轩然大波。(每日经济新闻)
阿里巴巴升级“多元化治理”,加码内需与全球化战略
12月6日,阿里巴巴董事会主席兼CEO张勇发出内部信,宣布公司升级“多元化治理”体系,任命戴珊和蒋凡分别负责新设立的“中国数字商业”和“海外数字商业”两大板块。在内部信中,张勇表示,进行多元化治理体系升级,是为了在各个业务领域用更清晰的战略蓝图、更敏捷的组织面向未来,真正创造长期价值。(每日经济新闻)
工业富联拟收购鸿海精密全资子公司相关资产,耗资2.88亿
12月8日晚间,富士康(下称“工业富联”)于上交所发布关于购买资产暨关联交易的公告。公告称,工业富联拟通过全资子公司富联科技(兰考)有限公司以自有资金收购鸿海精密的全资子公司兰考裕富精密科技有限公司持有的机器设备(CNC精雕机、抛光机、清洗机等)相关资产,交易价格约为2.88亿元。(AI财经社)
小米15亿成立新公司:涉芯片业务
企查查显示,上海玄戒技术有限公司于日前成立,注册资本15亿人民币,曾学忠担任其执行董事、总经理、法定代表人;刘德任监事。该公司由X-RingLimited全资控股。该公司经营范围包括电子科技、通信科技、信息科技、半导体科技领域内的技术服务、技术开发、技术咨询、技术转让;信息技术咨询服务;信息系统集成服务;集成电路芯片设计及服务;集成电路芯片及产品销售;集成电路设计;软件开发;通讯设备销售;电子产品销售;半导体分立器件销售;半导体器件专用设备销售等。(C114)
三星电子高层换血,合并消费电子和移动业务部门
12月7日,三星电子通过官方网站宣布,电子影像显示业务负责人韩钟熙(Jong-Hee Han)任副董事长兼CEO,领导由消费电子和移动业务合并新成立的SET部门。任命Kyehyun Kyung为CEO,负责设备解决方案(DS)部门。此前三星电子共有三位CEO,包括金基南、金玄石和高东真,分别负责半导体、消费电子和移动业务。三星电子表示,新任命是“为了公司未来增长的下一阶段并加强其业务竞争力”。(澎湃新闻)
Meta AI团队并入AR/VR部门,Workplace业务主管离职
据外媒The Information援引知情人士消息,Facebook母公司Meta已将其AI团队合并入负责开发AR/VR产品的Reality Labs部门。该消息得到Meta确认。另据报道,Meta负责职场业务的副总裁朱利安·考德纽安(Julien Codorniou)周二宣布,他将离开Meta,加入伦敦风险投资公司Felix Capital。考德纽安自Meta Workplace业务2016年推出以来,一直担任该部门的领导职位,他之前已在该公司任职5年,并担任平台合作团队总监。(新浪科技)
英特尔自动驾驶子公司Mobileye将上市,估值超500亿美元
据外媒披露,英特尔旗下自动驾驶公司Mobileye筹备2022年年中在美国上市,预计估值超过500亿美元。Mobileye创建于1999年,是以色列一家知名的高级驾驶辅助系统(ADAS)厂商,其提供的算法和计算机芯片能够根据图像(由汽车上的摄像头拍摄)来预测潜在的碰撞事故。(界面新闻)
同程艺龙成立酒店科技平台
12月9日,同程艺龙宣布成立艺龙酒店科技平台。该平台是集酒店管理、信息技术和采购贸易为一体的住宿产业综合平台,拟通过技术、酒店营销与运营、供应链、资本等赋能体系,目前艺龙酒店科技平台已有多家酒管公司入驻。(环球网)
松下大幅缩减电视业务,多数制造将外包至TCL
据日经新闻报道,松下最近与全球第三大电视机制造商TCL签署了一项协议,根据协议,从明年开始,TCL将为东南亚和印度等市场生产松下的大部分廉价电视机。两家公司还希望在面板采购和开发方面展开合作,这在生产成本中占了相当大的比例。同时,松下将在2020财年前结束在日本、越南和印度的生产,并将在今年关闭巴西的工厂,在明年3月底前关闭捷克共和国的工厂,只剩下马来西亚和中国台湾的两家工厂。该公司将继续为日本国内市场生产OLED等高利润产品。(财经网)
全球排名系统Alexa Rank网站将于2022年5月1日关闭
Amazon旗下的全球网站流量排名系统Alexa Internet周三(12/8)宣布,将在2022年的5月1日结束长达25年的经营,且即日起就不再接受新的订阅。但不管是Amazon或Alexa Internet都未披露关闭该服务的原因。(钛媒体)
紫光集团破产重组方案确定
紫光股份有限公司12月11日发布公告,确认紫光集团重组方案,战略投资者为智路资本和建广资产组成的联合体。目前紫光集团总资产约为3000亿元人民币,确认债权近1426亿,重组完成后旗下7个主体的资产将纳入到智路建广联合体的体系中。官方表示,在法院的监督指导下,通过建立遴选机制开展多轮重整投资方案遴选工作,紫光集团确定北京智路资产管理有限公司和北京建广资产管理有限公司作为牵头方组成的联合体,为紫光集团等七家企业实质合并重整战略投资者,依法与战略投资者推进重整投资协议签署及重整计划草案制定等相关工作。(IT之家)
柔宇科技被爆资金紧张、拖欠员工薪酬
据财新报道,柔宇科技承诺11月30日为员工补发10月工资,但当日公司并未补发薪资。由于未如期发薪,11月30日下午,刘自鸿召开全员大会,向全员沟通公司资金状况,称公司融资正在进行中,预计12月有资金进入,将在12月底或者次年一月发放薪资,但仍有不确定性。(财新)
英特尔CEO下周将会见台积电高管
知情人士称,美国芯片制造商英特尔公司CEO帕特·基辛格(Pat Gelsinger)将于下周与台积电管理层的会面。英特尔既需要台积电的先进制造服务,也打算与台积电在芯片代工领域展开竞争。此前他曾公开游说美国政府,要求只能把划拨给美国芯片行业的资金提供给本国公司。基辛格辩称,台积电和三星电子等海外制造商不应该通过《芯片法案》获得资金,该法案目前正在接受华盛顿的政治审批。同时,台积电和三星都宣布了在美国建厂的计划(cnBeta)
小米诉争Mi商标获法院支持
12月7日消息,天眼查App显示,12月6日,小米科技有限责任公司与国家知识产权局其他一审行政判决书公开。文书显示,此前,国家知识产权局对诉争商标(45082362号“Mi”商标)的注册申请予以驳回。原告小米公司称,引证商标(12599801号)已撤销,且诉争商标是原告在先商标的延续注册。请求法院依法撤销被诉决定,判令被告重新作出决定。法院认为,鉴于引证商标连续三年不使用被撤销在全部商品上的注册,诉争商标注册的权利障碍已发生变化,据此撤销国家知识产权局作出的商标驳回复审决定,并由其重新作出决定。(凤凰科技)
微软逼迫Office客户改为按年订阅,否则涨价20%
2022年,微软将推出所谓的“Office新商务体验”产品计划,这是对企业通过微软经销商伙伴购买软件的程序进行了优化提升。目前,微软尚未宣布公开未来软件产品价格变动,但是一些微软合作伙伴已经获得通知,如果Office企业用户按照月度付费,则将面临20%的涨价,除非切换成年度付费会员。(新浪科技)
台积电11月营收超340亿元,同比增长18.7%
12月10日,台积电公布2021年11月营收报告。11月合并营收约为新台币1482亿元(人民币约340亿元),环比增加10.2%,同比增加18.7%。该月营收为历年同期新高,以及单月营收的史上第3高。(AI财经社)
新产品&新技术
华为鸿蒙HarmonyOS系统明年登陆欧洲

近日,华为中东欧、北欧以及加拿大消费者业务总裁Derek Yu在罗马尼亚交流时接受采访,期间表示华为鸿蒙Harmony OS系统将在明年登陆欧洲市场。目前,鸿蒙Harmony OS系统的主战场是中国市场,海外市场的大部分华为手机使用的依然是EMUI。华为早前公布的消息,目前已经有135款华为设备升级为鸿蒙Harmony OS正式版,有6款设备正在内测招募中,而已经升级的华为设备数量已经超过了1.5亿。(快科技)
支付宝公布车辆违规自动识别专利
支付宝(杭州)信息技术有限公司近日公布“车辆交通违规自动识别方法、装置及设备”专利,申请日期为2021年8月。摘要显示,该专利利用车辆行车记录仪记录前方及两侧车辆行驶视频,识别出违规片段后,自动向车辆对应的用户终端发送提示信息,提醒用户及时举报。该专利可提升车辆违规举报效率,进而提升驾驶员素质,确保车辆行驶安全。(界面新闻)
小米安全车辆识别专利获授权,可降低儿童被拐概率
近日,北京小米移动软件有限公司获得“车辆识别方法、装置、设备及存储介质”专利授权。专利摘要显示,该方法包括:判断用户乘坐的目标车辆信息是否为安全车辆;若判断为非安全车辆,向预设的目标终端发送报警信息。本方案能够及时向父母提醒儿童当前所处危险环境,需要采取安全措施,使父母能够第一时间做出反应,提高营救概率,降低儿童被拐数量。(财经网)
网络获AR背景音频处理方法专利授权
12月7日,网络在线网络技术(北京)有限公司获得了"AR背景音频处理方法、装置、AR设备和可读存储介质"专利授权。专利摘要显示,本发明所述方法包括:获取目标音频特征,进而获取增强现实AR背景互动音频,向AR用户播放所述AR背景互动音频。本发明不受限于场地,具有较高的灵活性,且AR背景互动音频具有与周围环境声音相同的目标音频特征,使AR用户视听统一,提高了用户的AR体验。(财经网)
Stellantis集团开通无线充电测试公路
近日,世界第四大汽车集团Stellantis公司宣布将在意大利与合作伙伴一起建造一条无线感应式充电高速公路,这条长1.05公里的无线充电公路位于连接意大利米兰和布雷西亚的A35高速公路旁,从外表看起来就像一条普通的高速公路,但它在柏油路面内装有电线。车辆可以通过一个特殊的接收器收集这些电力。(界面新闻)
小米明年下半年量产新型电池,容量提升10%
12月10日下午,小米手机宣布新一代电池技术,首次实现动力电池级高硅补锂技术应用于手机,负极硅含量提升3倍,结合全面升级的封装技术,在同等体积下将电池容量提升10%。新型电池将于明年下半年量产,可能会在小米MIX 5、小米12至尊版或小米13上首发应用。(财联社)
OPPO将推出首款自研芯片,或为6纳米NPU,台积电代工
据媒体报道,OPPO 或将在下周公布其首款自研芯片,这款芯片的定位是独立 NPU。据内部人士透露,这颗自研芯片是基于6nm先进制程EUV工艺制造,由台积电代工。芯片早在今年6月就完成流片,但一直没有公布。(品玩)
优必选悟空机器人落地韩国,覆盖首尔300家幼托中心
韩国首尔市政府宣布了科创教育试点项目,在当地幼托中心引进优必选智能教育机器人悟空,落实人工智能幼儿教育。本次项目为期五个月,自今年8月开始,于12月结束,主要面向3-5岁儿童,共将覆盖首尔市300家幼托中心。项目采用报名制,当地有使用意向的幼托中心通过线上报名即有机会免费获得机器人为期一个月的使用权及操作使用指引。(芥末堆)
国行AppleWatch已支持心电图检测功能
苹果12月8日面向开发者发布了iOS 15.2和iPadOS 15.2更新的RC候选预览版本,另外苹果还发布了watchOS 8.3 RC版更新。同时升级iPhone 和 Apple Watch软件更新后,国行Apple Watch已可支持心电图检测功能。(品玩)
Facebook推出社交VR应用Horizon Worlds
Facebook周四推出名为Horizon Worlds的免费社交VR应用,面向美国、加拿大18岁及以上年龄的用户开放,可通过佩戴Quest 2VR设备接入。在Horizon Worlds应用内,戴上头盔的用户可以与朋友或者陌生人会面、玩游戏,还可以创建属于他们的世界。用户以高度定制的化身出现,但化身没有腿,用户移动现实世界中的手指和手掌就可以在VR世界化为手势,当用户讲话时,化身的嘴也会翕动。(新浪科技)
一周投融资
本周全球科技领域融资事件共107起,其中国内41起,国外66起。据睿兽分析不完全统计,本周国内科技领域融资金额总计超22亿元人民币,海外融资金额总计超59亿美元。
以下为本周全球值得关注的融资信息:
XSKY星辰天合获得4亿元F轮融资
星辰天合(北京)数据科技有限公司(XSKY星辰天合)近日宣布完成4亿元人民币F轮融资。本轮融资由腾讯投资、源码资本、云晖资本参与。在继今年9月宣布完成E轮股权融资之后,已实现2021年内累计融资超10亿元人民币。
自成立以来,星辰天合公司注重科技创新,致力于以中国技术力量影响开放平台生态系统,创建自主可控的底层设施,以主流的、先进的技术和产品为客户创造价值,提供企业级分布式软件定义存储产品。携手产业链上下游合作伙伴,构建完善的 SDS 生态系统,通过高度的产品化,解决用户混合云时代数据的管理、存放、 读取、保护、流动等数据基础设施的关键问题,帮助客户实现数据中心架构革新。
长芯盛智连完成3亿元B轮融资
长飞光纤光缆股份有限公司旗下的长芯盛智连(武汉)科技有限公司完成3亿元B轮融资。本轮融资由云锋基金领投,美团龙珠、晨壹投资等知名基金跟投。2021年至今,长芯盛智连累计获得近6亿元融资,据悉,融资资金将主要投入元宇宙硬件平台、8K高清影音、下一代精准医疗等领域的有源光缆自主芯片研发、产线自动化等项目。
Nebula Brands获得超5000万美元B轮融资
Nebula Brands于近日宣布获超5000万美元B轮融资,本轮投资由L Catterton领投,老股东经纬创投、阿尔法公社加码跟投。Nebula Brands联合创始人王彦植介绍,本轮融资资金将主要用于持续收购亚马逊平台上的中国品牌。Nebula Brands成立于2019年,致力于通过“资本收购+品牌运营” 模式,帮助更多中国消费者品牌在亚马逊平台上获得成长,打造品牌化。
模具工业互联网平台模德宝获得超2亿元融资
模具工业互联网平台模德宝12月7日宣布完成超2亿元融资,由国内着名互联网战略投资人领投,产业方跟投,光源资本担任独家财务顾问。融资完成后,模德宝将进一步推进产品研发,拓展市场渠道。模德宝成立于2012年,是香港科技大学李泽湘教授创办的松山湖国际机器人研究院(Xbot Park)孵化项目之一。聚焦模具及精密制造生态,通过全生命周期管理、生产协同和打造柔性制造智慧工厂,模德宝不仅帮助订单驱动的中小模具企业提高其在价值链中的地位;还通过建立多地研发、协同共享的分布式制造,为工业用户提供极具品质、成本和交付竞争力的模具产品及精密零部件。
望圆科技完成近2亿元A轮融资
近日,天津望圆环保科技有限公司(简称:望圆科技)完成近2亿元A轮融资,毅达资本和中信建投资本联合领投。望圆科技成立于2005年,主要从事智能泳池机器人产品的研发、生产与销售,是国内少数拥有地上泳池、地下泳池、私人及公共泳池全系列清洁机器人产品的高科技企业。公司产品广泛出口至欧洲、北美及澳洲等发达国家和地区。
智臾科技获1亿元B轮融资
12月9日,智臾科技宣布完成1亿元B轮融资。本轮融资由方广资本领投,国泰财富基金与凯泰资本跟投,A轮投资机构朗玛峰创投超额跟投,云岫资本担任独家财务顾问。智臾科技成立于2016年,其产品为新一代数据库DolphinDB,集高性能时序数据库(time-series database)与全面的分析功能为一体,可用于海量结构化数据的存储、查询、分析、实时计算,实现PB级数据查询毫秒级响应以及复杂分析任务秒级响应,助力企业实时商业决策。DolphinDB由智臾科技自主研发,拥有全部知识产权,不依赖任何第三方系统。DolphinDB的付费客户遍及中国大陆及港台地区、欧洲、美国、澳大利亚等地,客户领域包括金融、能源、智能制造、电信、化工、水务、营销分析、智慧城市等。在国际权威的数据库排行网站DB-Engines的排名中,DolphinDB位列国产时序数据库第一名。
开发运营平台Cloudbees获1.5亿美元融资
开发运营平台Cloudbees在第六轮融资中募集1.5亿美元,公司估值达到10亿美元。CloudBees是一个基于开源软件Jenkins的开发运营平台,同时它还会为Jenkins提供训练和验证服务,并推出可以提供托管服务的交付平台,为开发者提供各类云接口、测试服务等。
Incode获2.2亿美元B轮融资
面向全球企业的下一代身份验证和认证平台Incode今天宣布,公司已在B轮融资中筹集2.2亿美元,从而使公司的估值达到12.5亿美元,在距离A轮融资不到七个月的时间里一跃成为独角兽企业。最新一轮投资由知名投资者General Atlantic和软银领投,顶级金融机构摩根大通、Capital One Ventures和Coinbase Ventures跟投。此外,参与这轮融资的还包括SVCI (Silicon Valley CISO Investments)和dLocal的创始人,SVCI由50多位科技领域知名首席信息安全官(CISO)组成,致力于汇集力量和资金以投资下一代网络安全创新。DN Capital、3L Capital、Framework Ventures、Dila Capital等现有投资人也已跟投。
Incode是一家企业身份验证和认证平台,该公司为银行,支付和零售行业提供安全的生物识别产品。其旗舰套件Incode Omni是端到端的全渠道身份平台,可跨多个渠道无缝访问以吸引并吸引下一代消费者。在过去12个月内,Incode的营收增长了六倍。

J. 内存时序是什么对性能影响大吗

内存时序是描述同步动态随机存取存储器(SDRAM)性能的四个参数:CL、TRCD、TRP和TRAS,单位为时钟周期。它们通常被写为四个用破折号分隔开的数字,例如7-8-8-24。第四个参数(RAS)经常被省略,而有时还会加入第五个参数:Command rate(命令速率),通常为2T或1T,也写作2N、1N。

这些参数指定了影响随机存取存储器速度的潜伏时间(延迟时间)。较低的数字通常意味着更快的性能。决定系统性能的最终元素是实际的延迟时间,通常以纳秒为单位。内存时序对性能影响较大。

(10)时序存储助力打造扩展阅读:

当将内存时序转换为实际的延迟时,最重要的是注意它是以时钟周期为单位。如果不知道时钟周期的时间,就不可能了解一组数字是否比另一组数字更快。

举例来说,DDR3-2000内存的时钟频率是1000 MHz,其时钟周期为1 ns。基于这个1 ns的时钟,CL=7给出的绝对延迟为7 ns。而更快的DDR3-2666(时钟1333 MHz,每个周期0.75 ns)则可能用更大的CL=9,但产生的绝对延迟6.75 ns更短。

现代DIMM包括一个串行存在检测(SPD)ROM芯片,其中包含为自动配置推荐的内存时序。PC上的BIOS可能允许用户调整时序以提高性能(存在降低稳定性的风险),或在某些情况下增加稳定性(如使用建议的时序)。

注意:内存带宽是测量内存的吞吐量,并通常受到传输速率而非潜伏时间的限制。通过交错访问SDRAM的多个内部bank,有可能以峰值速率连续传输。可能以增加潜伏时间为代价来增加带宽。具体来说,每个新一代的DDR内存都有着较高的传输速率,但绝对延迟没有显着变化,尤其是市场上的第一批新一代产品,通常有着较上一代更长的延迟。

即便增加了内存延迟,增加内存带宽也可以改善多处理器或多个执行线程的计算机系统的性能。更高的带宽也将提升没有专用显存的集成显卡的性能。