A. 如何查看进程堆栈
这个需要用调试器才可以看到的。
linux平台,一般使用gdb
windows平台一般使用windbg
加载进程后,可以在堆栈窗口看到堆栈的内容的。
B. 为什么要用堆栈,什么是堆栈
粘帖一个:
堆(heap)和栈(stack)有什么区别??
简单的可以理解为:
heap:是由malloc之类函数分配的空间所在地。地址是由低向高增长的。
stack:是自动分配变量,以及函数调用的时候所使用的一些空间。地址是由高向低减少的。
预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度, 也最灵活
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指edx中,在根据edx读取字符,显然慢了。
?
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
堆和栈的区别主要分:
操作系统方面的堆和栈,如上面说的那些,不多说了。
还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。
虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因针值读
C. 只有大小固定的数据类型才能使用堆栈来保存
摘要 您好。每个进程和线程都有一个堆栈指针用来指示当前堆栈内存的使用情况,当堆栈内存中没有内容时,堆栈指针指向堆栈的最高地址。只有大小固定的数据类型才能使用堆栈内存来保存。
D. 如何在进程崩溃后打印堆栈并防止数据丢失
进程在运行过程中遇到逻辑错误, 比如除零, 空指针等等, 系统会触发一个软件中断.
这个中断会以信号的方式通知进程, 这些信号的默认处理方式是结束进程.
发生这种情况, 我们就认为进程崩溃了.
进程崩溃后, 我们会希望知道它是为何崩溃的, 是哪个函数, 哪行代码引起的错误.
另外, 在进程退出前, 我们还希望做一些善后处理, 比如把某些数据存入数据库, 等等.
下面, 我会介绍一些技术来达成这两个目标.
1. 在core文件中查看堆栈信息
如果进程崩溃时, 我们能看到当时的堆栈信息, 就能很快定位到错误的代码.
在 gcc 中加入 -g 选项, 可执行文件中便会包含调试信息. 进程崩溃后, 会生成一个 core 文件.
我们可以用 gdb 查看这个 core 文件, 从而知道进程崩溃时的环境.
在调试阶段, core文件能给我们带来很多便利. 但是在正式环境中, 它有很大的局限:
1. 包含调试信息的可执行文件会很大. 并且运行速度也会大幅降低.
2. 一个 core 文件常常很大, 如果进程频繁崩溃, 硬盘资源会变得很紧张.
所以, 在正式环境中运行的程序, 不会包含调试信息.
它的core文件的大小, 我们会把它设为0, 也就是不会输入core文件.
在这个前提下, 我们如何得到进程的堆栈信息呢?
2. 动态获取线程的堆栈
c 语言提供了 backtrace 函数, 通过这个函数可以动态的获取当前线程的堆栈.
要使用 backtrace 函数, 有两点要求:
1. 程序使用的是 ELF 二进制格式.
2. 程序连接时使用了 -rdynamic 选项.
-rdynamic可用来通知链接器将所有符号添加到动态符号表中, 这些信息比 -g 选项的信息要少得多.
下面是将要用到的函数说明:
#include <execinfo.h>
int backtrace(void **buffer,int size);
用于获取当前线程的调用堆栈, 获取的信息将会被存放在buffer中, 它是一个指针列表。
参数 size 用来指定buffer中可以保存多少个void* 元素。
函数返回值是实际获取的指针个数, 最大不超过size大小
注意: 某些编译器的优化选项对获取正确的调用堆栈有干扰,
另外内联函数没有堆栈框架; 删除框架指针也会导致无法正确解析堆栈内容;
char ** backtrace_symbols (void *const *buffer, int size)
把从backtrace函数获取的信息转化为一个字符串数组.
参数buffer应该是从backtrace函数获取的指针数组,
size是该数组中的元素个数(backtrace的返回值) ;
函数返回值是一个指向字符串数组的指针, 它的大小同buffer相同.
每个字符串包含了一个相对于buffer中对应元素的可打印信息.
它包括函数名,函数的偏移地址, 和实际的返回地址.
该函数的返回值是通过malloc函数申请的空间, 因此调用者必须使用free函数来释放指针.
注意: 如果不能为字符串获取足够的空间, 函数的返回值将会为NULL.
void backtrace_symbols_fd (void *const *buffer, int size, int fd)
与backtrace_symbols 函数具有相同的功能,
不同的是它不会给调用者返回字符串数组, 而是将结果写入文件描述符为fd的文件中,每个函数对应一行.
3. 捕捉信号
我们希望在进程崩溃时打印堆栈, 所以我们需要捕捉到相应的信号. 方法很简单.
#include <signal.h>
void (*signal(int signum,void(* handler)(int)))(int);
或者: typedef void(*sig_t) ( int );
sig_t signal(int signum,sig_t handler);
参数说明:
第一个参数signum指明了所要处理的信号类型,它可以是除了SIGKILL和SIGSTOP外的任何一种信号。
第二个参数handler描述了与信号关联的动作,它可以取以下三种值:
1. 一个返回值为正数的函数的地址, 也就是我们的信号处理函数.
这个函数应有如下形式的定义: int func(int sig); sig是传递给它的唯一参数。
执行了signal()调用后,进程只要接收到类型为sig的信号,不管其正在执行程序的哪一部分,就立即执行func()函数。
当func()函数执行结束后,控制权返回进程被中断的那一点继续执行。
2. SIGIGN, 忽略该信号.
3. SIGDFL, 恢复系统对信号的默认处理。
返回值: 返回先前的信号处理函数指针,如果有错误则返回SIG_ERR(-1)。
注意:
当一个信号的信号处理函数执行时,如果进程又接收到了该信号,该信号会自动被储存而不会中断信号处理函数的执行,
直到信号处理函数执行完毕再重新调用相应的处理函数。
如果在信号处理函数执行时进程收到了其它类型的信号,该函数的执行就会被中断。
在信号发生跳转到自定的handler处理函数执行后,系统会自动将此处理函数换回原来系统预设的处理方式,
如果要改变此操作请改用sigaction()。
4. 实例
下面我们实际编码, 看看具体如何在捕捉到信号后, 打印进程堆栈, 然后结束进程.
#include <iostream>
#include <time.h>
#include <signal.h>
#include <string.h>
#include <execinfo.h>
#include <fcntl.h>
#include <map>
using namespace std;
map<int, string> SIG_LIST;
#define SET_SIG(sig) SIG_LIST[sig] = #sig;
void SetSigList(){
SIG_LIST.clear();
SET_SIG(SIGILL)//非法指令
SET_SIG(SIGBUS)//总线错误
SET_SIG(SIGFPE)//浮点异常
SET_SIG(SIGABRT)//来自abort函数的终止信号
SET_SIG(SIGSEGV)//无效的存储器引用(段错误)
SET_SIG(SIGPIPE)//向一个没有读用户的管道做写操作
SET_SIG(SIGTERM)//软件终止信号
SET_SIG(SIGSTKFLT)//协处理器上的栈故障
SET_SIG(SIGXFSZ)//文件大小超出限制
SET_SIG(SIGTRAP)//跟踪陷阱
}
string& GetSigName(int sig){
return SIG_LIST[sig];
}
void SaveBackTrace(int sig){
//打开文件
time_t tSetTime;
time(&tSetTime);
tm* ptm = localtime(&tSetTime);
char fname[256] = {0};
sprintf(fname, "core.%d-%d-%d_%d_%d_%d",
ptm->tm_year+1900, ptm->tm_mon+1, ptm->tm_mday,
ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
FILE* f = fopen(fname, "a");
if (f == NULL){
exit(1);
}
int fd = fileno(f);
//锁定文件
flock fl;
fl.l_type = F_WRLCK;
fl.l_start = 0;
fl.l_whence = SEEK_SET;
fl.l_len = 0;
fl.l_pid = getpid();
fcntl(fd, F_SETLKW, &fl);
//输出程序的绝对路径
char buffer[4096];
memset(buffer, 0, sizeof(buffer));
int count = readlink("/proc/self/exe", buffer, sizeof(buffer));
if(count > 0){
buffer[count] = '\n';
buffer[count + 1] = 0;
fwrite(buffer, 1, count+1, f);
}
//输出信息的时间
memset(buffer, 0, sizeof(buffer));
sprintf(buffer, "Dump Time: %d-%d-%d %d:%d:%d\n",
ptm->tm_year+1900, ptm->tm_mon+1, ptm->tm_mday,
ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
fwrite(buffer, 1, strlen(buffer), f);
//线程和信号
sprintf(buffer, "Curr thread: %d, Catch signal:%s\n",
pthread_self(), GetSigName(sig).c_str());
fwrite(buffer, 1, strlen(buffer), f);
//堆栈
void* DumpArray[256];
int nSize = backtrace(DumpArray, 256);
sprintf(buffer, "backtrace rank = %d\n", nSize);
fwrite(buffer, 1, strlen(buffer), f);
if (nSize > 0){
char** symbols = backtrace_symbols(DumpArray, nSize);
if (symbols != NULL){
for (int i=0; i<nSize; i++){
fwrite(symbols[i], 1, strlen(symbols[i]), f);
fwrite("\n", 1, 1, f);
}
free(symbols);
}
}
//文件解锁后关闭, 最后终止进程
fl.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &fl);
fclose(f);
exit(1);
}
void SetSigCatchFun(){
map<int, string>::iterator it;
for (it=SIG_LIST.begin(); it!=SIG_LIST.end(); it++){
signal(it->first, SaveBackTrace);
}
}
void Fun(){
int a = 0;
int b = 1 / a;
}
static void* ThreadFun(void* arg){
Fun();
return NULL;
}
int main(){
SetSigList();
SetSigCatchFun();
printf("main thread id = %d\n", (pthread_t)pthread_self());
pthread_t pid;
if (pthread_create(&pid, NULL, ThreadFun, NULL)){
exit(1);
}
printf("fun thread id = %d\n", pid);
for(;;){
sleep(1);
}
return 0;
}
文件名为 bt.cpp
编译: g++ bt.cpp -rdynamic -I /usr/local/include -L /usr/local/lib -pthread -o bt
主线程创建了 fun 线程, fun 线程有一个除零错误, 系统抛出 SIGFPE 信号.
该信号使 fun 线程中断, 我们注册的 SaveBackTrace 函数捕获到这个信号, 打印相关信息, 然后终止进程.
在输出的core文件中, 我们可以看到简单的堆栈信息.
5. 善后处理
在上面的例子中, fun 线程被 SIGFPE 中断, 转而执行 SaveBackTrace 函数.
此时, main 线程仍然在正常运行.
如果我们把 SaveBackTrace 函数最后的 exit(1); 替换成 for(;;)sleep(1);
main 线程就可以一直正常的运行下去.
利用这个特点, 我们可以做很多其它事情.
游戏的服务器进程常常有这些线程:
网络线程, 数据库线程, 业务处理线程. 引发逻辑错误的代码常常位于业务处理线程.
而数据库线程由于功能稳定, 逻辑简单, 是十分强壮的.
那么, 如果业务处理线程有逻辑错误, 我们捕捉到信号后, 可以在信号处理函数的最后,
通知数据库线程保存游戏数据.
直到数据库线程把游戏信息全部存入数据库, 信号处理函数才返回.
这样, 服务器宕机不会导致回档, 损失被大大降低.
要实现这个机制, 要求数据库模块和业务处理模块具有低耦合度.
当然, 实际应用的时候, 还有许多细节要考虑.
比如, 业务处理线程正在处理玩家的数据, 由于发生不可预知的错误, 玩家的数据被损坏了, 这些玩家的数据就不应该被存入数据库.
E. 怎样将mp文件中的堆栈信息存储为文本格式
打印堆栈是调试的常用方法,一般在系统异常时,我们可以将异常情况下的堆栈打印出来,这样十分方便错误查找。实际上还有另外一个非常有用的功能:分析代码的行为。android代码太过庞大复杂了,完全的静态分析经常是无从下手,因此通过打印堆栈的动态分析也十分必要。
Android打印堆栈的方法,简单归类一下
1. zygote的堆栈mp
实际上这个可以同时mp java线程及native线程的堆栈,对于java线程,java堆栈和native堆栈都可以得到。
使用方法很简单,直接在adb shell或串口中输入:
[plain] view plain
kill -3 <pid>
输出的trace会保存在 /data/anr/traces.txt文件中。这个需要注意,如果没有 /data/anr/这个目录或/data/anr/traces.txt这个文件,需要手工创建一下,并设置好读写权限。
如果需要在代码中,更容易控制堆栈的输出时机,可以用以下命令获取zygote的core mp:
[java] view plain
Process.sendSignal(pid, Process.SIGNAL_QUIT);
原理和命令行是一样的。
不过需要注意两点:
adb shell可能会没有权限,需要root。
android 4.2中关闭了native thread的堆栈打印,详见 dalvik/vm/Thread.cpp的mpNativeThread方法:
[cpp] view plain
dvmPrintDebugMessage(target,
"\"%s\" sysTid=%d nice=%d sched=%d/%d cgrp=%s\n",
name, tid, getpriority(PRIO_PROCESS, tid),
schedStats.policy, schedStats.priority, schedStats.group);
mpSchedStat(target, tid);
// Temporarily disabled collecting native stacks from non-Dalvik
// threads because sometimes they misbehave.
//dvmDumpNativeStack(target, tid);
Native堆栈的打印被关掉了!不过对于大多数情况,可以直接将这个注释打开。
2. debuggerd的堆栈mp
debuggerd是android的一个daemon进程,负责在进程异常出错时,将进程的运行时信息mp出来供分析。debuggerd生 成的coremp数据是以文本形式呈现,被保存在 /data/tombstone/ 目录下(名字取的也很形象,tombstone是墓碑的意思),共可保存10个文件,当超过10个时,会覆盖重写最早生成的文件。从4.2版本开 始,debuggerd同时也是一个实用工具:可以在不中断进程执行的情况下打印当前进程的native堆栈。使用方法是:
[plain] view plain
debuggerd -b <pid>
这可以协助我们分析进程执行行为,但最最有用的地方是:它可以非常简单的定位到native进程中锁死或错误逻辑引起的死循环的代码位置。
3. java代码中打印堆栈
Java代码打印堆栈比较简单, 堆栈信息获取和输出,都可以通过Throwable类的方法实现。目前通用的做法是在java进程出现需要注意的异常时,打印堆栈,然后再决定退出或挽救。通常的方法是使用exception的printStackTrace()方法:
[java] view plain
try {
...
} catch (RemoteException e) {
e.printStackTrace();
...
}
当然也可以只打印堆栈不退出,这样就比较方便分析代码的动态运行情况。Java代码中插入堆栈打印的方法如下:
[java] view plain
Log.d(TAG,Log.getStackTraceString(new Throwable()));
4. C++代码中打印堆栈
C++也是支持异常处理的,异常处理库中,已经包含了获取backtrace的接口,Android也是利用这个接口来打印堆栈信息的。在Android的C++中,已经集成了一个工具类CallStack,在libutils.so中。使用方法:
[cpp] view plain
#include <utils/CallStack.h>
...
CallStack stack;
stack.update();
stack.mp();
使用方式比较简单。目前Andoid4.2版本已经将相关信息解析的很到位,符号表查找,demangle,偏移位置校正都做好了。
[plain] view plain
5. C代码中打印堆栈
C代码,尤其是底层C库,想要看到调用的堆栈信息,还是比较麻烦的。 CallStack肯定是不能用,一是因为其实C++写的,需要重新封装才能在C中使用,二是底层库反调上层库的函数,会造成链接器循环依赖而无法链接。 不过也不是没有办法,可以通过android工具类CallStack实现中使用的unwind调用及符号解析函数来处理。
这里需要注意的是,为解决链接问题,最好使用dlopen方式,查找需要用到的接口再直接调用,这样会比较简单。如下为相关的实现代码,只需要在要 打印的文件中插入此部分代码,然后调用getCallStack()即可,无需包含太多的头文件和修改Android.mk文件:
[cpp] view plain
#define MAX_DEPTH 31
#define MAX_BACKTRACE_LINE_LENGTH 800
#define PATH "/system/lib/libcorkscrew.so"
typedef ssize_t (*unwindFn)(backtrace_frame_t*, size_t, size_t);
typedef void (*unwindSymbFn)(const backtrace_frame_t*, size_t, backtrace_symbol_t*);
typedef void (*unwindSymbFreeFn)(backtrace_symbol_t*, size_t);
static void *gHandle = NULL;
static int getCallStack(void){
ssize_t i = 0;
ssize_t result = 0;
ssize_t count;
backtrace_frame_t mStack[MAX_DEPTH];
backtrace_symbol_t symbols[MAX_DEPTH];
unwindFn unwind_backtrace = NULL;
unwindSymbFn get_backtrace_symbols = NULL;
unwindSymbFreeFn free_backtrace_symbols = NULL;
// open the so.
if(gHandle == NULL) gHandle = dlopen(PATH, RTLD_NOW);
// get the interface for unwind and symbol analyse
if(gHandle != NULL) unwind_backtrace = (unwindFn)dlsym(gHandle, "unwind_backtrace");
if(gHandle != NULL) get_backtrace_symbols = (unwindSymbFn)dlsym(gHandle, "get_backtrace_symbols");
if(gHandle != NULL) free_backtrace_symbols = (unwindSymbFreeFn)dlsym(gHandle, "free_backtrace_symbols");
if(!gHandle ||!unwind_backtrace ||!get_backtrace_symbols || !free_backtrace_symbols ){
ALOGE("Error! cannot get unwind info: handle:%p %p %p %p",
gHandle, unwind_backtrace, get_backtrace_symbols, free_backtrace_symbols );
return result;
}
count= unwind_backtrace(mStack, 1, MAX_DEPTH);
get_backtrace_symbols(mStack, count, symbols);
for (i = 0; i < count; i++) {
char line[MAX_BACKTRACE_LINE_LENGTH];
const char* mapName = symbols[i].map_name ? symbols[i].map_name : "<unknown>";
const char* symbolName =symbols[i].demangled_name ? symbols[i].demangled_name : symbols[i].symbol_name;
size_t fieldWidth = (MAX_BACKTRACE_LINE_LENGTH - 80) / 2;
if (symbolName) {
uint32_t pc_offset = symbols[i].relative_pc - symbols[i].relative_symbol_addr;
if (pc_offset) {
snprintf(line, MAX_BACKTRACE_LINE_LENGTH, "#%02d pc %08x %.*s (%.*s+%u)",
i, symbols[i].relative_pc, fieldWidth, mapName,
fieldWidth, symbolName, pc_offset);
} else {
snprintf(line, MAX_BACKTRACE_LINE_LENGTH, "#%02d pc %08x %.*s (%.*s)",
i, symbols[i].relative_pc, fieldWidth, mapName,
fieldWidth, symbolName);
}
} else {
snprintf(line, MAX_BACKTRACE_LINE_LENGTH, "#%02d pc %08x %.*s",
i, symbols[i].relative_pc, fieldWidth, mapName);
}
ALOGD("%s", line);
}
free_backtrace_symbols(symbols, count);
return result;
}
对sched_policy.c的堆栈调用分析如下,注意具体是否要打印,在哪里打印,还可以通过pid、uid、property等来控制一下,这样就不会被淹死在trace的汪洋大海中。
[plain] view plain
D/SchedPolicy( 1350): #00 pc 0000676c /system/lib/libcutils.so
D/SchedPolicy( 1350): #01 pc 00006b3a /system/lib/libcutils.so (set_sched_policy+49)
D/SchedPolicy( 1350): #02 pc 00010e82 /system/lib/libutils.so (androidSetThreadPriority+61)
D/SchedPolicy( 1350): #03 pc 00068104 /system/lib/libandroid_runtime.so (android_os_Process_setThreadPriority(_JNIEnv*, _jobject*, int, int)+7)
D/SchedPolicy( 1350): #04 pc 0001e510 /system/lib/libdvm.so (dvmPlatformInvoke+112)
D/SchedPolicy( 1350): #05 pc 0004d6aa /system/lib/libdvm.so (dvmCallJNIMethod(unsigned int const*, JValue*, Method const*, Thread*)+417)
D/SchedPolicy( 1350): #06 pc 00027920 /system/lib/libdvm.so
D/SchedPolicy( 1350): #07 pc 0002b7fc /system/lib/libdvm.so (dvmInterpret(Thread*, Method const*, JValue*)+184)
D/SchedPolicy( 1350): #08 pc 00060c30 /system/lib/libdvm.so (dvmCallMethodV(Thread*, Method const*, Object*, bool, JValue*, std::__va_list)+271)
D/SchedPolicy( 1350): #09 pc 0004cd34 /system/lib/libdvm.so
D/SchedPolicy( 1350): #10 pc 00049382 /system/lib/libandroid_runtime.so
D/SchedPolicy( 1350): #11 pc 00065e52 /system/lib/libandroid_runtime.so
D/SchedPolicy( 1350): #12 pc 0001435e /system/lib/libbinder.so (android::BBinder::transact(unsigned int, android::Parcel const&, android::Parcel*, unsigned int)+57)
D/SchedPolicy( 1350): #13 pc 00016f5a /system/lib/libbinder.so (android::IPCThreadState::executeCommand(int)+513)
D/SchedPolicy( 1350): #14 pc 00017380 /system/lib/libbinder.so (android::IPCThreadState::joinThreadPool(bool)+183)
D/SchedPolicy( 1350): #15 pc 0001b160 /system/lib/libbinder.so
D/SchedPolicy( 1350): #16 pc 00011264 /system/lib/libutils.so (android::Thread::_threadLoop(void*)+111)
D/SchedPolicy( 1350): #17 pc 000469bc /system/lib/libandroid_runtime.so (android::AndroidRuntime::javaThreadShell(void*)+63)
D/SchedPolicy( 1350): #18 pc 00010dca /system/lib/libutils.so
D/SchedPolicy( 1350): #19 pc 0000e3d8 /system/lib/libc.so (__thread_entry+72)
D/SchedPolicy( 1350): #20 pc 0000dac4 /system/lib/libc.so (pthread_create+160)
D/SchedPolicy( 1350): #00 pc 0000676c /system/lib/libcutils.so
D/SchedPolicy( 1350): #01 pc 00006b3a /system/lib/libcutils.so (set_sched_policy+49)
D/SchedPolicy( 1350): #02 pc 00016f26 /system/lib/libbinder.so (android::IPCThreadState::executeCommand(int)+461)
D/SchedPolicy( 1350): #03 pc 00017380 /system/lib/libbinder.so (android::IPCThreadState::joinThreadPool(bool)+183)
D/SchedPolicy( 1350): #04 pc 0001b160 /system/lib/libbinder.so
D/SchedPolicy( 1350): #05 pc 00011264 /system/lib/libutils.so (android::Thread::_threadLoop(void*)+111)
D/SchedPolicy( 1350): #06 pc 000469bc /system/lib/libandroid_runtime.so (android::AndroidRuntime::javaThreadShell(void*)+63)
D/SchedPolicy( 1350): #07 pc 00010dca /system/lib/libutils.so
D/SchedPolicy( 1350): #08 pc 0000e3d8 /system/lib/libc.so (__thread_entry+72)
D/SchedPolicy( 1350): #09 pc 0000dac4 /system/lib/libc.so (pthread_create+160)
6. 其它堆栈信息查询
F. 堆栈一般用来存放什么内容
SP是堆栈指示器
BP是基址指示器
SP,BP一般与段寄存器SS
联用,以确定堆栈寄存器中某一单元的地址,SP用以指示栈顶的偏移地址,而BP可
作为堆栈区中的一个基地址,所以通常堆栈的数据区基地址是放在BP中
G. 堆栈的功能,操作过程和特点
堆栈其实是数据结果中的两个概念 ,是存放数据的方式,堆:顺序随意;栈:后进先出(Last-In/First-Out)。要说用处,那就是在写代码的时候,有时数据存取肯定是要有规定的顺序的,这个是你自己规定的,然后按照你所写程序的用处的特点来用堆还是栈还是队列之类的顺序 追问: 程序设计时,为什么要对堆栈指针SP重新赋值? 回答: 这不是初始化嘛
堆栈是个特殊的存储区,主要功能是暂时存放数据和地址,通常用来保护断点和现场。它的特点是按照先进后出的原则存取数据,这里的进与出是指进栈与出栈操作。
80C51片内RAM的部分单元可以用做堆栈。有一个8位的堆栈指针寄存器SP,专用于指出当前堆栈顶部是片内RAM的哪一个单元。80C51单片机系统复位后SP的初值为07H,也就是将从内部RAM的08H单元开始堆放信息。
但是,80C51系列的栈区不是固定的,只要通过软件改变SP寄存器的值便可更动栈区。为了避开工作寄存器区和位寻址区,SP的初值可置为2FH或更大的地址值。如果CPU在操作中要使用两组工作寄存器,如果不使用位变量,SP的初值至少应为0FH或更大的值;如果使用位变量,SP的初值至少应为2FH或更大的值;KeilC51编译器会自动计算SP的初始设定值,无需编程者关心。
H. java中的“堆栈”是什么意思
堆栈是计算机为程序分配的内存空间,用来存储数据的。
I. 进程切换时所要保存的处理机状态信息有哪些
进程切换时所要保存的处理机状态信息有进程当前暂存信息。
进行进程切换就是从正在运行的进程中收回处理器,然后再使待运行进程来占用处理器。 这里所说的从某个进程收回处理器。
实质上就是把进程存放在处理器的寄存器中的中间数据找个地方存起来,从而把处理器的寄存器腾出来让其他进程使用。
(9)进程堆栈存储信息扩展阅读:
在切换时,一个进程存储在处理器各寄存器中的中间数据叫做进程的上下文,所以进程的切换实质上就是被中止运行进程与待运行进程上下文的切换。在进程未占用处理器时,进程的上下文是存储在进程的私有堆栈中的。
当前执行进程,实际上是指调用上下文切换程序之前的执行进程。如果上下文切换不是被那个当前执行进程所调用,且不属于该进程,则所保存的上下文应是先前执行进程的上下文,或称为“老”进程上下文。
J. 在操作系统中,一个进程由哪些部分组成
一个计算机系统进程包括(或者说“拥有”)下列数据:
那个程序的可运行机器码的一个在存储器的映像。 分配到的存储器(通常包括虚拟内存的一个区域)。存储器的内容包括可运行代码、特定于进程的数据(输入、输出)、调用堆栈、堆栈(用于保存运行时运数中途产生的数据)。
分配给该进程的资源的操作系统描述符,诸如文件描述符(Unix术语)或文件句柄(Windows)、数据源和数据终端。 安全特性,诸如进程拥有者和进程的权限集(可以容许的操作)。 处理器状态(内文),诸如寄存器内容、物理存储器寻址等。当进程正在运行时,状态通常储存在寄存器,其他情况在存储器。
(10)进程堆栈存储信息扩展阅读
如果系统发生了上述要求终止进程的某事件后,OS便调用进程终止原语,按下述过程去终止指定的进程。
1)根据被终止进程的标识符,从PCB集合中检索出该进程的PCB,从中读出该进程状态。
2)若被终止进程正处于执行状态,应立即终止该进程的执行,并置调度标志为真。用于指示该进程被终止后应重新进行调度。
3)若该进程还有子孙进程,还应将其所有子孙进程予以终止,以防他们成为不可控的进程。
4)将被终止的进程所拥有的全部资源,或者归还给其父进程,或者归还给系统。
5)将被终止进程(它的PCB)从所在队列(或链表)中移出,等待其它程序来搜集信息。