1. cache在计算机中的作用是什么
高速缓冲存储器是存在于主存与CPU之间的一级存储器,具体作用如下:
在计算机技术发展过程中,主存储器存取速度一直比中央处理器操作速度慢得多,使中央处理器的高速处理能力不能充分发挥,整个计算机系统的工作效率受到影响。
有很多方法可用来缓和中央处理器和主存储器之间速度不匹配的矛盾,如采用多个通用寄存器、多存储体交叉存取等,在存储层次上采用高速缓冲存储器也是常用的方法之一。很多大、中型计算机以及新近的一些小型机、微型机也都采用高速缓冲存储器。
(1)时间存储器的利用扩展阅读
Cache组成部分
主要由三大部分组成:
Cache存储体:存放由主存调入的指令与数据块。
地址转换部件:建立目录表以实现主存地址到缓存地址的转换。
替换部件:在缓存已满时按一定策略进行数据块替换,并修改地址转换部件。
2. 怎么分配那些零散的时间
时间的运用
时间运用分为几类时间:大块时间、首要时间、零碎时间、固定时间、安静时间、弹性时间、交通时间。
1.大块时间
你每天都要用一大部分的时间来完成当天重要的事情,大块的时间至少需要两个小时。其实也可以分散地安排大块时间,这样安排时间你便会觉得身心愉快,且会产生一种成就感。
2.首要时间
一日之际在于晨。
首要时间与大块时间接近,它指每天早晨的那段时间。有人把早晨的时间用来进修,有人把早晨的时间用来运动,有人把早晨的时间用来做一些重要的思考,因人而异。
3.零碎时间
零碎时间看起来好像不太重要,但是这种时间如果能够把它积少成多,化零为整,把那些小块时间充分利用起来,以很少的时间来做一些小事,坚持下来,也是非常可观的。零碎时间称为时间的存储器。
4.固定时间
如果觉得某项工作在某个时段内进行效果最好,把它固定下来,就称为固定时间。
5.安静时间
读书也好,工作也好,是否能够专心有效,环境的因素是很大的,不少办公室都感觉到非常吵闹,工作经常受到干扰,这时可以由大家互相来约定,安排一段安静的时间。
6.弹性时间
每一项工作都需要时间,最好是留有弹性,即预估的时间应该稍微宽裕些。可以在两三项工作之后,安排一个弹性时间,来弥补以前还没有做完的事情,或者说是留作被干扰以后的调节时间。弹性时间不能够太长,10分钟甚至20分钟是比较适当的。
7.交通时间
一般人对交通时间都是用两个字来形容:抱怨,特别是居住在大城市或者都市里的人。
所以要工作有效率,就要学习如何去缩短或利用你的交通时间,例如早点出门,晚点回家,选择走哪条路线,坐车的时候你还可以思考一些问题,可以听听音乐,看看书,充实自己。
时间的划分
时间可以花费在不同的事情上,因此就有了工作或学习时间、休闲时间、家庭时间、个人时间、思考时间等。
1.工作或学习时间
时间用在工作,或用在学习上,称为工作或者学习时间,它是为了谋生以及充实生活。
学习是谋生前的准备,或者是工作时的进修,也是为了充实生活。工作并不是你生命的全部,活到老、学到老的终身学习的观念已经来临。学习的重要性与日俱增,每个人都必须抽出一部分时间来学习新知识或者熟悉新事物。
2.休闲时间
休闲时间包括休息、睡眠及体育活动。人生就像马拉松比赛一样,你别一开始就猛冲,浪费甚至透支了你的体力,要懂得放松,要养成一种良好的睡眠、休闲以及运动的习惯,才能把每一个人的身体状况调整到最佳状态。
3.家庭时间
家庭是你休息最佳的避风港,只有家人与你没有所谓的利害关系。你要跟家人真心地相处,不要到了需要时你时才回家,你才懂得去珍惜亲情。
4.个人时间
个人时间是用来修身养性、充实自我的,是完全属于个人独自享受的时间。个人时间就是自己跟自己约会的那种时间。每个人不论是求学还是工作,甚至在家中,都有一种不允许被侵犯的个人时间,利用这些时间人们可以充实自己。
5.思考时间
思考时间就是思考未来的时间。思考时间可着重用在计划自己未来的发展,也可用在反省以前自己所做的事情是否正确,是不是值得等。思考如何再改进,如何再调整,如何让自己变得更好,而不必特别为了什么目的思考,可以天马行空地去想象,可以胡思乱想,如果发现了一些好的想法,或者是一些好的理念就应该立刻把它记下来。
3. 存储器的原理是什么
存储器讲述工作原理及作用
介绍
存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
2.按存取方式分类
(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。
(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。
(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。
3.按信息的可保存性分类
非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。
永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM。
4.按在计算机系统中的作用分
根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。
能力影响
从写命令转换到读命令,在某个时间访问某个地址,以及刷新数据等操作都要求数据总线在一定时间内保持休止状态,这样就不能充分利用存储器通道。此外,宽并行总线和DRAM内核预取都经常导致不必要的大数据量存取。在指定的时间段内,存储器控制器能存取的有用数据称为有效数据速率,这很大程度上取决于系统的特定应用。有效数据速率随着时间而变化,常低于峰值数据速率。在某些系统中,有效数据速率可下降到峰值速率的10%以下。
通常,这些系统受益于那些能产生更高有效数据速率的存储器技术的变化。在CPU方面存在类似的现象,最近几年诸如AMD和 TRANSMETA等公司已经指出,在测量基于CPU的系统的性能时,时钟频率不是唯一的要素。存储器技术已经很成熟,峰值速率和有效数据速率或许并不比以前匹配的更好。尽管峰值速率依然是存储器技术最重要的参数之一,但其他结构参数也可以极大地影响存储器系统的性能。
影响有效数据速率的参数
有几类影响有效数据速率的参数,其一是导致数据总线进入若干周期的停止状态。在这类参数中,总线转换、行周期时间、CAS延时以及RAS到CAS的延时(tRCD)引发系统结构中的大部分延迟问题。
总线转换本身会在数据通道上产生非常长的停止时间。以GDDR3系统为例,该系统对存储器的开放页不断写入数据。在这期间,存储器系统的有效数据速率与其峰值速率相当。不过,假设100个时钟周期中,存储器控制器从读转换到写。由于这个转换需要6个时钟周期,有效的数据速率下降到峰值速率的 94%。在这100个时钟周期中,如果存储器控制器将总线从写转换到读的话,将会丢失更多的时钟周期。这种存储器技术在从写转换到读时需要15个空闲周期,这会将有效数据速率进一步降低到峰值速率的79%。表1显示出针几种高性能存储器技术类似的计算结果。
显然,所有的存储器技术并不相同。需要很多总线转换的系统设计师可以选用诸如XDR、RDRAM或者DDR2这些更高效的技术来提升性能。另一方面,如果系统能将处理事务分组成非常长的读写序列,那么总线转换对有效带宽的影响最小。不过,其他的增加延迟现象,例如库(bank)冲突会降低有效带宽,对性能产生负面影响。
DRAM技术要求库的页或行在存取之前开放。一旦开放,在一个最小周期时间,即行周期时间(tRC)结束之前,同一个库中的不同页不能开放。对存储器开放库的不同页存取被称为分页遗漏,这会导致与任何tRC间隔未满足部分相关的延迟。对于还没有开放足够周期以满足tRC间隙的库而言,分页遗漏被称为库冲突。而tRC决定了库冲突延迟时间的长短,在给定的DRAM上可用的库数量直接影响库冲突产生的频率。
大多数存储器技术有4个或者8个库,在数十个时钟周期具有tRC值。在随机负载情况下,那些具有8个库的内核比具有4个库的内核所发生的库冲突更少。尽管tRC与库数量之间的相互影响很复杂,但是其累计影响可用多种方法量化。
存储器读事务处理
考虑三种简单的存储器读事务处理情况。第一种情况,存储器控制器发出每个事务处理,该事务处理与前一个事务处理产生一个库冲突。控制器必须在打开一个页和打开后续页之间等待一个tRC时间,这样增加了与页循环相关的最大延迟时间。在这种情况下的有效数据速率很大程度上决定于I/O,并主要受限于DRAM内核电路。最大的库冲突频率将有效带宽削减到当前最高端存储器技术峰值的20%到30%。
在第二种情况下,每个事务处理都以随机产生的地址为目标。此时,产生库冲突的机会取决于很多因素,包括tRC和存储器内核中库数量之间的相互作用。tRC值越小,开放页循环地越快,导致库冲突的损失越小。此外,存储器技术具有的库越多,随机地址存取库冲突的机率就越小。
第三种情况,每个事务处理就是一次页命中,在开放页中寻址不同的列地址。控制器不必访问关闭页,允许完全利用总线,这样就得到一种理想的情况,即有效数据速率等于峰值速率。
第一种和第三种情况都涉及到简单的计算,随机情况受其他的特性影响,这些特性没有包括在DRAM或者存储器接口中。存储器控制器仲裁和排队会极大地改善库冲突频率,因为更有可能出现不产生冲突的事务处理,而不是那些导致库冲突的事务处理。
然而,增加存储器队列深度未必增加不同存储器技术之间的相对有效数据速率。例如,即使增加存储器控制队列深度,XDR的有效数据速率也比 GDDR3高20%。存在这种增量主要是因为XDR具有更高的库数量以及更低的tRC值。一般而言,更短的tRC间隔、更多的库数量以及更大的控制器队列能产生更高的有效带宽。
实际上,很多效率限制现象是与行存取粒度相关的问题。tRC约束本质上要求存储器控制器从新开放的行中存取一定量的数据,以确保数据管线保持充满。事实上,为保持数据总线无中断地运行,在开放一个行之后,只须读取很少量的数据,即使不需要额外的数据。
另外一种减少存储器系统有效带宽的主要特性被归类到列存取粒度范畴,它规定了每次读写操作必须传输的数据量。与之相反,行存取粒度规定每个行激活(一般指每个RAS的CAS操作)需要多少单独的读写操作。列存取粒度对有效数据速率具有不易于量化的巨大影响。因为它规定一个读或写操作中需要传输的最小数据量,列存取粒度给那些一次只需要很少数据量的系统带来了问题。例如,一个需要来自两列各8字节的16字节存取粒度系统,必须读取总共32字节以存取两个位置。因为只需要32个字节中的16个字节,系统的有效数据速率降低到峰值速率的50%。总线带宽和脉冲时间长度这两个结构参数规定了存储器系统的存取粒度。
总线带宽是指连接存储器控制器和存储器件之间的数据线数量。它设定最小的存取粒度,因为对于一个指定的存储器事务处理,每条数据线必须至少传递一个数据位。而脉冲时间长度则规定对于指定的事务处理,每条数据线必须传递的位数量。每个事务处理中的每条数据线只传一个数据位的存储技术,其脉冲时间长度为1。总的列存取粒度很简单:列存取粒度=总线宽度×脉冲时间长度。
很多系统架构仅仅通过增加DRAM器件和存储总线带宽就能增加存储系统的可用带宽。毕竟,如果4个400MHz数据速率的连接可实现 1.6GHz的总峰值带宽,那么8个连接将得到3.2GHz。增加一个DRAM器件,电路板上的连线以及ASIC的管脚就会增多,总峰值带宽相应地倍增。
首要的是,架构师希望完全利用峰值带宽,这已经达到他们通过物理设计存储器总线所能达到的最大值。具有256位甚或512位存储总线的图形控制器已并不鲜见,这种控制器需要1,000个,甚至更多的管脚。封装设计师、ASIC底层规划工程师以及电路板设计工程师不能找到采用便宜的、商业上可行的方法来对这么多信号进行布线的硅片区域。仅仅增加总线宽度来获得更高的峰值数据速率,会导致因为列存取粒度限制而降低有效带宽。
假设某个特定存储技术的脉冲时间长度等于1,对于一个存储器处理,512位宽系统的存取粒度为512位(或者64字节)。如果控制器只需要一小段数据,那么剩下的数据就被浪费掉,这就降低了系统的有效数据速率。例如,只需要存储系统32字节数据的控制器将浪费剩余的32字节,进而导致有效的数据速率等于50%的峰值速率。这些计算都假定脉冲时间长度为1。随着存储器接口数据速率增加的趋势,大多数新技术的最低脉冲时间长度都大于1。
选择技巧
存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。
选择存储器时应遵循的基本原则
1、内部存储器与外部存储器
一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。
2、引导存储器
在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。
可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。
4. 存储器为什么要分为内存和外存二者有什么区别
按存储器用途分
根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。
为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。
名称简称用途特点
高速缓冲存储器 Cache 高速存取指令和数据 存取速度快,但存储容量小
高速缓冲存储器 高速缓冲存储器(Cache)实际上是为了把由DRAM组成的大容量内存储器都看做是高速存储器而设置的小容量局部存储器,一般由高速SRAM构成。这种局部存储器是面向CPU的,引入它是为减小或消除CPU与内存之间的速度差异对系统性能带来的影响。Cache 通常保存着一份内存储器中部分内容的副本(拷贝),该内容副本是最近曾被CPU使用过的数据和程序代码。Cache的有效性是利用了程序对存储器的访问在时间上和空间上所具有的局部区域性,即对大多数程序来说,在某个时间片内会集中重复地访问某一个特定的区域。如PUSH/POP指令的操作都是在栈顶顺序执行,变量会重复使用,以及子程序会反复调用等,就是这种局部区域性的实际例证。因此,如果针对某个特定的时间片,用连接在局部总线上的Cache代替低速大容量的内存储器,作为CPU集中重复访问的区域,系统的性能就会明显提高。
系统开机或复位时,Cache 中无任何内容。当CPU送出一组地址去访问内存储器时,访问的存储器的内容才被同时“拷贝”到Cache中。此后,每当CPU访问存储器时,Cache 控制器要检查CPU送出的地址,判断CPU要访问的地址单元是否在Cache 中。若在,称为Cache 命中,CPU可用极快的速度对它进行读/写操作;若不在,则称为Cache未命中,这时就需要从内存中访问,并把与本次访问相邻近的存储区内容复制到Cache 中。未命中时对内存访问可能比访问无Cache 的内存要插入更多的等待周期,反而会降低系统的效率。而程序中的调用和跳转等指令,会造成非区域性操作,则会使命中率降低。因此,提高命中率是Cache 设计的主要目标。
主存储器 内存 存放计算机运行期间的大量程序和数据 存取速度较快,存储容量不大
名称:主存储器 Main memory 简称主存。是计算机硬件的一个重要部件,其作用是存放指令和数据,并能由中央处理器(CPU)直接随机存取。现代计算机是为了提高性能,又能兼顾合理的造价,往往采用多级存储体系。即由存储容量小,存取速度高的高速缓冲存储器,存储容量和存取速度适中的主存储器是必不可少的。
主存储器是按地址存放信息的,存取速度一般与地址无关。32位(比特)的地址最大能表达4GB的存储器地址。这对目前多数应用已经足够,但对于某些特大运算量的应用和特大型数据库已显得不够,从面对64位结构提出需求。
从70年代起,主存储器已逐步采用大规模集成电路构成。用得最普遍的也是最经济的动态随机存储器芯片(DRAM)。1995年集成度为64Mb(可存储400万个汉字)的DRAM芯片已经开始商业性生产,16Mb DRAM芯片已成为市场主流产品。DRAM芯片的存取速度适中,一般为50~70ns。有一些改进型的DRAM,如EDO DRAM(即扩充数据输出的DRAM),其性能可较普通DRAM提高10%以上,又如SDRAM(即同步DRAM),其性能又可较EDO DRAM提高10%左右。1998年SDRAM的后继产品为SDRAMⅡ(或称DDR,即双倍数据速率)的品种已上市。在追求速度和可靠性的场合,通常采用价格较贵的静态随机存储器芯片(SRAM),其存取速度可以达到了1~15ns。无论主存采用DRAM还是SRAM芯片构成,在断电时存储的信息都会“丢失”,因此计算机设计者应考虑发生这种情况时,设法维持若干毫秒的供电以保存主存中的重要信息,以便供电恢复时计算机能恢复正常运行。鉴于上述情况,在某些应用中主存中存储重要而相对固定的程序和数据的部分采用“非易失性”存储器芯片(如EPROM,快闪存储芯片等)构成;对于完全固定的程序,数据区域甚至采用只读存储器(ROM)芯片构成;主存的这些部分就不怕暂时供电中断,还可以防止病毒侵入。
外存储器 外存 存放系统程序和大型数据文件及数据库 存储容量大,位成本低
外存通常是磁性介质或光盘,像硬盘,软盘,磁带,CD等,能长期保存信息,并且不依赖于电来保存信息,但是由机械部件带动,速度与CPU相比就显得慢的多。
5. 如何利用博途软件调用具有特定频率的系统时间存储器
在博途软件中进行设置。
1、打开已经创建项目,名称为计数器指令应用。2、添加PLC。3、计数器简单介绍,(1)计数器指令,可使用计数器指令对内部程序事件和外部过程事件进行计数,每个计数器都使用数据块中存储的结构来保存计数器数据,用户在编辑器中放置计数器指令时分配相应的数据块,CTU 是加计数器,CTD 是减计数器。
6. 存储器的工作原理是什么
动态读写存贮器(DRAM),以其速度快、集成度高、功耗小、价格低在微型计算机中得到极其广泛地使用。但动态存储器同静态存储器有不同的工作原理。它是靠内部寄生电容充放电来记忆信息,电容充有电荷为逻辑1,不充电为逻辑0。欲深入了解动态RAM的基本原理请点击。 动态存储器有多种系列,如61系列、37系列、41系列、21系列等。图示为2164芯片的引脚图。将鼠标指向相应引脚可看到其对引脚功能。它是一个64K 1bit的DRAM芯片,将8片并接起来,可以构成64KB的动态存储器。
每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU 首先将行地址加在A0-A7上,而后送出RAS 锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制 器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。
只读存贮器(ROM)有多种类型。由于EPROM和EEPROM存贮容量大,可多次擦除后重新对它进行编程而写入新的内容,使用十分方便。尤其是厂家为用户提供了单独地擦除器、编程器或插在各种微型机上的编程卡,大大方便了用户。因此,这种类型的只读存贮器得到了极其广泛的应用。7. RAM的工作时序
为保证存储器准确无误地工作,加到存储器上的地址、数据和控制信号必须遵守几个时间边界条件。
图7.1—3示出了RAM读出过程的定时关系。读出操作过程如下:
欲读出单元的地址加到存储器的地址输入端;
加入有效的选片信号CS;
在 线上加高电平,经过一段延时后,所选择单元的内容出现在I/O端;
让选片信号CS无效,I/O端呈高阻态,本次读出过程结束。
由于地址缓冲器、译码器及输入/输出电路存在延时,在地址信号加到存储器上之后,必须等待一段时间tAA,数据才能稳定地传输到数据输出端,这段时间称为地址存取时间。如果在RAM的地址输入端已经有稳定地址的条件下,加入选片信号,从选片信号有效到数据稳定输出,这段时间间隔记为tACS。显然在进行存储器读操作时,只有在地址和选片信号加入,且分别等待tAA和tACS以后,被读单元的内容才能稳定地出现在数据输出端,这两个条件必须同时满足。图中tRC为读周期,他表示该芯片连续进行两次读操作必须的时间间隔。
写操作的定时波形如图7.1—4所示。写操作过程如下:
将欲写入单元的地址加到存储器的地址输入端;
在选片信号CS端加上有效电平,使RAM选通;
将待写入的数据加到数据输入端;
在 线上加入低电平,进入写工作状态;
使选片信号无效,数据输入线回到高阻状态。
由于地址改变时,新地址的稳定需要经过一段时间,如果在这段时间内加入写控制信号(即 变低),就可能将数据错误地写入其他单元。为防止这种情况出现,在写控制信号有效前,地址必须稳定一段时间tAS,这段时间称为地址建立时间。同时在写信号失效后,地址信号至少还要维持一段写恢复时间tWR。为了保证速度最慢的存储器芯片的写入,写信号有效的时间不得小于写脉冲宽度tWP。此外,对于写入的数据,应在写信号tDW时间内保持稳定,且在写信号失效后继续保持tDH时间。在时序图中还给出了写周期tWC,它反应了连续进行两次写操作所需要的最小时间间隔。对大多数静态半导体存储器来说,读周期和写周期是相等的,一般为十几到几十ns。
ddr一个时钟周期内穿2次数据
ddr2一个时钟周期传4次
所以相同频率下ddr2的带宽是ddr的2倍
7. 存储器的分类及其各自的特点
存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
存储器的分类特点及其应用
在嵌入式系统中最常用的存储器类型分为三类:
1.随机存取的RAM;
2.只读的ROM;
3.介于两者之间的混合存储器
1.随机存储器(Random Access Memory,RAM)
RAM能够随时在任一地址读出或写入内容。 RAM的优点是读/写方便、使用灵活;
RAM的缺点是不能长期保存信息,一旦停电,所存信息就会丢失。 RAM用于二进制信息的临时存储或缓冲存储
2.只读存储器(Read-Only Memory,ROM)
ROM中存储的数据可以被任意读取,断电后,ROM中的数据仍保持不变,但不可以写入数据。
ROM在嵌入式系统中非常有用,常常用来存放系统软件(如ROM BIOS)、应用程序等不随时间改变的代码或数据。
ROM存储器按发展顺序可分为:掩膜ROM、可编程ROM(PROM)和可擦写可编程ROM(EPROM)。
3. 混合存储器
混合存储器既可以随意读写,又可以在断电后保持设备中的数据不变。混合存储设备可分为三种:
EEPROM NVRAM FLASH
(1)EEPROM
EEPROM是电可擦写可编程存储设备,与EPROM不同的是EEPROM是用电来实现数据的清除,而不是通过紫外线照射实现的。
EEPROM允许用户以字节为单位多次用电擦除和改写内容,而且可以直接在机内进行,不需要专用设备,方便灵活,常用作对数据、参数等经常修改又有掉电保护要求的数据存储器。
(2) NVRAM
NVRAM通常就是带有后备电池的SRAM。当电源接通的时候,NVRAM就像任何其他SRAM一样,但是当电源切断的时候,NVRAM从电池中获取足够的电力以保持其中现存的内容。
NVRAM在嵌入式系统中使用十分普遍,它最大的缺点是价格昂贵,因此,它的应用被限制于存储仅仅几百字节的系统关键信息。
(3)Flash
Flash(闪速存储器,简称闪存)是不需要Vpp电压信号的EEPROM,一个扇区的字节可以在瞬间(与单时钟周期比较是一个非常短的时间)擦除。
Flash比EEPROM优越的方面是,可以同时擦除许多字节,节省了每次写数据前擦除的时间,但一旦一个扇区被擦除,必须逐个字节地写进去,其写入时间很长。
存储器工作原理
这里只介绍动态存储器(DRAM)的工作原理。
工作原理
动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
存储器芯片
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。
8. 如何合理安排自己的生活和工作
每个人都有每个人的生活方式,可是有的人就活成了别人想要的样子,而有的人是志向很远,大可是堕落不堪,有的人是对生活毫无要求目的,有如行尸走肉般的活着,但是其实他们回过头都很羡慕那些会合理安排生活的人。其实我们都是人呀,一样的人,只要能够自己合理安排了,你也能让别人羡慕你的人生。
1首先是分清自己的近期生活目标,把他当做最主要的任务,然后应该细化到每个小的阶段,做到劳逸结合。每个人每个时期都有自己肩上扛的重任,学生党可能在准备中考高考考研,而每一个小的目标可能是我最近要来提升英语或者数学,四六级考试二级计算机在等着我,每天的大部分时间应该留给它;工作党可能最近有一批货要赶着发完,那一个文件特别的急,自己再准备申请主任等等这些目标,都应该花很多的时间精力在上面;没事健健身,跑步,晨练这些平时的习惯也不能丢,应当做到劳逸结合。你自己感到生活有意义,自己身体健康之外,别人也会觉得这个人挺会生活的,生活质量挺高的。
我觉得学会生活真的很重要,因为这是决定人生的乐趣与意义的重大的一件事!
9. 存储器可分为哪三类
楼主 您好 很荣幸回答您的问题!
存储器有很多种分类的。详情见下文:
按存储介质分:
半导体存储器:用半导体器件组成的存储器。
磁表面存储器:用磁性材料做成的存储器。
按存储方式分
随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关。
顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。
按存储器的读写功能分
只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器。
随机读写存储器(RAM):既能读出又能写入的半导体存储器。
按信息的可保存性分
非永久记忆的存储器:断电后信息即消失的存储器。
永久记忆性存储器:断电后仍能保存信息的存储器。
按存储器用途分
根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。
了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。
我想您要需要的是:高速存储器,主存储器,外存储器!这三类吧!
10. 存取时间与存取周期的区别存储器带宽的含义是什么
存储器带宽的含义是指单位时间里存储器所存取的信息量。
一、主体不同
1、存取时间:是CPU读或写内存内数据的过程时间。
2、存取周期:连续启动两次独立的“读”或“写”操作(如连续的两次“读”操作)所需的最短时间。
二、原理不同
1、存取时间:从CPU发出指令给内存时,便会要求内存取用特定地址的数据,内存响应CPU后便会将CPU所需要的数据送给CPU,一直到CPU收到数据为止,便成为一个读取的流程。
2、存取周期:将存储单元与存储寄存器(MDR)之间进行读写。存储器从接收读出命令到被读出信息稳定在MDR的输出端为止的时间间隔。
三、代表含义不同
1、存取时间:用存取时间的倒数来表示速度。
2、存取周期:为存储器的性能指标之一,直接影响电子计算机的技术性能。