当前位置:首页 » 服务存储 » 气体存储的新容器多孔人工晶体
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

气体存储的新容器多孔人工晶体

发布时间: 2022-11-20 14:11:33

⑴ 跪求:新型无机非金属材料有哪些

无机非金属材料的分类;新型无机非金属材料与传统无机非金属材料节
新型无机非金属材料
材料包括很多种,可以把它们分类:
一、材料的分类和特点:
1.材料可分为:无机非金属材料
传统无机非金属材料
如:水泥、玻璃、陶瓷
新型无机非金属材料
如:高温结构陶瓷、光导纤维
金属材料
如:Fe、Cu、Al、合金等。
高分子材料
如:聚乙烯、聚氯乙烯
新型无机非金属材料特性;①承受高温,强度高。
②具有光学特性。③具有电学特性。
④具有生物功能。
新型无机非金属材料很多,现列举几种:压电材料;磁性材料;导体陶瓷;激光材料,光导纤维;超硬材料(氮化硼);高温结构陶瓷;生物陶瓷(人造骨头、人造血管)等等

⑵ 高中必修二有机物的性质

简介
无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。
成分结构
在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。
应用领域
无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维等。
传统工艺
传统无机非金属材料:
水泥和其他胶凝材料 硅酸盐水泥、铝酸盐水泥、石灰、石膏等
陶瓷 粘土质、长石质、滑石质和骨灰质陶瓷等
耐火材料 硅质、硅酸铝质、高铝质、镁质、铬镁质等
玻璃 硅酸盐 搪瓷 钢片、铸铁、铝和铜胎等
铸石 辉绿岩、玄武岩、铸石等
研磨材料 氧化硅、氧化铝、碳化硅等
多孔材料 硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等
碳素材料 石墨、焦炭和各种碳素制品等
非金属矿 粘土、石棉、石膏、云母、大理石、水晶和金刚石等
新型无机非金属材料
绝缘材料 氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃和微晶玻璃等
铁电和压电材料 钛酸钡系、锆钛酸铅系材料等
磁性材料 锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录和磁泡材料等
导体陶瓷 钠、锂、氧离子的快离子导体和碳化硅等
半导体陶瓷 钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金属元素氧化物系材 料
光学材料 钇铝石榴石激光材料,氧化铝、氧化钇透明材料和石英系或多组分玻璃的光导纤维等
高温结构陶瓷 高温氧化物、碳化物、氮化物及硼化物等难熔化合物
超硬材料 碳化钛、人造金刚石和立方氮化硼等
人工晶体 铝酸锂、钽酸锂、砷化镓、氟金云母等
生物陶瓷 长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等
无机复合材料 陶瓷基、金属基、碳素基的复合材料
传统无机非金属材料和新型无机非金属材料的比较传统无机非金属材料新型无机非金属材料具有性质稳定,抗腐蚀耐高温等优点,但质脆,经不起热冲击。除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和生物功能等。
有机高分子化合物简称高分子化合物或高分子,又称高聚物。高分子化合物是衣、食、住、行和工农业生产各方面都离不开的材料,其中棉、毛、丝、塑料、橡胶等都是最常用的。以往人们使用的高分子材料都取自天然产物。物质文明和精神文明都高度发展的今天,天然高分子材料已经不能满足生产、生活和科技各方面日益增长的需要。近代化学化工科学技术的迅速发展,创造了许多自然界从来没有过的人工合成高分子化合物,对满足各种需求做出了重要贡献。
高分子是由一种或几种结构单元多次(103~105)重复连接起来的化合物。它们的组成元素不多,主要是碳、氢、氧、氮等,但是相对分子质量很大,一般在10 000以上,可高达几百万。因此才叫做高分子化合物。
例如,用量很大的聚氯乙烯(PVC)是由结构单元氯乙烯(CH2=CHCl),是由两种结构单元—NH—(CH2)6—NH—和—CO(CH2)4CO—多次重复连接而成。有一些结构复杂或者结构尚未确定的高分子化合物,在名称上有时加“树脂”二字。例如酚醛树脂、脲醛树脂等。
高分子化合物的这种很不一般的结构,使它表现出了非同凡响的特性。例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。
高分子化合物固、液、气三种存在状态的变化一般并不很明显。固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。固体状态的高分子化合物多是硬而有刚性的物体。无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。
高分子化合物的基本结构特征,使它们具有跟低分子化合物不同的许多宝贵性能。例如机械强度大、弹性高、可塑性强、硬度大、耐磨、耐热、耐腐蚀、耐溶剂、电绝缘性强、气密性好等,使高分子材料具有非常广泛的用途。
通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。
随着化学化工的发展,高分子化合物的品种日益增加。对众多的高分子化合物可以从不同角度进行分类。通常的分类方法有:
①根据来源分为天然高分子化合物、合成高分子化合物和半合成高分子化合物。天然高分子化合物如纤维素、淀粉等;各种人工合成的高分子如聚乙烯、聚丙烯等为合成高分子化合物;醋酸纤维素等为半合成高分子化合物。
②根据合成反应特点分为聚合物、缩合物和开环聚合物等。
③根据性质和用途分为塑料、橡胶、纤维等。

合成材料
合成材料又称人造材料,是人为地把不同物质经化学方法或聚合作用加工而成的材料,其特质与原料不同,如塑料、玻璃、钢铁等。
复合材料
以一种材料为基体,另一种材料为增强体组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。
分类
复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:
①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。
②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。
③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。
④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显着提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。
60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。
性能
复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。
成型方法
复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。
应用
复合材料的主要应用领域有:
①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。
②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。
③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。
④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。

⑶ 新型无机材料的内容提要

新型无机材料是指新近发展起来和正在发展中的具有优异性能、对科技尤其是高新技术发展及新产业的形成具有决定意义的无机新材料。本书在阐述新型无机材料的概念、分类、特点、结构与性能关系以及主要研究内容的基础上,全面系统地介绍了新型陶瓷、人工晶体、特种玻璃、纳米材料、多孔材料、无机纤维、薄膜材料、生物材料、半导体材料、新能源材料及环境材料等目前在国内外迅速发展的各种新型无机材料的组成、结构、性能、制备、应用及发展趋势。
全书在编写过程中坚持以增强新颖性、实用性为原则,以新型无机材料的功能化技术为主线,紧扣合成与制备、组成与结构、性能及应用之间的关系和规律,既突出新型无机材料的理论和应用,又体现本学科的前沿和发展方向;既着重于新知识和新理论的阐述,又充分反映多学科的融合和交叉。
本书既可作为大专院校材料科学与工程相关专业高年级本科及研究生教学用书,也可供有关专业师生、材料方面科研人员、工程技术人员及企业家参考和阅读。

⑷ 氧气,氮气,氩气,乙炔,丙烷,二氧化碳的功能及用途

1.氧气的某些用途和负作用
一.氧是心脏的“动力源”

氧是人体进行新陈代谢的关键物质,是人体生命活动的第一需要。呼吸的氧转化为人体内可利用的氧,称为血氧。血液携带血氧向全身输入能源,血氧的输送量与心脏、大脑的工作状态密切相关。心脏泵血能力越强,血氧的含量就越高;心脏冠状动脉的输血能力越强,血氧输送到心脑及全身的浓度就越高,人体重要器官的运行状态就越好。

二.氧气喷泉

随着人们对新鲜氧气的需求愿望与日俱增,在美国洛杉矶等大城市,一种氧气喷泉吧随之设立。在氧气喷泉吧里,人们手持透明氧气罐,其上插上了精巧的外接吸收装置,轻轻一吸,罐内的纯氧即喷涌而出。带着柠檬或其他香味的氧气可连续输送20分钟。除此之外,美国其他与氧有关的产品不断涌现,如各种含氧水、含氧汽水、含氧胶丸等。新兴的氧气消费,已形成一股新潮流。

三.增加吸氧量可减少术后感染及止吐

今年1月,美国的《新英格兰医学杂志》发表一项新的研究成果。奥地利、美国及澳大利亚的麻醉医师报告,只要在手术中和手术后给病人增加吸氧量,病人术后感染危险将降低一半。因为增氧可以提高免疫系统的免疫能力,可为患者的“免疫大军”提供更多“弹药”,杀死伤口部位的细菌。

这项研究是在奥地利维也纳和德国汉堡医院的500名患者身上进行的。其过程是:在整个手术期间和术后两个小时,为第一组250名患者实施含30%氧的麻醉,另一组250名患者在同一时间内接受含80%氧的麻醉。结果第一组手术后有28人感染,而第二组手术后只有13人感染。

麻醉病人在术后发生恶心或呕吐颇为常见,病人感到非常难受。进行此项研究的麻醉师说,增加吸氧比目前所使用的所有止吐药效果更为明显,且无危险和价格低廉。氧气防止呕吐的机制可能是防止肠道局部缺血,从而阻止催吐因子的释放。但完全用氧而不用一氧化氮是不可取的,因为这有可能使病人在手术中觉醒。

四.高压氧制服突发性耳聋

据友谊医院高压氧科主任介绍,高压氧不仅能改善内耳听觉器官的缺氧状态,而且还能改善内耳血液循环即组织代谢,促进听觉功能的恢复。一旦患了突发性耳聋,应立即去医院高压氧科,因为高压氧对突发性耳聋的疗效常取决于最初的治疗时间,一般在发病后三天之内(最迟不应超过一周)治疗效果最佳。

五.高压氧治疗牙周病效果好

牙周病指的是牙龈、牙周膜和牙槽骨的炎症、变形、萎缩,最后导致牙齿松动、脱落的一种慢性进行性疾病。患了牙周病会有牙龈充血、红肿、出血,牙龈沟加深,形成了牙周炎,牙周袋溢脓,有口臭,牙齿松动,并常伴有牙龈退缩。

牙周病的常规治疗效果并不理想。近年来,医务工作者用高压氧治疗牙周病,取得了良好的疗效。高压氧治疗牙周病可提高牙周病局部组织的氧含量和氧的弥散距离,促进侧枝循环的重建,改善局部循环。血管收缩效应可缓解局部肿胀。另外,高压氧还能有效地抑制细菌,尤其是厌氧菌的生长繁殖,改善牙周组织的供血、供氧,促进新陈代谢,以利于局部组织的修复,达到抗炎、消肿、止血和除臭的目的。

六.过度吸氧的负作用

早在19世纪中叶,英国科学家保尔·伯特首先发现,如果让动物呼吸纯氧会引起中毒,人类也同样。人如果在大于0.05 MPa(半个大气压)的纯氧环境中,对所有的细胞都有毒害作用,吸入时间过长,就可能发生“氧中毒”。肺部毛细管屏障被破坏,导致肺水肿、肺淤血和出血,严重影响呼吸功能,进而使各胀器缺氧而发生损害。在0.1 MPa(1个大气压)的纯氧环境中,人只能存活24小时,就会发生肺炎,最终导致呼吸衰竭、窒息而死。人在0.2 MPa(2个大气压)高压纯氧环境中,最多可停留1.5小时 ~ 2小时,超过了会引起脑中毒,生命节奏紊乱,精神错乱,记忆丧失。如加入0.3 MPa(3个大气压)甚至更高的氧,人会在数分钟内发生脑细胞变性坏死,抽搐昏迷,导致死亡。

此外,过量吸氧还会促进生命衰老。进入人体的氧与细胞中的氧化酶发生反应,可生成过氧化氢,进而变成脂褐素。这种脂褐素是加速细胞衰老的有害物质,它堆积在心肌,使心肌细胞老化,心功能减退;堆积在血管壁上,造成血管老化和硬化;堆积在肝脏,削弱肝功能;堆积在大脑,引起智力下降,记忆力衰退,人变得痴呆;堆积在皮肤上,形成老年斑。

生产和应用 大规模生产氧气的方法是分馏液态空气 ,首先将空气压缩,待其膨氧胀后又冷冻为液态空气,由于稀有气体和氮气的沸点都比氧气低,经过分馏,剩下的便是液氧,可贮存在高压钢瓶中。所有的氧化反应和燃烧过程都需要氧,例如炼钢时除硫、磷等杂质,氧和乙炔混合气燃烧时温度高达3500℃,用于钢铁的焊接和切割。玻璃制造、水泥生产、矿物焙烧、烃类加工都需要氧。液氧还用作火箭燃料,它比其他燃料更便宜。在低氧或缺氧的环境中工作的人,如潜水员、宇航员,氧更是维持生命所不可缺少的。但氧的活性状态如 、OH以及H2O2等对生物的组织有严重的损坏作用,紫外线对皮肤和眼的损害多与此种作用有关。是空气的组分之一,无色、无嗅、无味。氧气密度比空气大,在标准状况(0℃和大气压强101325帕)下密度为1.429克/升,能溶于水,但溶解度很小,1L水中约溶30mL氧气。在压强为101kPa时,氧气在约-180摄氏度时变为淡蓝色液体,在约-218摄氏度时变成雪花状的淡蓝色固体。

2.氮气的用途 氮是植物生长必需的营养要素之一,是氮肥的主要组分和多种复合肥料的主要组分之一,可制成氨,再通过氨加工进一步制成各种肥料。氮气可供充填灯泡,用作易氧化、易挥发、易燃物质以及反应器中的保护气体,在食品工业中用来防止食品由于氧化、发霉或细菌作用腐烂变质,在焊接方面有助于防止氧化,在冶金工业中有助于渗碳及除碳,在塑料、橡胶成型中,可作为发泡剂(见泡沫塑料)。液氮用于冷冻干燥,在医学方面作为冷冻剂用以保护血液、活组织等,在机械工业中用作仪器或机件的深度冷冻剂。
氮气的输送有两种形式:大部分氮气直接用管道输送给用户;少量氮气被压缩成高压气体,用钢瓶输送。

氮气增压就是一般所谓的NOS,而NOS则是由"NitrousOxide System",缩写而来,不过NOS究竟是什么呢?简单的说,就是一种将一氧化二氮(N20)强制灌入引擎中的系统。大家都知道,要使引擎产生更大动力的不二法门,就是让引擎吸入更多空气,并且搭配上适当比例的燃油,借此产生更高的油气爆发效率,turbo或Super Charger这一类增压系统,即是靠着增压器来将空气压缩后送入引擎,才得以在排气量不变的情况下,令引擎产生更大的动力。NOS改装的基本原理也是如此,只不过NOS的结构上简单许多,而且NOS并非只是单纯的压缩空气,而是透过前面提到的一氧化二氮令引擎发挥更大效率。
为何将一氧化二氮送入引擎就能提升动力?一氧化二氮受热之后会分解成两个氮分子,以及一个氧分子,其中的氧分子就可以增加混合气中氧分子的浓度,令混合器的爆炸压力更为强大。一氧化二氮又称为氧化亚氮,坊间则是有不少人习惯以‘笑气,称之,这是因为一氧化二氮和医学上广泛使用在麻醉用途的气体相当近似,所以‘笑气,这个昵称也正是由此而来.

3.氩气功能
采用非蒸散型锆铝16吸气剂及分子筛为净化剂。在一定的温度下,吸气剂可与氩气中的微量杂质O2、N2、H2、H2O、CO、CH4等等形成稳定的化合物或固溶体,对氩气精制的一种装置。

用途1 脱氮 脱氮时,有时伴着脱氧,用金属吸气剂吸收•金属吸气剂有钙、钛、铀和锆铝16.
用金属钙做吸气剂,同时吸收氮和氧,反应温度650-680℃,出口杂质20-50 PPm
用钛,锆铝16可以同时吸收氧、氮、氢,水蒸气,一氧化碳,二氧化碳和烃
2 脱氧 用化学法脱氧,常用的脱氧剂有氧化锰和Ag-X分子筛
用氧化锰吸收氧,工作温度150℃,氧脱除到2PPm
常温用Ag-X分子筛脱氧, 氧脱除到3PPm
3 脱氢 脱除氢用氧化铜和Pd-X分子筛
用氧化铜脱除氢•,反应温度350-400℃,氢气脱到0.1PPm
用Pd-X分子筛脱除氢•,反应温度350-400℃,氢气脱到1PPm
4 碳化物的脱除,
用金属剂锆铝16在脱碳的同时,一次性脱除一氧化碳,二氧化碳,和烃类.,可达1PPm

乙炔功能及用途

在液态和固态下或在气态和一定压力下有猛烈爆炸的危险,受热、震动、电火花等因素都可以引发爆炸,因此不能在加压液化后贮存或运输。难溶于水,易溶于丙酮,在15℃和总压力为15大气压时,在丙酮中的溶解度为237克/升,溶液是稳定的。因此,工业上是在装满石棉等多孔物质的钢桶或钢罐中,使多孔物质吸收丙酮后将乙炔压入,以便贮存和运输。

乙炔分子中的两个π键

和空气的混合物在乙炔含量2.5%~80%范围内有爆炸性。如供给适量空气,可以安全燃烧而发白光,在没有电源的地方用作光源。在氧气中燃烧,氧炔焰的温度高达3200℃左右,可用来切割和焊接金属。
化学性质很活泼,易起加成反应,生成多种重要的化工产品。在氯化汞存在下与氯化氢加成,生成氯乙烯:
HC≡CH+HCl→H2C = CHCl
在乙酸锌存在下与乙酸加成,生成乙酸乙烯酯:
HC≡CH+CH3COOH→H2C = CHOCOCH3
在羰基镍存在下与一氧化碳和水或醇作用 ,生成丙烯酸或丙烯酸酯,氯乙烯、乙酸乙烯酯、丙烯酸和丙烯酸酯都是生产高聚物的原料。乙炔分子中的氢有微弱酸性,可被金属取代生成乙炔化物,例如将乙炔通入亚铜盐或银盐的氨水溶液中,立即沉淀出红棕色的乙炔亚铜CuC≡CCu ,或乙炔银AgC≡CAg,此反应可用于乙炔的定性检验。
工业上由甲烷部分地燃烧,甲烷或低级烷在高温下热解,或碳化钙(电石)水解生产。由碳化钙制备的乙炔由于含磷化氢等杂质而有恶臭。

5.丙烷的功能及用途

丙烷在较高温度下与过量氯气作用,生成四氯化碳和四氯乙烯(Cl2C=CCl2);在气相与硝酸作用,生成1-硝基丙烷CH3CH2CH2NO2、2-硝基丙烷(CH3)2CHNO2、硝基乙烷CH3CH2NO2和硝基甲烷CH3NO2的混合物。工业上丙烷可从油田气和裂化气中分离得到。可做生产乙烯和丙烯的原料或炼油工业中的溶剂;丙烷、丁烷和少量乙烷的混合物液化后可用作民用燃料,即液化石油气。

6.二氧化碳
用途

二氧化碳灭火器

1. 灭火 因为二氧化碳不燃烧,又不支持一般燃烧物的燃烧,同时二氧化碳的密度又比空气的密度大, 所以常用二氧化碳来灭火。用二氧化碳来隔绝空气,以达到灭火的目的。

2. 致冷剂 固体的二氧化碳(干冰)在融化时直接变成气体,融化的过程中吸收热量,从而降低了周围的温度。所以,干冰经常被用来做致冷剂。

3. 人工降雨 用飞机在高空中喷撒干冰,可以使空气中的水蒸气凝结,从而形成人工降雨。

碳酸饮料

4. 工业原料 在化学工业上,二氧化碳是一种重要的原料,大量用于生产纯碱、小苏打、尿素、碳颜料铅白等。在轻工业上,用高压溶入较多的二氧化碳,可用来生产碳酸饮料、啤酒、汽水等。

5. 贮藏食品 用二氧化碳贮藏的食品由于缺氧和二氧化碳本身的抑制作用,可有效地防止食品中细菌、霉菌、虫子生长,避免变质和有害健康的过氧化物产生,并能保鲜和维持食品原有的风味和营养成分。如瑞典一家公司就推出了用充满了100%的二氧化碳气体的包装、容器、贮藏室来贮藏肉类的新方法。(http://www.foodqs.com/news/jsdt01/200443082720.htm)

⑸ 实验六 晶体生长

一、预备知识

1.矿物成因和晶体的形成方式;

2.影响晶体生长的外部因素;

3.人工合成晶体的方法、原理和工艺特点。

二、目的与要求

1.熟悉常见矿物成因及其共生矿物组合;

2.了解影响晶体生长的外部因素;

3.根据不同矿物的特点选择适合的合成方法。

三、实验内容

生长石盐、食糖、明矾、绿松石及一些玻璃制品等。通过使溶液达到过饱和时析出晶体的方式合成晶体,包括低温饱和溶液(如水和重水溶液、凝胶溶液、有机溶剂溶液等)、高温饱和溶液(熔盐)与热液等方法。

1.低温溶液生长(室温至75℃左右):一种最古老的生长晶体的方法。在工业结晶中,海盐、食糖及各种固体化学试剂等的生产,都采用了这一技术。晶体的生长是靠自发成核或放入粉末状晶种来促进生长的,生长的晶体为高纯度、颗粒均匀的多晶体。

从低温溶液中培育单晶最显着的优点如下:

(1)晶体可以在远低于熔点温度的条件下生长,可用的加热器和培育容器易于选择;

(2)容易生成大块的均匀性好的晶体;

(3)所生长出的晶体外形完整,同时可以用肉眼观察晶体生长全过程,这对研究晶体生长形态与动力学提供了方便。

从低温溶液中培育单晶,也存在如下主要缺点:

(1)溶液的组成较多,溶液中的杂质总是不可避免的,因此影响晶体生长的因素较复杂;

(2)晶体生长速度慢,因此单晶生长的周期长;

(3)从水或重水溶液中生长出的晶体易于潮解,而且使用温度范围亦窄。

注意:

(1)从低温溶液中生长单晶的最关键因素是控制溶液的过饱和度,晶体只有在稳定的过饱和溶液中生长才能确保晶体质量。

(2)单晶生长法与生长温度区间的选择是根据结晶物质的溶解度及其温度系数来决定的。例如,若结晶物质的溶解度及其温度系数均较大时,就可采用降温法;若结晶物质的溶解度大小为一般,但其温度系数很小或为负值,则要采用恒温蒸发法;若结晶物质的溶解度很小(难溶盐),就可采用凝胶法。

降温法:是从溶液中培育单晶的一种最常用的方法。降温法的关键问题是在晶体生长的全过程中要求严格控制温度,并按照一定的程序降温,使溶液始终处于亚稳相,并维持适宜的过饱和度来促成晶体的正常生长。装置如图1示。操作技术要点如下:

(1)配置适量溶液,测定溶液的饱和点与p H值;

(2)将溶液过热处理2~3小时,以便提高溶液的稳定性;

(3)预热晶种,在装槽下种时,使晶种微溶;

(4)根据溶解度曲线,按照降温程序降温,逐步使晶种恢复其几何外形,然后使晶体正常生长;

(5)当晶体生长到一定温度时,抽出溶液,再缓慢地将温度降至室温,取出晶体,放进干燥器中保存。

图1 降温法生长晶体装置示意

(据张克从,1998)

1—搅拌马达;2—温度计;3—接触温度计(控温);4—加热器;5—育晶器;6—挚晶杆;7—晶体;8—导电表;9—温度计;10—育晶器盖;11—育晶器;12—保温层;13—炉丝;14—自控加热器

图2 蒸发法育晶装置示意

(据张克从,1998)

1—转晶电机;2—水封;3—冷凝管;4—冷凝水收集器;5~8—绝缘层外壳

蒸发法:是将溶剂不断地蒸发移出,以保持溶液处于过饱和状态,通过控制蒸发量来维持溶液的过饱和度。蒸发法生长晶体的装置与降温法近似,只不过增加了冷凝回收溶剂的部分装置,如图2示。

这种方法的技术操作要点大致与降温法相同,不同之处在于:根据流出的冷凝水量(蒸发量)来观测晶体正常生长的情况,随着晶体的长大,要求取水量逐渐增多,通过调整晶体生长温度来达到这个目的。

凝胶法:以凝胶作为扩散和支持介质,晶体借助在水溶液(或有机溶剂)中的化学反应生长,装置如图3示。生长晶体的技术特点如下:

图3 凝胶法育晶装置示意

(据张克从,1998)

1—水;2—凝胶;3—晶体;4—容器;5—玻璃管;A,B两种不同的生长液

(1)凝胶的配置,凝胶的密度和稳定性对生长晶体起到关键性的作用;

(2)当A、B两种生长液同时向凝胶介质中扩散时,扩散的结果将导致复分解反应或其他类型的反应,自发成核,多核生长;

(3)晶体是在柔软而多孔的凝胶骨架中生长,有自由发育的适宜条件;

(4)晶体是在静止环境中靠扩散生长,没有对流与湍流的影响,有利于完整性好的晶体生长;

(5)晶体在室温或近室温条件下生长,温度易于控制,副反应减少,如欲生长出较大的晶体(厘米级),则必须严格控制成核;

(6)用凝胶法研究新晶体材料和培育籽晶是一种理想的简便方法;

(7)设备简单,可根据不同类型反应采用不同的设备。

例如,化学沉淀合成宝玉石法是一种经化学反应和沉淀(或沉积),进而加热加压合成非单晶质宝石的方法,如合成欧泊、合成绿松石等。

2.高温熔液生长(温度约在300℃以上):十分类似于低温溶液法生长晶体,它是将晶体的原成分在高温下熔解于助熔剂中,以形成均匀的饱和溶液,晶体是在过饱和熔液中生长。其优点如下:

(1)适用性强,几乎对所有的晶体材料都能找到一些适当的助熔剂来进行晶体生长;

(2)对许多难熔的化合物或熔点较低的晶体材料,可选取适当的助熔剂来进行晶体生长,而助熔剂的选择非常关键,要求它不与生长晶体原料起化合作用;

(3)设备较简单,坩埚、单晶炉热源和控温装置等均属于一般要求的装置。

高温熔液生长晶体也有如下缺点:

(1)晶体生长速度较慢,生长周期较长;

(2)在晶体生长过程中,不易观察生长现象;

(3)许多助熔剂往往带有毒性,有害身体健康;

(4)一般所生长出的晶体尺寸较小。

例如,仿造和再造宝玉石法,主要是利用玻璃、陶瓷、塑料或其他材料制作宝石仿制品(如玻璃猫眼、绿松石玻璃、玻璃欧泊、塑料琥珀等)和再造宝石(再造琥珀、再造绿松石等)。

3.热液生长法,又水热法,是一种在高温高压下过饱和溶液中进行结晶的方法。

四、作业

根据实验条件,合成常见晶体。

⑹ 传统三大非金属材料

无机非金属材料(inorganic nonmetallic
materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。
在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。
无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷(advanced
ceramics)、非晶态材料(noncrystal material〉、人工晶体〈artificial crys-tal〉、无机涂层(inorganic
coating)、无机纤维(inorganic fibre〉等。
传统无机非金属材料:
水泥和其他胶凝材料 硅酸盐水泥、铝酸盐水泥、石灰、石膏等

陶 瓷 粘土质、长石质、滑石质和骨灰质陶瓷等
耐火材料 硅质、硅酸铝质、高铝质、镁质、铬镁质等
玻 璃 硅酸盐
搪 瓷
钢片、铸铁、铝和铜胎等
铸 石 辉绿岩、玄武岩、铸石等
研磨材料 氧化硅、氧化铝、碳化硅等
多孔材料
硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等
碳素材料 石墨、焦炭和各种碳素制品等
非金属矿 粘土、石棉、石膏、云母、大理石、水晶和金刚石等

新型无机非金属材料
绝缘材料 氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃和微晶玻璃等
铁电和压电材料 钛酸钡系、锆钛酸铅系材料等

磁性材料 锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录和磁泡材料等
导体陶瓷 钠、锂、氧离子的快离子导体和碳化硅等
半导体陶瓷
钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金属元素氧化物系材料等
光学材料
钇铝石榴石激光材料,氧化铝、氧化钇透明材料和石英系或多组分玻璃的光导纤维等
高温结构陶瓷 高温氧化物、碳化物、氮化物及硼化物等难熔化合物
超硬材料
碳化钛、人造金刚石和立方氮化硼等
人工晶体 铝酸锂、钽酸锂、砷化镓、氟金云母等
生物陶瓷 长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等

无机复合材料 陶瓷基、金属基、碳素基的复合材料
以上内容出自 中国耐火砖交易网

⑺ 干燥的方法及机理

干燥是有机化学实验室中最常用到的重要操作之一,其目的在于除去化合物中存在的少量水分或其他溶剂。液体中的水分会与液体形成共沸物,在蒸馏时就有过多的“前馏分”,造成物料的严重损失;固体中的水分会造成熔点降低,而得不到正确的测定结果。试剂中的水分会严重干扰反应,如在制备格氏试剂或酰氯的反应中若不能保证反应体系的充分干燥就得不到预期产物;而反应产物如不能充分干燥,则在分析测试中就得不到正确的结果,甚至可能得出完全错误的结论。所有这些情况中都需要用到干燥。干燥的方法因被干燥物料的物理性质、化学性质及要求干燥的程度不同而不同,如果处置不当就不能得到预期的效果。

1.液体的干燥

实验室中干燥液体有机化合物的方法可分为物理方法和化学方法两类。

(1)物理干燥法

① 分馏法:可溶于水但不形成共沸物的有机液体可用分馏法干燥,如实验4那样。

② 共沸蒸(分)馏法:许多有机液体可与水形成二元最低共沸物(见书末附录3),可用共沸蒸馏法除去其中的水分,其原理见第74~77页。当共沸物的沸点与其有机组分的沸点相差不大时,可采用分馏法除去含水的共沸物,以获得干燥的有机液体。但若液体的含水量大于共沸物中的含水量,则直接的蒸(分)馏只能得到共沸物而不能得到干燥的有机液体。在这种情况下常需加入另一种液体来改变共沸物的组成,以使水较多较快地蒸出,而被干燥液体尽可能少被蒸出。例如,工业上制备无水乙醇时,是在95%乙醇中加入适量苯作共沸蒸馏。首先蒸出的是沸点为64.85℃的三元共沸物,含苯、水、乙醇的比例为74∶7.5∶18.5。在水完全蒸出后,接着蒸出的是沸点为68.25℃的二元共沸物,其中苯与乙醇之比为67.6∶32.4。当苯也被蒸完后,温度上升到78.85℃,蒸出的是无水乙醇。

③ 用分子筛干燥:分子筛是一类人工制作的多孔性固体,因取材及处理方法不同而有若干类别和型号,应用最广的是沸石分子筛,它是一种铝硅酸盐的结晶,由其自身的结构,形成大量与外界相通的均一的微孔。化合物的分子若小于其孔径,可进入这些孔道;若大于其孔径则只能留在外面,从而起到对不同种分子进行“筛分”的作用。选用合适型号的分子筛,直接浸入待干燥液体中密封放置一段时间后过滤,即可有选择地除去有机液体中的少量水分或其他溶剂。分子筛干燥的作用原理是物理吸附,其主要优点是选择性高,干燥效果好,可在pH 5~12的介质中使用。表3-3列出了几种最常用的分子筛供选用时参考。分子筛在使用后需用水蒸气或惰性气体将其中的有机分子代换出来,然后在(550±10)℃下活化2h,待冷却至约200℃时取出,放进干燥器中备用。若被干燥液体中含水较多,则宜用其他方法先作初步干燥后再用分子筛干燥。

表3-3 几种常用分子筛的吸附作用

(2)化学干燥法

化学干燥法是将适当的干燥剂直接加入到待干燥的液体中去,使与液体中的水分发生作用而达到干燥的目的。依其作用原理的不同可将干燥剂分成两大类:一类是可形成结晶水的无机盐类,如无水氯化钙,无水硫酸镁,无水碳酸钠等;另一类是可与水发生化学反应的物质,如金属钠、五氧化二磷、氧化钙等。前一类的吸水作用是可逆的,升温即放出结晶水,故在蒸馏之前应将干燥剂滤除,后一类的作用是不可逆的,在蒸馏时可不必滤除。对于一次具体的干燥过程来说,需要考虑的因素有干燥剂的种类、用量、干燥的温度和时间以及干燥效果的判断等。这些因素是相互联系、相互制约的,因此需要综合考虑。

① 干燥剂的种类选择选择干燥剂主要考虑:

(a)所用干燥剂不能溶解于被干燥液体,不能与被干燥液体发生化学反应,也不能催化被干燥液体发生自身反应。如碱性干燥剂不能用以干燥酸性液体;酸性干燥剂不可用来干燥碱性液体;强碱性干燥剂不可用以干燥醛、酮、酯、酰胺类物质,以免催化这些物质的缩合或水解;氯化钙不宜用于干燥醇类、胺类及某些酯类,以免与之形成络合物等。表3-4列出了干燥各类有机物所适用的干燥剂。

表3-4 适合于各类有机液体的干燥剂

(b)干燥剂的干燥效能和需要干燥的程度。无机盐类干燥剂不可能完全除去有机液体中的水。因所用干燥剂的种类及用量不同,所能达到的干燥程度亦不同。应根据需要干燥的程度来选择(见第107~108页)。至于与水发生不可逆化学反应的干燥剂,其干燥是较为彻底的,但使用金属钠干燥醇类时却不能除尽其中的水分,因为生成的氢氧化钠与醇钠间存在着可逆反应:

C2H5ONa + H2O = C2H5OH + NaOH

因此必须加入邻苯二甲酸乙酯或琥珀酸乙酯使平衡向右移动。

② 干燥剂的用量干燥剂的用量主要决定于:

a.被干燥液体的含水量。液体的含水量包括两部分:一是液体中溶解的水,可以根据水在该液体中的溶解度进行计算;表3-5列出了水在一些常用溶剂中的溶解度。对于表中未列出的有机溶剂,可从其他文献中去查找,也可根据其分子结构估计。二是在萃取分离等操作过程中带进的水分,无法计算,只能根据分离时的具体情况进行推估。例如,在分离过程中若油层与水层界面清楚,各层都清晰透明,分离操作适当,则带进的水就较少;若分离时乳化现象严重,油层与水层界面模糊,分得的有机液体浑浊,甚至带有水包油或油包水的珠滴,则会夹带有大量水分。

表3-5 水在有机溶剂中的溶解度

b.干燥剂的吸水容量及需要干燥的程度。吸水容量指每克干燥剂能够吸收的水的最大量。通过化学反应除水的干燥剂,其吸水容量可由反应方程式计算出来。无机盐类干燥剂的吸水容量可按其最高水合物的示性式计算。用液体的含水量除以干燥剂的吸水容量可得干燥剂的最低需用量,而实际干燥过程中所用干燥剂的量往往是其最低需用量的数倍,以使其形成含结晶水数目较少的水合物,从而提高其干燥程度。当然,干燥剂也不是用得越多越好,因为过多的干燥剂会吸附较多的被干燥液体,造成不必要的损失。

③ 温度、时间及干燥剂的粒度对干燥效果的影响。无机盐类干燥剂生成水合物的反应是可逆的,在不同的温度下有不同的平衡。在较低温度下水合物较稳定,在较高温度下则会有较多的结晶水释放出来,所以在较低温度下干燥较为有利。干燥所需的时间因干燥剂的种类不同而不同,通常需两个小时,以利干燥剂充分与水作用,最少也需半小时。若干燥剂颗粒小,与水接触面大,所需时间就短些,但小颗粒干燥剂总表面积大,会吸附过多被干燥液体而造成损失;大颗粒干燥剂总表面积小,吸附被干燥液体少,但吸水速度慢。所以太大的块状干燥剂宜作适当破碎,但又不宜破得太碎。

④ 干燥的实际操作。使用无机盐类干燥剂干燥有机液体时通常是将待干燥的液体置于锥形瓶中,根据粗略估计的含水量大小,按照每10mL液体0.5~1g干燥剂的比例加入干燥剂,塞紧瓶口,稍加摇振,室温放置半小时,观察干燥剂的吸水情况。若块状干燥剂的棱角基本完好;或细粒状的干燥剂无明显粘连;或粉末状的干燥剂无结团、附壁现象,同时被干燥液体已由浑浊变得清亮,则说明干燥剂用量已足,继续放置一段时间即可过滤。若块状干燥剂棱角消失而变得浑圆,或细粒状、粉末状干燥剂粘连、结块、附壁,则说明干燥剂用量不够,需再加入新鲜干燥剂。如果干燥剂已变成糊状或部分变成糊状,则说明液体中水分过多,一般需将其过滤,然后重新加入新的干燥剂进行干燥。若过滤后的滤液中出现分层,则需用分液漏斗将水层分出,或用滴管将水层吸出后再进行干燥,直至被干燥液体均一透明,而所加入的干燥剂形态基本上没有变化为止。

此外,一些化学惰性的液体,如烷烃和醚类等,有时也可用浓硫酸干燥。当用浓硫酸干燥时,硫酸吸收液体中的水而发热,所以不可将瓶口塞起来,而应将硫酸缓缓注滴入液体中,在瓶口安装氯化钙干燥管与大气相通。摇振容器使硫酸与液体充分接触,最后用蒸馏法收集纯净的液体。

2.固体的干燥

固体有机物在结晶(或沉淀)滤集过程中常吸附一些水分或有机溶剂。干燥时应根据被干燥有机物的特性和欲除去的溶剂的性质选择合适的干燥方式。常见的干燥方式有:

(1)在空气中晾干。对于那些热稳定性较差且不吸潮的固体有机物,或当结晶中吸附有易燃的挥发性溶剂如乙醚、石油醚、丙酮等时,可以放在空气中晾干(盖上滤纸以防灰尘落入)。

(2)红外线干燥。红外灯和红外干燥箱是实验室中常用的干燥固体物质的器具。它们都是利用红外线穿透能力强的特点,使水分或溶剂从固体内的各个部分迅速蒸发出来。所以干燥速度较快。红外灯通常与变压器联用,根据被干燥固体的熔点高低来调整电压,控制加热温度以避免因温度过高而造成固体的熔融或升华。用红外灯干燥时应注意经常翻搅固体,这样既可加速干燥,又可避免“烤焦”。

(3)烘箱干燥。烘箱多用于对无机固体的干燥,特别是对干燥剂、吸附剂的焙烘或再生,如硅胶、氧化铝等。熔点高的不易燃有机固体也可用烘箱干燥,但必须保证其中不含易燃溶剂,而且要严格控制温度以免造成熔融或分解。

(4)真空干燥箱:当被干燥的物质数量较大时,可采用真空干燥箱。其优点是使样品维持在一定的温度和负压下进行干燥,干燥量大,效率较高。

(5)干燥器干燥。凡易吸潮或在高温干燥时会分解、变色的固体物质,可置于干燥器中干燥。用干燥器干燥时需使用干燥剂。干燥剂与被干燥固体同处于一个密闭的容器内但不相接触,固体中的水或溶剂分子缓缓挥发出来并被干燥剂吸收。因此对干燥剂的选择原则主要考虑其能否有效地吸收被干燥固体中的溶剂蒸气。表3-6列出了常用干燥剂可以吸收的溶剂,供选择干燥剂时做参考。

表3-6 干燥固体的常用干燥剂

实验室中常用的干燥器有以下三种:

a.普通干燥器:如图1-1中的45所示,是由厚壁玻璃制作的上大下小的圆筒形容器,在上、下腔接合处放置多孔瓷盘,上口与盖子以砂磨口密封。必要时可在磨口上加涂真空油脂。干燥剂放在底部,被干燥固体放在表面皿或结晶皿内置于瓷盘上。

图3-45 真空干燥器

b.真空干燥器(图3-45):与普通干燥器大体相似,只是顶部装有带活塞的导气管,可接真空泵抽真空,使干燥器内的压强降低,从而提高干燥速度。应该注意,真空干燥器在使用前一定要经过试压。试压时要用铁丝网罩罩住或用布包住以防破裂伤人。使用时真空度不宜过高,一般在水泵上抽至盖子推不动即可。解除真空时,进气的速度不宜太快,以免吹散了样品。真空干燥器一般不宜用硫酸作干燥剂,因为在真空条件下硫酸会挥发出部分蒸气。如果必须使用,则需在瓷盘上加放一盘固体氢氧化钾。所用硫酸应为密度为1.84的浓硫酸,并按照每1L浓硫酸18g硫酸钡的比例将硫酸钡加入硫酸中,当硫酸浓度降到93%时,有BaSO4·2H2SO4·H2O晶体析出,再降至84%时,结晶变得很细,即应更换硫酸。

图3-46 真空恒温干燥器(干燥枪)

c.真空恒温干燥器(干燥枪):对于一些在烘箱和普通干燥器中干燥或经红外线干燥还不能达到分析测试要求的样品,可用真空恒温干燥器(干燥枪,见图3-46)干燥。其优点是干燥效率高,尤其是除去结晶水和结晶醇效果好。使用前,应根据被干燥样品和被除去溶剂的性质选好载热溶剂(溶剂沸点应低于样品熔点),将载热溶剂装进圆底烧瓶中。将装有样品的“干燥舟”放入干燥室,接上盛有五氧化二磷的曲颈瓶,用水泵或油泵减压。加热使溶剂回流,溶剂的蒸气充满夹层,样品就在减压和恒温的干燥室内被干燥。每隔一定时间抽气一次,以便及时排除样品中挥发出来的溶剂蒸气,同时可使干燥室内保持一定的真空度。干燥完毕先去掉热源,待温度降至接近室温时,缓慢地解除真空,将样品取出置于普通干燥器中保存。真空恒温干燥器只适用于少量样品的干燥。
3.气体的干燥

实验室中临时制备的或由储气钢瓶中导出的气体在参加反应之前往往需要干燥;进行无水反应或蒸馏无水溶剂时,为避免空气中水汽的侵入,也需要对可能进入反应系统或蒸馏系统的空气进行干燥。气体的干燥方法有冷冻法和吸附法两种。冷冻法是使气体通过冷阱,气体受冷时,其饱和湿度变小,其中的大部分水汽冷凝下来留在冷阱中,从而达到干燥的目的。吸附法是使气体通过吸附剂(如变色硅胶、活性氧化铝等)或干燥剂,使其中的水汽被吸附剂吸附或与干燥剂作用而除去或基本除去以达到干燥之目的。干燥剂的选择原则与液体的干燥相似。表3-7列出了干燥气体常用的一些干燥剂。使用固体干燥剂或吸附剂时,所用的仪器为干燥管(图1-1中11和25)、干燥塔(图1-1中44)、U形管或长而粗的玻璃管。所用干燥剂应为块状或粒状,切忌使用粉末,以免吸水后堵塞气体通路,并且装填应紧密而又有空隙。如果干燥要求高,可以连接两个或多个干燥装置。如果这些干燥装置中的干燥剂不同,则应使干燥效能高的靠近反应瓶一端,吸水容量大的靠近气体来路一端。气体的流速不宜过快,以便水汽被充分吸收。如果被干燥气体是由钢瓶导出,应当在开启钢瓶并调好流速之后再接入干燥系统,以免因流速过大而发生危险。如果用浓硫酸作干燥剂,则所用仪器为洗气瓶(图1-1中43),此时应注意将洗气瓶的进气管直通底部,不要将进气口和出气口接反了。在干燥系统与反应系统之间一般应加置安全瓶,以避免倒吸。浓硫酸的用量宜适当,太多则压力过大,气体不易通过,太少则干燥效果不好。干燥系统在使用完毕之后应立即封闭,以便下次使用。如果所用干燥剂已失效,应及时更换;吸附剂如失效,应取出再生后重新装入。无水反应或蒸馏无水溶剂时避免湿气侵入的干燥装置是装有无水氯化钙的干燥管(见图3-22b,图3-23,图3-9d及图3-48a和b)。

表3-7 干燥气体时所用的干燥剂

4.实验室中常用的干燥剂及其特性

① 无水氯化钙(CaCl2):无定形颗粒状(或块状),价格便宜,吸水能力强,干燥速度较快。吸水后形成含不同结晶水的水合物CaCl2·nH2O(n=1,2,4,6)。最终吸水产物为CaCl2·6H2O (30℃以下),是实验室中常用的干燥剂之一。但是氯化钙能水解成Ca(OH)2 或Ca(OH)Cl ,因此不宜作为酸性物质或酸类的干燥剂。同时氯化钙易与醇类,胺类及某些醛、酮、酯形成分子络合物。如与乙醇生成CaCl2·4C2H5OH、与甲胺生成CaCl2·2CH3NH2,与丙酮生成CaCl2·2(CH3)2CO 等, 因此不能作为上述各类有机物的干燥剂。

② 无水硫酸钠(Na2SO4):白色粉末状,吸水后形成带10个结晶水的硫酸钠(Na2SO4·10H2O)。因其吸水容量大,且为中性盐,对酸性或碱性有机物都可适用,价格便宜,因此应用范围较广。但它与水作用较慢,干燥程度不高。当有机物中夹杂有大量水分时,常先用它来作初步干燥,除去大量水分,然后再用干燥效率高的干燥剂干燥。使用前最好先放在蒸发皿中小心烘炒,除去水分,然后再用。

③ 无水硫酸镁(MgSO4):白色粉末状,吸水容量大,吸水后形成带不同数目结晶水的硫酸镁MgSO4·nH2O (n=1,2,4,5,6,7)。最终吸水产物为MgSO4·7H2O(48℃以下)。由于其吸水较快,且为中性化合物,对各种有机物均不起化学反应,故为常用干燥剂。特别是那些不能用无水氯化钙干燥的有机物常用它来干燥。

④ 无水硫酸钙(CaSO4):白色粉末,吸水容量小,吸水后形成2CaSO4·H2O(100℃以下)。虽然硫酸钙为中性盐,不与有机化合物起反应,但因其吸水容量小,没有前述几种干燥剂应用广泛。由于硫酸钙吸水速度快,而且形成的结晶水合物在100℃以下较稳定,所以凡沸点在100℃以下的液体有机物,经无水硫酸钙干燥后,不必过滤就可以直接蒸馏。如甲醇、乙醇、乙醚、丙酮、乙醛、苯等,用无水硫酸钙脱水处理效果良好。

⑤ 无水碳酸钾(K2CO3):白色粉末,是一种碱性干燥剂。其吸水能力中等,能形成带两个结晶水的碳酸钾(K2CO3·2H2O),但是与水作用较慢。适用于干燥醇、酯等中性有机物以及一般的碱性有机物如胺、生物碱等。但不能作为酸类、酚类或其他酸性物质的干燥剂。

⑥ 固体氢氧化钠(NaOH)和氢氧化钾(KOH):白色颗粒状,是强碱性化合物。只适用于干燥碱性有机物如胺类等。因其碱性强,对某些有机物起催化反应,而且易潮解,故应用范围受到限制。不能用于干燥酸类、酚类、酯、酰胺类以及醛酮。

⑦ 五氧化二磷(P2O5):是所有干燥剂中干燥效力最高的干燥剂。与水的作用过程是:

P2O5与水作用非常快,但吸水后表面呈粘浆状,操作不便。且价格较贵。一般是先用其他干燥剂如无水硫酸镁或无水硫酸钠除去大部分水,残留的微量水分再用P2O5干燥。它可用于干燥烷烃、卤代烷、卤代芳烃、醚等,但不能用于干燥醇类、酮类、有机酸和有机碱。

⑧ 金属钠(Na):常常用作醚类、苯等惰性溶剂的最后干燥。一般先用无水氯化钙或无水硫酸镁干燥除去溶剂中较多量的水分,剩下的微量水分可用金属钠丝或钠片除去。但金属钠不适用于能与碱起反应的或易被还原的有机物的干燥。如不能用于干燥醇(制无水甲醇、无水乙醇等除外)、酸、酯、有机卤代物、酮、醛及某些胺。

⑨ 氧化钙(CaO): 是碱性干燥剂。与水作用后生成不溶性的Ca(OH)2,对热稳定,故在蒸馏前不必滤除。氧化钙价格便宜,来源方便,实验室常用它来处理95%的乙醇,以制备99%的乙醇。但不能用于干燥酸性物质或酯类。

谢谢,满意请采纳,谢谢

⑻ 鼓励外商投资产业目录(2019年版)

一、农、林、牧、渔业
1.木本食用油料、调料和工业原料的种植及开发、生产
2.绿色、有机蔬菜(含食用菌、西甜瓜)、干鲜果品、茶叶栽培技术开发、种植及产品生产
3.酿酒葡萄育种、种植、生产
4.啤酒原料育种、种植、生产
5.糖料、果树、牧草等农作物栽培新技术开发及产品生产
6.高产高效青贮饲料专用植物新品种培育及开发
7.花卉生产与苗圃基地的建设、经营
8.橡胶、油棕、剑麻、咖啡种植
9.中药材种植、养殖
10.农作物秸秆资源综合利用、有机肥料资源的开发、生产
11.森林资源培育(速生丰产用材林、竹林、油茶等经济林、珍贵树种用材林等)
12.畜禽标准化规模养殖技术开发与应用
13.水产苗种繁育(不含我国特有的珍贵优良品种)
14.防治荒漠化、水土保持和国土绿化等生态环境保护工程建设、经营
15.水产品养殖、深水网箱养殖、工厂化水产养殖、生态型海洋增养殖二、采矿业
16.石油、天然气的勘探、开发和矿井瓦斯利用
17.提高原油采收率(以工程服务形式)及相关新技术的开发与应用
18.物探、钻井、测井、录井、井下作业等石油勘探开发新技术的开发与应用
19.提高矿山尾矿利用率的新技术开发与应用及矿山生态恢复技术的综合应用
20.我国紧缺矿种(如钾盐、铬铁矿等)的勘探、开采和选矿三、制造业
(一)农副食品加工业
21.安全高效环保饲料及饲料添加剂(含蛋氨酸),动物促生长用抗菌药物替代产品开发、生产
22.水产品加工、贝类净化及加工、海藻保健食品开发
23.蔬菜、干鲜果品、禽畜产品加工
24.生物乙醇(不含粮食转化乙醇)的开发、生产
(二)食品制造业
25.婴幼儿配方食品、婴幼儿谷类辅助食品、特殊医学用途配方食品及保健食品的开发、生产
26.针对老龄人口和改善老龄人口生活品质的营养保健食品、食品添加剂和配方食品的开发、生产
27.烘焙食品(含使用天然可可豆的巧克力及其制品)、方便食品及其相关配料的开发、生产
28.森林食品加工
29.天然食品添加剂、调味品、发酵制品、天然香料新技术开发、生产
30.无菌液态食品包装材料的开发、生产
(三)酒、饮料和精制茶制造业
31.果蔬饮料、蛋白饮料、茶饮料、咖啡饮料、植物饮料的开发、生产
(四)纺织业
32.采用编织、非织造布复合、多层在线复合、长效多功能整理等高新技术生产轻质、高强、耐高/低温、耐化学物质、耐光等多功能化的产业用纺织品
33.采用先进节能减排技术和装备的高档织染及后整理加工
34.符合生态、资源综合利用与环保要求的特种天然纤维(包括山羊绒等特种动物纤维、竹纤维、麻纤维、蚕丝、彩色棉花等)产品加工
35.废旧纺织品回收利用
(五)纺织服装、服饰业
36.采用计算机集成制造系统的服装生产
37.功能性特种服装生产
(六)皮革、毛皮、羽毛及其制品和制鞋业
38.皮革和毛皮清洁化技术加工
39.皮革后整饰新技术加工
40.皮革废弃物综合利用
(七)木材加工和木、竹、藤、棕、草制品业
41.林业三剩物,“次、小、薪”材、废旧木材和竹材的综合利用新技术、新产品开发、生产,木竹材生产污染控制治理、细微颗粒物减排与粉尘防爆技术开发与应用
(八)文教、工美、体育和娱乐用品制造业
42.高档地毯、刺绣、抽纱产品生产
(九)石油加工、炼焦和核燃料加工业
43.酚油加工、洗油加工、煤沥青高端化利用(不含改质沥青)
(十)化学原料和化学制品制造业
44.聚氯乙烯和有机硅新型下游产品开发、生产
45.合成材料的配套原料:过氧化氢氧化丙烯法环氧丙烷、过氧化氢氧化氯丙烯法环氧氯丙烷、萘二甲酸二甲酯(NDC)、1,4-环己烷二甲醇(CHDM)、5万吨/年及以上丁二烯法己二腈、己二胺、高性能聚氨酯组合料生产
46.高碳α烯烃共聚茂金属聚乙烯等高端聚烯烃的开发、生产
47.合成纤维原料:尼龙66盐、1,3-丙二醇生产
48.差别化、功能性聚酯(PET)的连续共聚改性[阳离子染料可染聚酯(CDP、ECDP)、碱溶性聚酯(COPET)、高收缩聚酯(HSPET)、阻燃聚酯、低熔点聚酯等],熔体直纺在线添加等连续化工艺生产差别化、功能性纤维(抗静电、抗紫外、有色纤维等),智能化、超仿真等差别化、功能性聚酯(PET)及纤维生产,腈纶、锦纶、氨纶、粘胶纤维等其他化学纤维品种的差别化、功能性改性纤维生产
49.合成橡胶:聚氨酯橡胶、丙烯酸酯橡胶、氯醇橡胶,以及氟橡胶、硅橡胶等特种橡胶生产
50.工程塑料及塑料合金:6万吨/年及以上非光气法聚碳酸酯(PC)、聚甲醛、聚苯硫醚、聚醚醚酮、聚酰亚胺、聚砜、聚醚砜、聚芳酯(PAR)、聚苯醚、聚对苯二甲酸丁二醇酯(PBT)、聚酰胺(PA)及其改性材料、液晶聚合物等产品生产
51.精细化工:催化剂新产品、新技术,染(颜)料商品化加工技术,电子化学品和造纸化学品,皮革化学品(N-N二甲基甲酰胺除外),油田助剂,表面活性剂,水处理剂,胶粘剂、密封胶,无机纤维、无机纳米材料生产,颜料包膜处理深加工
52.水性油墨、电子束固化紫外光固化等低挥发性油墨、环保型有机溶剂生产
53.天然香料、合成香料、单离香料生产
54.高性能涂料,高固体份、无溶剂涂料及配套树脂,水性工业涂料及配套水性树脂生产
55.高性能氟树脂、氟膜材料,医用含氟中间体,环境友好型含氟制

⑼ 什么是晶体(高中化学)

晶体有三个特征

(1)晶体拥有整齐规则的几何外形。(2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。(3)晶体有各向异性的特点:固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。如玻璃。外形为无规则形状的固体。

晶体的共性

合成铋单晶

1、长程有序:晶体内部原子在至少微米级范围内的规则排列。2.均匀性:晶体内部各个部分的宏观性质是相同的。3.各向异性:晶体中不同的方向上具有不同的物理性质。4.对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。5.自限性:晶体具有自发地形成封闭几何多面体的特性。6.解理性:晶体具有沿某些确定方位的晶面劈裂的性质。7.最小内能:在相同热力学条件下,晶体与同种物质非晶体固态液态气体相比,其内能最小。8.晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。组成晶体的结构微粒(分子、原子、离子、金属)在空间有规则地排列在一定的点上,这些点群有一定的几何形状,叫做晶格。排有结构粒子的那些点叫做晶格的结点。金刚石、石墨、食盐的晶体模型,实际上是它们的晶格模型。晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和准晶体三大类。具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。晶体按其内部结构可分为七大晶系和14种晶格类型。晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。晶体

说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。但是,你知道根据其内部构造特点,固体又可分为几类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类。

几何形状

晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。我们吃的盐是氯化钠的结晶,味精是谷氨酸钠的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。我们可以这样说:“熠熠闪光的不一定是晶体,朴实无华、不能闪光的未必就不是晶体”。不是吗?每家厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制品也属晶体,就连地上的泥土砂石都是晶体。我们身边的固体物质中,除了常被我们误以为是晶体的玻璃、松香、琥珀、珍珠等之外,几乎都是晶体。晶体离我们并不遥远,它就在我们的日常生活中。晶体

组成晶体的结构粒子(分子、原子、离子)在三维空间有规则地排列在一定的点上,这些点周期性地构成有一定几何形状的无限格子,叫做晶格。按照晶体的现代点阵理论,构成晶体结构的原子、分子或离子都能抽象为几何学上的点。这些没有大小、没有质量、不可分辨的点在空间排布形成的图形叫做点阵,以此表示晶体中结构粒子的排布规律。构成点阵的点叫做阵点,阵点代表的化学内容叫做结构基元。因此,晶格也可以看成点阵上的点所构成的点群集合。对于一个确定的空间点阵,可以按选择的向量将它划分成很多平行六面体,每个平行六面体叫一个单位,并以对称性高、体积小、含点阵点少的单位为其正当格子。晶格就是由这些格子周期性地无限延伸而成的。空间正当格子只有7种形状(对应于7个晶系),14种型式它们是简单立方、体心立方、面心立方;简单三方;简单六方;简单四方、体心四方;简单正交、底心正交、体心正交、面心正交;简单单斜、底心单斜;简单三斜格子等。晶格的强度由晶格能(或称点阵能)。

类别实例

1立方晶系钻石明矾金铁铅2正方晶系锡金红石白钨石3斜方晶系硫碘硝酸银4单斜晶系硼砂蔗糖石膏5三斜晶系硫酸铜硼酸6三方(菱形)晶系砷水晶冰石墨7六方晶系镁锌铍镉钙

晶体是原子、离子或分子按照一定的周期性在空间排列形成在结晶过程中形成具有一定规则的几何外形的固体。晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和准晶体三大类。具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。晶体按其内部结构可分为七大晶系和14种晶格类型。晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。研究表明,固体可分为晶体、非晶体和准晶体三大类。究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。

为了描述晶体的结构,把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。吃的盐是氯化钠的结晶,味精是谷氨酸钠的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。可以这样说:“熠熠闪光的不一定是晶体,朴实无华、不能闪光的未必就不是晶体”。厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制品也属晶体,就连地上的泥土砂石都是晶体。我们身边的固体物质中,除了常被我们误以为是晶体的玻璃、松香、琥珀、珍珠等之外,几乎都是非晶体。晶体离我们并不遥远,它就在日常生活中。组成晶体的结构粒子(分子、原子、离子)在三维空间有规则地排列在一定的点上,这些点周期性地构成有一定几何形状的无限格子,叫做晶格。按照晶体的现代点阵理论,构成晶体结构的原子、分子或离子都能抽象为几何学上的点。这些没有大小、没有质量、不可分辨的点在空间排布形成的图形叫做点阵,以此表示晶体中结构粒子的排布规律。构成点阵的点叫做阵点,阵点代表的化学内容叫做结构基元。因此,晶格也可以看成点阵上的点所构成的点群集合。对于一个确定的空间点阵,可以按选择的向量将它划分成很多平行六面体,每个平行六面体叫一个单位,并以对称性高、体积小、含点阵点少的单位为其正当格子。晶格就是由这些格子周期性地无限延伸而成的。空间正当格子只有7种形状(对应于7个晶系),14种型式。它们是简单立方、体心立方、面心立方;简单三方;简单六方;简单四方、体心四方;简单正交、底心正交、体心正交、面心正交;简单单斜、底心单斜;简单三斜格子等。晶格的强度由晶格能(或称点阵能)。晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。

1.自限性:晶体具有自发形成几何多面体形态的性质,这种性质成为自限性。2.均一性和异向性:因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。3.最小内能与稳定性:晶体与同种物质的非晶体、液体、气体比较,具有最小内能。晶体是具有格子构造的固体,其内部质点作规律排列。这种规律排列的质点是质点间的引力与斥力达到平衡,使晶体的各个部分处于位能最低的结果。结晶分两种,一种是降温结晶,另一种是蒸发结晶。降温结晶:首先加热溶液,蒸发溶剂成饱和溶液,此时降低热饱和溶液的温度,溶解度随温度变化较大的溶质就会呈晶体析出,叫降温结晶。蒸发结晶:蒸发溶剂,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质就会呈晶体析出,叫蒸发结晶。常见的晶体有萘,海波,冰,各种金属。

1.长程有序:晶体内部原子在至少在微米级范围内的规则排列。2、均匀性:晶体内部各个部分的宏观性质是相同的。3.各向异性:晶体中不同的方向上具有不同的物理性质。4.对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。5、自限性:晶体具有自发地形成封闭几何多面体的特性。6.解理性:晶体具有沿某些确定方位的晶面劈裂的性质。7.最小内能:成型晶体内能最小。8.晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。组成晶体的结构微粒(分子、原子、离子)在空间有规则地排列在一定的点上,这些点群有一定的几何形状,叫做晶格。排有结构粒子的那些点叫做晶格的结点。金刚石、石墨、食盐的晶体模型,实际上是它们的晶格模型。

晶体的一些性质取决于将分子联结成固体的结合力。这些力通常涉及原子或分子的最外层的电子(或称价电子)的相互作用。如果结合力强,晶体有较高的熔点。如果它们稍弱一些,晶体将有较低的熔点,也可能较易弯曲和变形。如果它们很弱,晶体只能在很低温度下形成,此时分子可利用的能量不多。有四种主要的晶体键。离子晶体由正离子和负离子构成,靠不同电荷之间的引力结合在一起。氯化钠是离子晶体的一例。共价晶体的原子或分子共享它们的价电子。钻石、锗和硅是重要的共价晶体。金属的原子变为离子,被自由的价电子所包围,它们能够容易地从一个原子运动到另一个原子。当这些电子全在同一方向运动时,它们的运动称为电流。分子晶体的分子完全不分享它们的电子。它们的结合是由于从分子的一端到另一端电场有微小的变动。因为这个结合力很弱,这些晶体在很低的温度下就熔化。典型的分子结晶如固态氧和冰。在离子,晶体中,电子从一个原子转移到另一个原子。共价晶体的原子分享它们的价电子。金属原子的一端有少量的负电荷,另一端有少量的正电荷。一个弱的电引力使分子就位。用来制作工业用的晶体的技术之一,是从熔液中生长。籽晶可用来促进单晶体的形成。在这个工序里,籽晶降落到装有熔融物质的容器中。籽晶周围的熔液冷却,它的分子就依附在籽晶上。这些新的晶体分子承接籽晶的取向,形成了一个大的单晶体。蓝宝石和红宝石的基本成分是氧化铝,它的熔点高,制成一个盛装它的熔液的容器是困难的。人工合成蓝宝石和红宝石是用维尔纳叶法(焰熔法)制成,即将氧化铝粉和少量上色用的钛、铁或铬粉,通过火焰下滴到籽晶上。火焰将粉熔解,然后在籽晶上重新结晶。生长人造钻石需要高于1600℃的温度和60000倍大气压。人造钻石砂粒小且黑,它们适宜工业应用。区域熔化过程用来纯化半导体工业中的硅晶体。一个单晶体垂直悬挂在硅棒的顶端上。在两者接触处加热,棒的顶端熔化,并在单晶体上重结晶,然后将加热处慢慢地沿棒下移。

晶体的对称表现在晶体中相等的晶面,晶棱和角顶有规律的重复出现。这是由于它具有规律的格子构造。是其在三维空间周期性重复的体现。既晶体的对称性不仅表现在外部形态上,而且其内部构造也同样也是对称的。镓,一种很容易结成大块单晶的金属

在晶体的外形以及其他宏观表现中还反映了晶体结构的对称性。晶体的理想外形或其结构都是对称图象。这类图象都能经过不改变其中任何两点间距离的操作后复原。这样的操作称为对称操作,平移、旋转、反映和倒反都是对称操作。能使一个图象复原的全部不等同操作,形成一个对称操作群。在晶体结构中空间点阵所代表的是与平移有关的对称性,此外,还可以含有与旋转、反映和倒反有关并能在宏观上反映出来的对称性,称为宏观对称性,它在晶体结构中必须与空间点阵共存,并互相制约。制约的结果有二:①晶体结构中只能存在1、2、3、4和6次对称轴,②空间点阵只能有14种形式。n次对称轴的基本旋转操作为旋转360°/n,因此,晶体能在外形和宏观中反映出来的轴对称性也只限于这些轴次。由于原子并不处于静止状态,存在着外来原子引起的点阵畸变以及一定的缺陷,基本结构虽然仍符合上述规则性,但绝不是如设想的那样完整无缺,存在数目不同的各种形式的晶体缺陷。另外还必须指出,绝大多数工业用的金属材料不是只由一个巨大的单晶所构成,而是由大量小块晶体组成,即多晶体。在整块材料内部,每个小晶体(或称晶粒)整个由三维空间界面与它的近邻隔开。这种界面称晶粒间界,简称晶界。晶界厚度约为两三个原子。

大多数天然晶体都是一个原子接一个原子或一个分子接一个分子来完成的但是JillianBanfield和同事们发现了一些晶体,它们是由含有成百上千个原子的“预制”纳米晶体装配而成。据一篇相关的研究评述,这种晶体的块生长方式可能会对制造用于光学和电子设备(比如激光或硬盘)的人工材料有用。水铁石(ferrihydrite)的天然的预制晶体是由细菌合成的,在被水淹了的矿的烂泥里能找到,水铁石靠排列的纳米晶体连接起来而生长。这种生长晶体的方式引入特有的缺陷,可能会影响晶体在以后反应中的性质。

编辑本段晶体缺陷

在二十世纪初叶,人们为了探讨物质的变化和性质产生的原因,纷纷从微观角度来研究晶体内部结构,特别是X射线衍射的出现,揭示出晶体内部质点排列的规律性,认为内部质点在三维空间呈有序的无限周期重复性排列,即所谓空间点阵结构学说。前面讲到的都是理想的晶体结构,实际上这种理想的晶体结构在真实的晶体中是不存在的,事实上,无论是自然界中存在的天然晶体,还是在实验室(或工厂中)培养的人工晶体或是陶瓷和其它硅酸盐制品中的晶相,都总是或多或少存在某些缺陷,因为:首先晶体在生长过程中,总是不可避免地受到外界环境中各种复杂因素不同程度影响,不可能按理想发育,即质点排列不严格服从空间格子规律,可能存在空位、间隙离子、位错、镶嵌结构等缺陷,外形可能不规则。另外,晶体形成后,还会受到外界各种因素作用如温度、溶解、挤压、扭曲等等。晶体缺陷:各种偏离晶体结构中质点周期重复排列的因素,严格说,造成晶体点阵结构周期势场畸变的一切因素。如晶体中进入了一些杂质。这些杂质也会占据一定的位置,这样破坏了原质点排列的周期性,在二十世纪中期,发现晶体中缺陷的存在,它严重影响晶体性质,有些是决定性的,如半导体导电性质,几乎完全是由外来杂质原子和缺陷存在决定的,许多离子晶体的颜色、发光等。另外,固体的强度,陶瓷、耐火材料的烧结和固相反应等等均与缺陷有关,晶体缺陷是近三、四年国内外科学研究十分注意的一个内容。

根据缺陷的作用范围把真实晶体缺陷分四类:点缺陷:在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子。线缺陷:在二维尺寸小,在另一维尺寸大,可被电镜观察到。面缺陷:在一维尺寸小,在另二维尺寸大,可被光学显微镜观察到。体缺陷:在三维尺寸较大,如镶嵌块,沉淀相,空洞,气泡等。按形成的原因不同分三类:1热缺陷(晶格位置缺陷)在晶体点阵的正常格点位出现空位,不该有质点的位置出现了质点(间隙质点)。2组成缺陷外来质点(杂质)取代正常质点位置或进入正常结点的间隙位置。3电荷缺陷晶体中某些质点个别电子处于激发状态,有的离开原来质点,形成自由电子,在原来电子轨道上留下了电子空穴。1.缺陷符号及缺陷反应方程式缺陷符号以二元化合物MX为例1)晶格空位:正常结点位没有质点,VM,VX2)间隙离子:除正常结点位置外的位置出现了质点,Mi,Xx3)错位离子:M排列在X位置,或X排列在M位置上,若处在正常结点位置上,则MM,XX4)取代离子:外来杂质L进入晶体中,若取代M,则LM,若取代X,则LX,若占据间隙位,则Li。5)自由电子e’(代表存在一个负电荷),,表示有效电荷。6)电子空穴h·(代表存在一个正电荷),·表示有效正电荷如:从NaCl晶体中取走一个Na+,留下一个空位造成电价不平衡,多出负一价。相当于取走Na原子加一个负有效负电荷,e失去→自由电子,剩下位置为电子空穴h·7)复合缺陷同时出现正负离子空位时,形成复合缺陷,双空位。VM+VX→(VM-VX)缺陷反应方程式必须遵守三个原则1)位置平衡——反应前后位置数不变(相对物质位置而言)2)质点平衡——反应前后质量不变(相对加入物质而言)3)电价平衡——反应前后呈电中性例:将CaCl2引入KCl中:将CaO引入ZrO2中注意:只从缺陷反应方程看,只要符合三个平衡就是对的,但实际上往往只有一种是对的,这要知道其它条件才能确定哪个缺陷反应是正确的。确定(1)式密度增加,要根据具体实验和计算。2.热缺陷(晶格位置缺陷)只要晶体的温度高于绝对零度,原子就要吸收热能而运动,但由于固体质点是牢固结合在一起的,或者说晶体中每一个质点的运动必然受到周围质点结合力的限制而只能以质点的平衡位置为中心作微小运动,振动的幅度随温度升高而增大,温度越高,平均热能越大,而相应一定温度的热能是指原子的平均动能,当某些质点大于平均动能就要离开平衡位置,在原来的位置上留下一个空位而形成缺陷,实际上在任何温度下总有少数质点摆脱周围离子的束缚而离开原来的平衡位置,这种由于热运动而产生的点缺陷——热缺陷。热缺陷两种基本形式:a-弗仑克尔缺陷,b-肖特基缺陷(1)弗仑克尔缺陷具有足够大能量的原子(离子)离开平衡位置后,挤入晶格间隙中,形成间隙原子离子),在原来位置上留下空位。特点:空位与间隙粒子成对出现,数量相等,晶体体积不发生变化。在晶体中弗仑克尔缺陷的数目多少与晶体结构有很大关系,格点位质点要进入间隙位,间隙必须要足够大,如萤石(CaF2)型结构的物质空隙较大,易形成,而NaCl型结构不易形成。总的来说,离子晶体,共价晶体形成该缺陷困难。(2)肖特基缺陷表面层原子获得较大能量,离开原来格点位跑到表面外新的格点位,原来位置形成空位这样晶格深处的原子就依次填入,结果表面上的空位逐渐转移到内部去。特点:体积增大,对离子晶体、正负离子空位成对出现,数量相等。结构致密易形成肖特基缺陷。晶体热缺陷的存在对晶体性质及一系列物理化学过程,导电、扩散、固相反应、烧结等产生重要影响,适当提高温度,可提高缺陷浓度,有利于扩散,烧结作用,外加少量填加剂也可提高热缺陷浓度,有些过程需要最大限度避免缺陷产生,如单晶生产,要非常快冷却。3.组成缺陷主要是一种杂质缺陷,在原晶体结构中进入了杂质原子,它与固有原子性质不同,破坏了原子排列的周期性,杂质原子在晶体中占据两种位置(1)填隙位(2)格点位4.电荷缺陷(Chargedefect)从物理学中固体的能带理论来看,非金属固体具有价带,禁带和导带,当在OR时,导带全部完善,价带全部被电子填满,由于热能作用或其它能量传递过程,价带中电子得到一能量Eg,而被激发入导带,这时在导带中存在一个电子,在价带留一孔穴,孔穴也可以导电,这样虽末破坏原子排列的周期性,在由于孔穴和电子分别带有正负电荷,在它们附近形成一个附加电场,引起周期势场畸变,造成晶体不完整性称电荷缺陷。例:纯半导体禁带较宽,价电带电子很难越过禁带进入导带,导电率很低,为改善导电性,可采用掺加杂质的办法,如在半导体硅中掺入P和B,掺入一个P,则与周围Si原子形成四对共价键,并导出一个电子,叫施主型杂质,这个多余电子处于半束缚状态,只须填加很少能量,就能跃迁到导带中,它的能量状态是在禁带上部靠近导带下部的一个附加能级上,叫施主能级,叫n型半导体。当掺入一个B,少一个电子,不得不向其它Si原子夺取一个电子补充,这就在Si原子中造成空穴,叫受主型杂质,这个空穴也仅增加一点能量就能把价带中电子吸过来,它的能量状态在禁带下部靠近价带顶部一个附加能级,叫受主能级,叫P型半导体,自由电子,空穴都是晶体一种缺点缺陷在实践中有重要意义:烧成烧结,固相反应,扩散,对半导体,电绝缘用陶瓷有重要意义,使晶体着色等。

⑽ 与建筑材料最相关的专业是不是化学对水泥,砼,玻璃,钢,涂料,粘结剂性能理解最透的是化学专业的人

建筑材料学科最基础的学科是化学,以及物理
水泥,砼,玻璃,钢,涂料,粘结剂性能理解最透应该还是学建材的人!