❶ 为什么说请求页式管理可以实现虚拟存储器
请求分页式存储管理的基本思想是:操作系统按照存储块的尺寸,把用户作业地址空间划分成页,全部存放在磁盘上。作业运行时,只先装入若干页。运行过程中遇到不在内存的页时,操作系统就把它从磁盘调入内存。这样一来,用户的作业地址空间无需顾及内存的大小。这与虚拟存储器的思想是完全吻合的。所以,请求分页式存储管理能够向用户提供虚拟存储器。
❷ 实现虚拟存储器需要哪几个关键技术
请求分页系统(请求分页的页表机构、缺页中断机构、地址变换机构)
请求分段系统(请求分段的段表机构、缺段中断机构、地址变换机构)
❸ 实现虚拟存储器需要哪几个关键技术
有分页请求系统和请求分段系统两种方法。
❹ 操作系统(三)内存管理 3.2 虚拟内存管理
传统存储管理很多暂时用不到的数据也会长期占用内存,导致内存利用率不高,他们具有以下两个特征
高速缓冲技术的思想:将近期会频繁访问到的数据放到更高速的存储器中,暂时用不到的数据放在更低速存储器中。快表机构就是将近期常访问的页表项副本放到更高速的联想寄存器中,其依赖的就是局部性原理
时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)
空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的,并且程序的指令也是顺序地在内存中存放的)
基于局部性原理,在程序装入时,可以将程序中很快会用到的部分装入内存,暂时用不到的部分留在外存,就可以让程序开始执行。在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。在操作系统的管理下,在用户看来似乎有一个比实际内存大得多的内存,这就是 虚拟内存 。虚拟内存是操作系统虚拟性的一个体现,实际的物理内存大小没有变,只是在逻辑上进行了扩充。
虚拟内存有以下三个主要特征:
虚拟内存技术,允许一个作业分多次调入内存。如果采用连续分配方式,会不方便实现。因此,虚拟内存的实现需要建立在离散分配的内存管理方式基础上。
虚拟内存的实现有以下三种方式
在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。 [1] 若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。 [2]
请求分页系统建立在基本分页系统之上,为了支持虚拟存储器功能而增加了请求调页和页面置换功能
与基本分页管理相比,请求分页管理中,为了实现“请求调页”,操作系统需要知道每个页面是否已经调入内存;如果还没调入,那么也需要知道该页面在外存中存放的位置。当内存空间不够时,要实现“页面置换”,操作系统需要通过某些指标来决定到底换出哪个页面;有的页面没有被修改过,就不用再浪费时间写回外存。有的页面修改过,就需要将外存中的旧数据覆盖,因此,操作系统也需要记录各个页面是否被修改的信息。因此,请求页表项增加了四个字段
在请求分页系统中,每当要访问的页面不在内存时,便产生一个缺页中断,然后由操作系统的缺页中断处理程序处理中断。此时缺页的进程阻塞,放入阻塞队列,调页完成后再将其唤醒,放回就绪队列。如果内存中有空闲块,则为进程分配一个空闲块,将所缺页面装入该块,并修改页表中相应的页表项。
找到对应页表项后,若对应页面未调入内存,则产生缺页中断,之后由操作系统的缺页中断处理程序进行处理
快表中有的页面一定是在内存中的。若某个页面被换出外存,则快表中的相应表项也要删除,否则可能访问错误的页面
页面的换入、换出需要磁盘I/O,会有较大的开销,因此好的页面置换算法应该追求更少的缺页率
最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被访问的页面,这样可以保证最低的缺页率。
最佳置换算法可以保证最低的缺页率,但实际上,只有在进程执行的过程中才能知道接下来会访问到的是哪个页面。操作系统无法提前预判页面访问序列。因此,最佳置换算法是无法实现的。
先进先出置换算法(FIFO):每次选择淘汰的页面是最早进入内存的页面。把调入内存的页面根据调入的先后顺序排成一个队列,需要换出页面时选择队头页面即可。队列的最大长度取决于系统为进程分配了多少个内存块。
只有FIFO算法会产生Belady异常 [3] 。另外,FIFO算法虽然实现简单,但是该算法与进程实际运行时的规律不适应,因为先进入的页面也有可能最经常被访问。因此,算法性能差
最近最久未使用置换算法(LRU,least recently used):每次淘汰的页面是最近最久未使用的页面。赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来所经历的时间t。当需要淘汰一个页面时,选择现有页面中t值最大的,即最近最久未使用的页面。
该算法的实现需要专门的硬件支持,虽然算法性能好,但是实现困难,开销大
时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU,NotRecently Used)简单的CLOCK算法实现方法:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成一个循环队列。当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描中一定会有访问位为0的页面,因此简单的CLOCK算法选择一个淘汰页面最多会经过两轮扫描)
改进型的时钟置换算法:
简单的时钟置换算法仅考虑到一个页面最近是否被访问过。事实上,如果被淘汰的页面没有被修改过,就不需要执行I/O操作写回外存。只有被淘汰的页面被修改过时,才需要写回外存。因此,除了考虑一个页面最近有没有被访问过之外,操作系统还应考虑页面有没有被修改过。在其他条件都相同时,应优先淘汰没有修改过的页面,避免I/O操作。这就是改进型的时钟置换算法的思想。修改位=0,表示页面没有被修改过;修改位=1,表示页面被修改过。为方便讨论,用(访问位,修改位)的形式表示各页面状态。如(1,1)表示一个页面近期被访问过,且被修改过。
算法规则:将所有可能被置换的页面排成一个循环队列
由于第二轮已将所有帧的访问位设为0,因此经过第三轮、第四轮扫描一定会有一个帧被选中,因此改进型CLOCK置换算法选择一个淘汰页面最多会进行四轮扫描
对于分页式的虚拟内存,在进程准备执行时,不需要也不可能把-一个进程的所有页都读入主存。因此,操作系统必须决定读取多少页,即决定给特定的进程分配几个页框。
分配方式有
置换方式有
根据以上,现代操作系统通常采用三种策略:
预调页策略:根据局部性原理,一次调入若干个相邻的页面可能比一次调入一个页面更高效。但如果提前调入的页面中大多数都没被访问过,则又是低效的。因此可以预测不久之后可能访问到的页面,将它们预先调入内存,但目前预测成功率只有50%左右。故这种策略 主要用于进程的首次调入 ,由程序员指出应该先调入哪些部分。
请求调页策略:进程 在运行期间发现缺页时才将所缺页面调入内存 。由这种策略调入的页面一定会被访问到,但由于每次只能调入一页,而每次调页都要磁盘l/O操作,因此I/O开销较大。
请求分页系统中的外存分为两部分:用于存放文件的文件区和用于存放对换页面的对换区。对换区通常采用连续分配方式,而文件区采用离散分配方式,因此对换区的磁盘I/O速度比文件去的更快
刚刚换出的页面马上又要换入内存,刚刚换入的页面马上又要换出外存,这种频繁的页面调度行为称为抖动,或颠簸。产生抖动的主要原因是进程频繁访问的页面数目高于可用的物理块数(分配给进程的物理块不够)
工作集:指在某段时间间隔里,进程实际访问页面的集合。
操作系统会根据“窗口尺寸”来算出工作集。
工作集大小可能小于窗口尺寸,实际应用中,操作系统可以统计进程的工作集大小,根据工作集大小给进程分配若干内存块。 [4]
一般来说,驻留集大小不能小于工作集大小,否则进程运行过程中将频繁缺页。
❺ 在请求分页管理系统中,发生缺页以后,所缺页有可能从哪里调入
在请求分页系统中,每当所要访问的页面不在内存时,便产生一个缺页中断,请求操作系统将所缺页调入内存。此时应将缺页的进程阻塞(调页完成唤醒),如果内存中有空闲块,则分配一个块,将调入的页装入该块,并修改页表中的相应页表项,.若内存中没有空闲块,则要淘汰某页(若被淘汰页在内存期间被修改过,则要将其写回外存)。
请求分页也称为页式虚拟存储管理,是建立在基本分页基础上,为了能支持虚拟存储器功能而增加了请求调页功能和页面置换功能其基本思想是:在进程开始运行之前,不是装入全部页面,而是装入部分页面,之后根据进程运行的需要,动态装入其他页面,当内存空间已满,又需要装入新的页面时,根据某种算法淘汰某个页面,以便装进新的页面。
❻ 虚拟内存有什么用
虚拟内存的作用:
1.虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。
2.别称虚拟存储器(Virtual Memory)。电脑中所运行的程序均需经由内存执行,若执行的程序很大或很多,则会导致内存消耗殆尽。为解决该问题,Windows中运用了虚拟内存技术,即匀出一部分硬盘空间来充当内存使用。
3.当内存耗尽时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。若计算机缺乏运行程序或操作所需的随机存储器 (RAM),则 Windows 会用之进行补偿。它将计算机的RAM和硬盘上的临时空间组合。当RAM运行速率缓慢时,它便将数据从RAM移动到称为“分页文件”的空间中。
4.将数据移入与移出分页文件可释放RAM,以便完成工作。 一般而言,计算机的RAM越多,程序运行得越快。若计算机的速率由于RAM可用空间匮乏而减缓,则可尝试借增加虚拟内存来进行补偿。但是,计算机从RAM读取数据的速率要比从硬盘读取数据的速率快,因而扩增RAM容量(可加内存条)是最佳选择。
拓展回答:
怎样正确设置电脑虚拟内存:
1.在“我的电脑”的图标上鼠标右键,选择“属性”
❼ 实现虚拟存储器需要哪些硬件支持
实现虚拟存储器需要三方面的硬件支持:
1、请求分页/段的页表或段表机制;
请求分页存储管理是建立在分页存储管埋的基础上,并结合虚拟存储系统原理实现的,是目前常用的一种实现虚拟存储器的方式
2、缺页/段中断机构;
作用就是就是要访问的页不在主存,需要操作系统将其调入主存后再进行访问。在这个时候,被内存映射的文件实际上成了一个分页交换文件。
3、地址变换机构。
当进程要访问某个逻辑地址中的数据时,分页地址变换机构会自动地将有效地址(相对地址)分为页号页内地址两部分,再以页号为索引去检索页表。查找操作由硬件执行。在执行检索之前,先将页号与页表长度进行比较,如果页号大于或等于页表长度,则表示本次所访问的地址已超越进程的地址空间。于是,这一错误将被系统发现并产生一地址越界中断。若未出现越界错误,则将页表始址与页号和页表项长度的乘积相加,便得到该表项在页表中的位置,于是可从中得到该页的物理块号,将之装入物理地址寄存器中。与此同时,再将有效地址寄存器中的页内地址送入物理地址寄存器的块内地址字段中。这样便完成了从逻辑地址到物理地址的变换。
❽ 操作系统请求分页存储方式的基本原理是什么谢谢
3.请求分页系统(1)请求分页对页表的扩充
在请求分页系统中所使用的主要数据结构仍然是页表。它对页式系统中的页表机制进行了扩充但其基本作用是实现由用户地址空间到物理内存空间的映射。由于只将应用程序的一部分装入内存,还有一部分仍在磁盘上,故需在页表中增加若干项,供操作系统实现虚拟存储器功能时参考。常见的系统中,一般对页表的表项进行如下扩充:除了页号对应的物理块号,还增加了状态位、修改位、外存地址和访问字段等。
·状态位,用于指示该页是否已经调入了内存。该位一般由操作系统软件来管理,每当操作系统把一页调人物理内存中时,置位。相反,当操作系统把该页从物理内存调出时,复位。CPU对内存进行引用时,根据该位判断要访问的页是否在内存中,若不在内存之中,则产生缺页中断。
·修改位,表示该页调入内存后是否被修改过。当CPU以写的方式访问页面时,对该页表项中的修改位置位。该位也可由操作系统软件来修改,例如,当操作系统将修改过页面保存在磁盘上后,可将该位复位。
·外存地址,用于指出该页在外存上的地址,供调人该页时使用。
·访问宇段,用于记录本页在一定时间内被访问的次数,或最近已经有多长时间未被访问。提供给相应的置换算法在选择换出页面时参考。
(2)对缺页中断的支持
在请求分页系统中,CPU硬件一定要提供对缺页中断的支持,根据页表项中的状态位判断是否产生缺页中断。缺页中断是一个比较特殊的中断,这主要体现在如下两点:
·在指令的执行期间产生和处理缺页信号。通常的CPU外部中断,是在每条指令执行完毕后检查是否有中断请求到达。而缺页中断,是在一条指令的执行期间,发现要访问的指令和数据不在内存时产生和处理的。
·一条指令可以产生多个缺页中断。例如,一条双操作数的指令,每个操作数都不在内存中,这条指令执行时,将产生两个中断。CPU提供的硬件支持,还要体现在当从中断处理程序返回时,能够正确执行产生缺页中断的指令。
(3)页面调度策略
虚拟存储器系统通常定义三种策略来规定如何(或何时)进行页面调度:调入策略、置页策略和置换策略。
(4)置换算法(replacementalgorithm)决定在需要调入页面时,选择内存中哪个物理页面被置换。置换算法的出发点应该是,把未来不再使用的或短期内较少使用的页面调出。而未来的实际情况是不确定的,通常只能在局部性原理指导下依据过去的统计数据进行预测。常用的算法有以下几种:
·最佳算法(optimal,OPT)。选择“未来不再使用的”或“在离当前最远位置上出现的”页面被置换。这是一种理想情况,是实际执行中无法预知的,因而不能实现,只能用作性能评价的依据。
·最近最久未使用算法(LeastRecentlyUsed,LRU)。选择内存中最久未使用的页面被置换,这是局部性原理的合理近似,性能接近最佳算法。但由于需要记录页面使用时间的先后关系,硬件开销太大。LRU可用如下的硬件机构帮助实现:
一个特殊的栈:把被访问的页面移到栈顶,于是栈底的是最久未使用页面。每个页面设立移位寄存器:被访问时左边最高位置1,定期右移并且最高位补0,于是寄存器数值最小的是最久未使用页面。
·先进先出算法(FIFO)。选择装入最早的页面置换。可以通过链表来表示各页的装入时间先后。FIFO的性能较差,因为较早调入的页往往是经常被访问的页,这些页在FIFO算法下被反复调入和调出,并且有Belady现象。所谓Belady现象是指:采用FIFO算法时,如果对—个进程未分配它所要求的全部页面,有时就会出现分配的页面数增多但缺页率反而提高的异常现象。Belady现象可形式化地描述为:一个进程户要访问M个页,OS分配舻个内存页面给进程P;对一个访问序列S,发生缺页次数为PE(占,N)。当N增大时,PE(S,N)时而增大时而减小。Belady现象的原因是FIFO算法的置换特征与进程访问内存的动态特征是矛盾的,即被置换的页面并不是进程不会访问的。
·时钟(clock)算法。也称最近未使用算法(NotRecentlyUsed,NRU),它是LRU和FIFO的折中。每页有一个使用标志位(usebit),若该页被访问则置userbit=l,这是由CPU的硬件自动完成的。置换时采用一个指针,从当前指针位置开始按地址先后检查各页,寻找usebit=0的面作为被置换页。指针经过的userbit=l的页都修改userbit=O,这个修改的过程是操作系统完成的,最后指针停留在被置换页的下一个页。
·最不常用算法(LeastFrequentlyUsed,LFU)。选择到当前时间为止被访问次数最少的页面被置换。每页设置访问计数器,每当页面被访问时,该页面的访问计数器加1。发生缺页中断时,淘汰计数值最小的页面,并将所有计数清零。
·页面缓冲算法(pagebuffering)。它是对FIFO算法的发展,通过建立置换页面的缓冲,这样就有机会找回刚被置换的页面,从而减少系统I/0的开销。页面缓冲算法用FIFO算法选择被置换页,把被置换的页面放人两个链表之一。即是如果页面未被修改,就将其归人到空闲页面链表的末尾,否则将其归人到已修改页面链表。空闲页面和已修改页面,仍停留在内存中一段时间,如果这些页面被再次访问,只需较小开销,被访问的页面就可以返还作为进程的内存页。需要调入新的物理页面时,将新页面内容读人到空闲页面链表的第一项所指的页面,然后将第一项删除。当已修改页面达到一定数目后,再将它们一起调出到外存,然后将它们归人空闲页面链表。这样能大大减少I/O操作的次数。
❾ 虚拟存储技术的指导思想是以时间换取空间对吗
1、虚拟存储管理概念
一个计算机任务只需要部分装入主存便可以启动运行,其余部分留在磁盘上,在需要的时候装入主存,这样可以提高主存空间的利用率。这样该系统所具有的主存容量会比实际主存容量大很多,这样的存储器称为虚拟存储器。
2、程序局部性原理
程序在执行时会呈现局部性规律,即在一段时间内,程序的执行仅局限于某个部分,相应所访问的空间也局限于某个区域内。程序的局限性表现在时间、空间两个方面。
2.1 时间局限性
指程序中的某个指令一旦执行,则在不久的将来可能会被再次执行;如果某个存储单元被访问,则不久后该存储单元可能会被再次访问。产生时间局限性的原因是程序中存在大量的循环处理。
2.2 空间局限性
指一旦程序访问了某个存储单元,在不久的将来,它附件的存储单元也有可能被访问。典型原因是程序是顺序执行的。
3、虚拟存储器的实现原理
虚拟存储器具有请求调入功能和置换功能,能仅把作业的一部分装入主存便运行作业系统,能从逻辑上对主存容量进行扩充的一种虚拟存储系统。其逻辑容量由主存和外存容量之和以及CPU可寻址的范围决定,运行速度接近主存速度。应用十分广泛。
3.1 虚拟存储器实现方式
1、请求分页系统
在分页系统的基础上增加了请求调页功能和页面装置功能所形成的页式虚拟存储系统。置换时以页面为单位。
2、请求分段系统
在分段系统的基础上增加了请求调段和分段置换功能所形成的段式虚拟存储系统。置换时以段为单位。
3、请求分页管理
请求分页是在纯分页系统的基础上增加了请求调页功能、页面置换功能所形成的页式虚拟存储系统。是目前最常用的一种虚拟存储器的方式。
请求分页的页表机制是在纯分页的页表机制上形成的,因为只将应用程序的一部分调入主存,还有一部分仍在磁盘上,因此需要在页表中增加(状态位、访问字段和辅存地址等)供程序(数据)在转进、转出时参考。
请求分页系统中的地址变换机构是在分页系统的地址变换结构的基础上增加了某些功能。比如处理缺页中断、从主存中转出一页实现虚拟存储。
在请求分页系统中,每当所要访问的页面不在主存时便要产生一个缺页中断,请求系统将所缺的页调入主存,这个是由中断机构完成的。
3.1 缺页中断和一般中断的区别
1、缺页中断是在指令执行期间产生和中断处理信号;一般中断是在一条指令执行完。下一条指令执行前检查和处理中断信号。
2、发生缺页中断返回到被中断指令的开始重新执行该指令;
❿ 请求分页调度是和分页调度有何联系和区别
在分页存储管理方式中 :不具备页面对换功能,不支持虚拟存储器功能,在调度作业运行时 ,必须将它的所有页面一次调入内存 ,若内存没有足够的块, 则作业等待的这种分页管理方式被称为纯分页或基本分页存储管理方式.
而请求分页管理方式是支持虚拟存储的,具备了页面的对换功能.调度作业时 是将它的 一部分(而不是全部) 放入内存.当发现页面缺少时 会发出一个缺页请求 从外存调用页面文件进入内存.
基于以上所述:基于这一点,请求分页存储管理可以提供虚存,而分页存储管理却不能提供虚存。