‘壹’ 分布式储能技术优势是什么
分布式存储,无疑是云计算时代最受关注的一门技术。
到底什么是分布式存储?
简单来说,人多力量大,利用多个存储服务器构建存储池,满足互联网时代越来越多的存储需求。
互联网行业的发展,数据成指数级增长,人们对存储的需求越来越大,采用集中式的存储成为数据中心系统的瓶颈,不能满足大规模存储应用的需要。
受益于服务器技术的发展和成熟,与标准服务器的分布式存储开始出现,分布式存储开始被广泛的应用起来。
分布式存储就是将数据分散存储到多个存储服务器上,并将这些分散的存储资源构成一个虚拟的存储设备,实际上数据分散的存储在企业的各个角落。分布式存储的好处是提高了系统的可靠性、可用性和存取效率,还易于扩展。
1、易于扩展
得益于合理的分布式架构,分布式存储可预估并且弹性扩展计算、存储容量和性能。
2、高性能
一个具有高性能的分布式存储通常能够高效地管理读缓存和写缓存,并且支持自动的分级存储。
3、支持分级存储
由于通过网络进行松耦合链接,分布式存储允许高速存储和低速存储分开部署,或者任意比例混布。
4、多副本一致性
与传统的存储架构使用RAID模式来保证数据的可靠性不同,分布式存储采用了多副本备份机制,最小化对业务的影响。
5、存储系统标准化
随着分布式存储的发展,存储行业的标准化进程也不断推进,分布式存储优先采用行业标准接口(SMI-S或OpenStackCinder)进行存储接入,用户可以实现跨不同品牌、介质地实现容灾,从侧面降低了存储采购和管理成本。
▉最后总结
分布式存储是一个大的概念,其包含的种类繁多,除了传统意义上的分布式文件系统、分布式块存储和分布式对象存储外,还包括分布式数据库和分布式缓存等。
‘贰’ 2、路由选择算法主要分哪几类分布式自适应算法的基本思想是什么
路由选择算法主要分两类:静态路由选择算法和动态路由选择算法
分布自适应路由选择算法的网络,所有节点定其地与其每个相邻节点交换路由选择信息。每个节点均存储一张以网络中其它每个节点为索引的路由选择表,网络中每个节点占用表中一项,每一项又分为两个部分,即所希望使用的到目的节点的输出线路和估计到目的节点所需要的延迟或距离。度量标准可以是毫秒或链路段数、等待的分组数、剩余的线路和容量等。对于延迟,节点可以直接发送一个特殊的称作“回声”(echo)的分组,接收该分组的节点将其加上时间标记后尽快送回,这样便可测出延迟。有了以上信息,节点可由此确定路由选择。
‘叁’ 分布式存储技术有哪些
中央存储技术现已发展非常成熟。但是同时,新的问题也出现了,中心化的网络很容易拥挤,数据很容易被滥用。传统的数据传输方式是由客户端向云服务器传输,由服务器向客户端下载。而分布式存储系统QKFile是从客户端传送到 N个节点,然后从这些节点就近下载到客户端内部,因此传输速度非常快。对比中心协议的特点是上传、下载速度快,能够有效地聚集空闲存储资源,并能大大降低存储成本。
在节点数量不断增加的情况下,QKFile市场趋势开始突出,未来用户数量将呈指数增长。分布式存储在未来会有很多应用场景,如数据存储,文件传输,网络视频,社会媒体和去中心化交易等。因特网的控制权越来越集中在少数几个大型技术公司的手中,它的网络被去中心化,就像分布式存储一样,总是以社区为中心,面向用户,而分布式存储就是实现信息技术和未来因特网功能的远景。有了分布式存储,我们可以创造出更加自由、创新和民主的网络体验。是时候把因特网推向新阶段了。
作为今年非常受欢迎的明星项目,关于QKFile的未来发展会推动互联网的进步,给整个市场带来巨大好处。分布式存储是基于因特网的基础结构产生的,区块链分布式存储与人工智能、大数据等有叠加作用。对今天的中心存储是一个巨大的补充,分布式时代的到来并不是要取代现在的中心互联网,而是要使未来的数据存储发展得更好,给整个市场生态带来不可想象的活力。先看共识,后看应用,QKFile创建了一个基础设施平台,就像阿里云,阿里云上面是做游戏的做电商的视频网站,这就叫应用层,现阶段,在性能上,坦白说,与传统的云存储相比,没有什么竞争力。不过另一方面来说,一个新型的去中心化存储的信任环境式非常重要的,在此环境下,自然可以衍生出许多相关应用,市场潜力非常大。
虽然QKFile离真正的商用还有很大的距离,首先QKFile的经济模型还没有定论,其次QKFile需要集中精力发展分布式存储、商业逻辑和 web3.0,只有打通分布式存储赛道,才有实力引领整个行业发展,人们认识到了中心化存储的弊端,还有许多企业开始接受分布式存储模式,即分布式存储 DAPP应用触达用户。所以QKFile将来肯定会有更多的商业应用。创建超本地高效存储方式的能力。当用户希望将数据存储在QKFile网络上时,他们就可以摆脱巨大的集中存储和地理位置的限制,用户可以看到在线存储的矿工及其市场价格,矿工之间相互竞争以赢得存储合约。使用者挑选有竞争力的矿工,交易完成,用户发送数据,然后矿工存储数据,矿工必须证明数据的正确存储才能得到QKFile奖励。在网络中,通过密码证明来验证数据的存储安全性。采矿者通过新区块链向网络提交其储存证明。通过网络发布的新区块链验证,只有正确的区块链才能被接受,经过一段时间,矿工们就可以获得交易存储费用,并有机会得到区块链奖励。数据就在更需要它的地方传播了,旋转数据就在地球范围内流动了,数据的获取就不断优化了,从小的矿机到大的数据中心,所有人都可以通过共同努力,为人类信息社会的建设奠定新的基础,并从中获益。
‘肆’ 浪潮服务器存储的分布式存储有哪几种每款特点是什么
浪潮服务器的分布式存储有分布式存储AS13000G5-M、分布式存储AS13000G5-C、分布式存储AS13000G5-P和分布式存储AS13000G5-CG共四种产品。分布式存储AS13000G5-M是面向新兴海量数据处理应用的企业级全对称分布式存储平台,分布式存储AS13000G5-C、AS13000G5-P和AS13000G5-CG的容量可以根据实际需求进行扩展、性能可以做到按需共计。服务可以做到按需定义,是一种个性化调整的分布式存储系统。
无论是哪一款分布式存储,都能够持续进行数据报告,保证存储业务顺畅。而且每一款服务器都有专门的人工智能进行加持,AI能够进行精准的服务器故障预测,保证服务器能够正常使用。
‘伍’ 什么是分布式数据存储
什么是分布式存储
分布式存储是一种数据存储技术,它通过网络使用企业中每台机器上的磁盘空间,这些分散的存储资源构成了虚拟存储设备,数据分布存储在企业的各个角落。
分布式存储系统,可在多个独立设备上分发数据。传统的网络存储系统使用集中存储服务器来存储所有数据。存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,无法满足大规模存储应用的需求。分布式网络存储系统采用可扩展的系统结构,使用多个存储服务器共享存储负载,利用位置服务器定位存储信息,不仅提高了系统的可靠性,可用性和访问效率,而且易于扩展。
‘陆’ Ceph分布式存储是怎么防止脑裂的
解决脑裂问题,通常采用隔离(Fencing)机制,包括三个方面:
共享存储fencing:确保只有一个Master往共享存储中写数据。
客户端fencing:确保只有一个Master可以响应客户端的请求。
Slave fencing:确保只有一个Master可以向Slave下发命令。
Hadoop公共库中对外提供了两种fenching实现,分别是sshfence和shellfence(缺省实现),其中sshfence是指通过ssh登陆目标Master节点上,使用命令fuser将进程杀死(通过tcp端口号定位进程pid,该方法比jps命令更准确),shellfence是指执行一个用户事先定义的shell命令(脚本)完成隔离。
切换对外透明:为了保证整个切换是对外透明的,Hadoop应保证所有客户端和Slave能自动重定向到新的active master上,这通常是通过若干次尝试连接旧master不成功后,再重新尝试链接新master完成的,整个过程有一定延迟。在新版本的Hadoop RPC中,用户可自行设置RPC客户端尝试机制、尝试次数和尝试超时时间等参数。
在“双机热备”高可用(HA)系统中,当联系2个节点的“心跳线”断开时,本来为一整体、动作协调的HA系统,就分裂成为2个独立的个体。由于相互失去了联系,都以为是对方出了故障,2个节点上的HA软件像“裂脑人”一样,“本能”地争抢“共享资源”、争起“应用服务”,就会发生严重后果:或者共享资源被瓜分、2边“服务”都起不来了;或者2边“服务”都起来了,但同时读写“共享存储”,导致数据损坏(常见如数据库轮询着的联机日志出错)。
运行于备用主机上的Heartbeat可以通过以太网连接检测主服务器的运行状态,一旦其无法检测到主服务器的“心跳”则自动接管主服务器的资源。通常情况下,主、备服务器间的心跳连接是一个独立的物理连接,这个连接可以是串行线缆、一个由“交叉线”实现的以太网连接。Heartbeat甚至可同时通过多个物理连接检测主服务器的工作状态,而其只要能通过其中一个连接收到主服务器处于活动状态的信息,就会认为主服务器处于正常状态。从实践经验的角度来说,建议为Heartbeat配置多条独立的物理连接,以避免Heartbeat通信线路本身存在单点故障。
1、串行电缆:被认为是比以太网连接安全性稍好些的连接方式,因为hacker无法通过串行连接运行诸如telnet、ssh或rsh类的程序,从而可以降低其通过已劫持的服务器再次侵入备份服务器的几率。但串行线缆受限于可用长度,因此主、备服务器的距离必须非常短。
2、以太网连接:使用此方式可以消除串行线缆的在长度方面限制,并且可以通过此连接在主备服务器间同步文件系统,从而减少了从正常通信连接带宽的占用。
基于冗余的角度考虑,应该在主、备服务器使用两个物理连接传输heartbeat的控制信息;这样可以避免在一个网络或线缆故障时导致两个节点同时认为自已是唯一处于活动状态的服务器从而出现争用资源的情况,这种争用资源的场景即是所谓的“脑裂”(split-brain)或“partitioned cluster”。在两个节点共享同一个物理设备资源的情况下,脑裂会产生相当可怕的后果。
为了避免出现脑裂,可采用下面的预防措施:
添加冗余的心跳线,例如双线条线。尽量减少“裂脑”发生机会。
启用磁盘锁。正在服务一方锁住共享磁盘,“裂脑”发生时,让对方完全“抢不走”共享磁盘资源。但使用锁磁盘也会有一个不小的问题,如果占用共享盘的一方不主动“解锁”,另一方就永远得不到共享磁盘。现实中假如服务节点突然死机或崩溃,就不可能执行解锁命令。后备节点也就接管不了共享资源和应用服务。于是有人在HA中设计了“智能”锁。即,正在服务的一方只在发现心跳线全部断开(察觉不到对端)时才启用磁盘锁。平时就不上锁了。
设置仲裁机制。例如设置参考IP(如网关IP),当心跳线完全断开时,2个节点都各自ping一下 参考IP,不通则表明断点就出在本端,不仅“心跳”、还兼对外“服务”的本端网络链路断了,即使启动(或继续)应用服务也没有用了,那就主动放弃竞争,让能够ping通参考IP的一端去起服务。更保险一些,ping不通参考IP的一方干脆就自我重启,以彻底释放有可能还占用着的那些共享资源。
‘柒’ 什么是分布式存储
分布式存储简单的来说,就是将数据分散存储到多个存储服务器上,并将这些分散的存储资源构成一个虚拟的存储设备,实际上数据分散的存储在企业的各个角落。
还可以这样理解:
利用分布式技术将标准X86服务器的本地HDD、SSD等存储介质组织成一个大规模存储资源池,同时,对上层的应用和虚拟机提供工业界标准的SCSI、iSCSI和对象访问接口,进而打造一个虚拟的分布式统一存储产品。
‘捌’ 区块链分布式存储:生态大数据的存储新模式
区块链,当之无愧的2019最靓的词,在 科技 领域闪闪发亮,在实体行业星光熠熠。
2019年的1024讲话,让区块链这个词焕然一新,以前它总是和传销和诈骗联系在一起,“区块链”这个词总是蒙上一层灰色。但是如今,区块链则是和实体经济融合紧密相连,成为国家的战略技术, 这个词瞬间闪耀着热情的红色和生意盎然的绿色 。
“产业区块链”在这个时代背景下应运而生, 是继“互联网”后的又一大热门词汇,核心就是区块链必须和实体产业融合,脱虚向实,让区块链技术找到更多业务场景才是正道。
区块链的本质就是一个数据库,而且是采用的分布式存储的方式。作为一名区块链从业者,今天就来讲讲 区块链的分布式存储和生态大数据 结合后,碰撞产生的火花。
当前的存储大多为中心化存储,存储在传统的中心化服务器。如果服务器出现宕机或者故障,或者服务器停止运营,则很多数据就会丢失。
比如我们在微信朋友圈发的图片,在抖音上传的视频等等,都是中心化存储。很多朋友会把东西存储在网上,但是某天打开后,网页呈现404,则表示存储的东西已经不见了。
区块链,作为一个分布式的数据库,则能很好解决这方面的问题。这是由区块链的技术特征决定了的。 区块链上的数字记录,不可篡改、不可伪造,智能合约让大家更高效地协同起来,从而建立可信的数字经济秩序,能够提高数据流转效率,打破数据孤岛,打造全新的存储模式。
生态大数据,其实和我们每天的生活息息相关,比如每天的天气预报,所吃的农产品的溯源数据等等,都是生态大数据的一部分。要来谈这个结合,首先咱们来看看生态大数据存储的特点。
伴随着互联网的发展,当前,生态大数据在存储方面有具有如下特点:
从数据规模来看,生态数据体量很大,数据已经从TB级跃升到了PB级别。
随着各类传感器技术、卫星遥感、雷达和视频感知等技术的发展,数据不仅来源于传统人工监测数据,还包括航空、航天和地面数据,他们一起产生了海量生态环境数据。近10年以来,生态数据以每年数百个TB的数据在增长。
生态环境大数据需要动态新数据和 历史 数据相结合来处理,实时连续观测尤为重要。只有实时处理分析这些动态新数据,并与已有 历史 数据结合起来分析,才能挖掘出有用信息,为解决有关生态环境问题提供科学决策。
比如在当前城市建设中,提倡的生态环境修复、生态模型建设中,需要大量调用生态大数据进行分析、建模和制定方案。但是目前很多 历史 数据因为存储不当而消失,造成了数据的价值的流失。
既然生态大数据有这些特点,那么它有哪些存储需求呢?
当前,生态大数据面临严重安全隐患,强安全的存储对于生态大数据而言势在必行。
大数据的安全主要包括大数据自身安全和大数据技术安全,比如在大数据的数据存储中,由于黑客外部网络攻击和人为操作不当造成数据信息泄露。外部攻击包括对静态数据和动态数据的数据传输攻击、数据内容攻击、数据管理和网络物理攻击等。
例如,很多野外生态环境监测的海量数据需要网络传输,这就加大了网络攻击的风险。如果涉及到军用的一些生态环境数据,如果被黑客获得这些数据,就可能推测到我国军方的一些信息,或者获取敏感的生态环境数据,后果不堪设想。
生态大数据的商业化应用需要整合集成政府、企业、科研院所等 社会 多来源的数据。只有不同类型的生态环境大数据相互连接、碰撞和共享,才能释放生态环境大数据的价值。
以当前的智慧城市建设为例,很多城市都在全方位、多维度建立知识产权、种质资源、农资、农产品、病虫害疫情等农业信息大数据中心,为农业产供销提供全程信息服务。建设此类大数据中心,离不开各部门生态大数据的共享。
但是,生态大数据共享面临着巨大挑战。首先,我国生态环境大数据包括气象、水利、生态、国土、农业、林业、交通、 社会 经济等其他部门的大数据,涉及多领域多部门和多源数据。虽然目前这些部门已经建立了自己的数据平台,但这些平台之间互不连通,只是一个个的数据孤岛。
其次,相关部门因为无法追踪数据的轨迹,担心数据的利益归属问题,便无法实现数据的共享。因此,要想挖掘隐藏在生态大数据背后的潜在价值,实现安全的数据共享是关键,也是生态大数据产生价值的前提和基础。
生态大数据来之不易,是研究院所、企业、个人等 社会 来源的集体智慧。
其中,很多生态大数据涉及到了知识产权的保护。但是目前的中心化存储无法保证知识产权的保护,无法对数据的使用进行溯源管理,容易造成知识产权的侵犯和隐私数据的泄露。
这些就是生态大数据在存储方面的需求。在当前产业区块链快速发展的今天,区块链的分布式存储是可以为生态大数据存储提供全新的存储方式的。 这个核心前提就是区块链的分布式存储、不可篡改和数据追踪特性 。
把区块链作为底层技术,搭建此类平台,专门存储生态大数据,可以设置节点管理、存储管理、用户管理、许可管理、业务通道管理等。针对上层业务应用提供高可用和动态扩展的区块链网络底层服务的实现。在这个平台的应用层,可以搭建API接口,让整个平台的使用灵活可扩展。区块链分布式存储有如下特点:
利用区块链的分布式存储,能够实现真正的生态大数据安全存储。
首先,数据永不丢失。这点对于生态大数据的 历史 数据特别友好,方便新老数据的调用和对比。
其次,数据不易被泄露或者攻击。因为数据采取的是分布式存储,如果遭遇攻击,也只能得到存储在部分节点里的数据碎片,无法完全获得完整的数据信息或者数据段。
区块链能够实现生态数据的存储即确权,这样就能够避免知识产权被侵害,实现安全共享。毕竟生态大数据的获取,是需要生态工作者常年在野外驻守,提取数据的。
生态大数据来之不易,是很多生态工作者的工作心血和结晶,需要得到产权的保护,让数据体现出应用价值和商业价值,保护生态工作者的工作动力,让他们能够深入一线,采集出更多优质的大数据。
同时,利用区块链的数据安全共享机制,也能够打破气象、林业、湿地等部门的数据壁垒,构建安全可靠的数据共享机制,让数据流转更具价值。
现在有部分生态工作者,为了牟取私利,会将生态数据篡改。如果利用区块链技术,则没有那么容易了。
利用加密技术,把存储的数据放在分布式存储平台进行加密处理。如果生态大数据发生变更,平台就可以记录其不同版本,便于事后追溯和核查。
这个保护机制主要是利用了数据的不可篡改,满足在使用生态大数据的各类业务过程中对数据的安全性的要求。
区块链能够对数据提供安全监控,记录应用系统的操作日志、数据库的操作日志数据,并加密存储在系统上,提供日志预警功能,对于异常情况通过区块链浏览器展示出来,便于及时发现违规的操作和提供证据。
以上就是区块链的分布式存储能够在生态大数据方面所起的作用。未来,肯定会出现很多针对生态大数据存储的平台诞生。
生态大数据是智慧城市建设的重要基础资料 ,引用区块链技术,打造相关的生态大数据存储和管理平台,能够保证生态大数据的安全存储和有效共享,为智慧城市建设添砖加瓦,推动产业区块链的发展。
作者:Justina,微信公众号:妙译生花,从事于区块链运营,擅长内容运营、海外媒体运营。
题图来自Unsplash, 基于CC0协议。
‘玖’ 分布式存储和超融合区别及优势
分布式存储是什么
关于分布式存储实际上并没有一个明确的定义,甚至名称上也没有一个统一的说法,大多数情况下称作 Distributed Data Store 或者 Distributed Storage System。
其中维基网络中给 Distributed data store 的定义是:分布式存储是一种计算机网络,它通常以数据复制的方式将信息存储在多个节点中。
在网络中给出的定义是:分布式存储系统,是将数据分散存储在多台独立的设备上。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
尽管各方对分布式存储的定义并不完全相同,但有一点是统一的,就是分布式存储将数据分散放置在多个节点中,节点通过网络互连提供存储服务。这一点与传统集中式存储将数据集中放置的方式有着明显的区分。
超融合是什么
参考维基网络中的超融合定义:
超融合基础架构(hyper-converged infrastructure)是一个软件定义的 IT 基础架构,它可虚拟化常见“硬件定义”系统的所有元素。HCI 包含的最小集合是:虚拟化计算(hypervisor),虚拟存储(SDS)和虚拟网络。HCI 通常运行在标准商用服务器之上。
超融合基础架构(hyper-converged infrastructure)与 融合基础架构(converged infrastructure)最大的区别在于,在 HCI 里面,无论是存储底层抽象还是存储网络都是在软件层面实现的(或者通过 hypervisor 层面实现),而不是基于物理硬件实现的。由于所有软件定义的元素都围绕 hypervisor 实现,因此在超融合基础架构上的所有实例可以联合共享所有受管理的资源。
分布式存储和超融合区别及优势?
分布式存储,它的最大特点是多节点部署, 数据通过网络分散放置。分布式存储的特点是扩展性强,通过多节点平衡负载,提高存储系统的可靠性与可用性。
超融合基础架构从定义中明确提出包含软件定义存储(SDS),具备硬件解耦的能力,可运行在通用服务器之上。超融合基础架构与 Server SAN 提倡的理念类似,计算与存储融合,通过全分布式的架构,有效提升系统可靠性与可用性,并具备易于扩展的特性。
SMTX ZBS 分布式块存储架构
除此之外,超融合基础架构有更进一步的扩展,它强调以虚拟化计算(hypervisor)为核心,以软件定义的方式整合包括虚拟化计算, 软件定义存储以及虚拟网络资源。从笔者来看超融合基础架构未来的可能性更多,可促进计算,存储,网络,安全,容灾等等 IT 服务大融合,降低IT 基础架构的复杂性,重新塑造”软件定义的数据中心”。
‘拾’ 什么是灵动的分布式存储系统
什么是分布式系统
分布式系统是由一组通过网络进行通信、为了完成共同的任务而协调工作的计算机节点组成的系统。
分布式系统的出现是为了用廉价的、普通的机器完成单个计算机无法完成的计算、存储任务。其目的是利用更多的机器,处理更多的数据。
首先需要明确的是,只有当单个节点的处理能力无法满足日益增长的计算、存储任务的时候,且硬件的提升(加内存、加磁盘、使用更好的CPU)高昂到得不偿失的时候,应用程序也不能进一步优化的时候,我们才需要考虑分布式系统。
因为,分布式系统要解决的问题本身就是和单机系统一样的,而由于分布式系统多节点、通过网络通信的拓扑结构,会引入很多单机系统没有的问题,为了解决这些问题又会引入更多的机制、协议,带来更多的问题。
在很多文章中,主要讲分布式系统分为分布式计算(computation)与分布式存储(storage)。
计算与存储是相辅相成的,计算需要数据,要么来自实时数据(流数据),要么来自存储的数据;而计算的结果也是需要存储的。
在操作系统中,对计算与存储有非常详尽的讨论,分布式系统只不过将这些理论推广到多个节点罢了。
那么分布式系统怎么将任务分发到这些计算机节点呢,很简单的思想,分而治之,即分片(partition)。
对于计算,那么就是对计算任务进行切换,每个节点算一些,最终汇总就行了,这就是MapRece的思想;对于存储,更好理解一下,每个节点存一部分数据就行了。当数据规模变大的时候,Partition是唯一的选择,同时也会带来一些好处:
(1)提升性能和并发,操作被分发到不同的分片,相互独立
(2)提升系统的可用性,即使部分分片不能用,其他分片不会受到影响
理想的情况下,有分片就行了,但事实的情况却不大理想。原因在于,分布式系统中有大量的节点,且通过网络通信。
单个节点的故障(进程crash、断电、磁盘损坏)是个小概率事件,但整个系统的故障率会随节点的增加而指数级增加,网络通信也可能出现断网、高延迟的情况。
在这种一定会出现的“异常”情况下,分布式系统还是需要继续稳定的对外提供服务,即需要较强的容错性。