① 存储器可以分为哪2种
存储器分:ROM(只读存储器)和RAM(随机存储器或读写存储器)。
按照冯·诺依曼的定义,计算机,只有:CPU、存储器、输入、输出设备。
没有什么“外存储器”。
硬盘驱动器,则又是一台计算机了。
② 主存储器常采用并行存储器的目的
主存储器常采用并行存储器的目的是通过并行主存储器和设置Cache来提高速度。
双端口存储器和多体交叉存储器属于并行存储器。
目前通常采用多级存储器体系结构,有高速缓冲存储器、主存储器、外存储器。
③ 存储器可分为哪三类
存储器不仅可以分为三类。因为按照不同的划分方法,存储器可分为不同种类。常见的分类方法如下。
一、按存储介质划分
1. 半导体存储器:用半导体器件组成的存储器。
2. 磁表面存储器:用磁性材料做成的存储器。
二、按存储方式划分
1. 随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关。
2. 顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。
三、按读写功能划分
1. 只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器。
2. 随机读写存储器(RAM):既能读出又能写入的存储器。
二、选用各种存储器,一般遵循的选择如下:
1、内部存储器与外部存储器
一般而言,内部存储器的性价比最高但灵活性最低,因此用户必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,用户通常选择能满足应用要求的存储器容量最小的微控制器。
2、引导存储器
在较大的微控制器系统或基于处理器的系统中,用户可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。
3、配置存储器
对于现场可编程门阵列(FPGA)或片上系统(SoC),可以使用存储器来存储配置信息。这种存储器必须是非易失性EPROM、EEPROM或闪存。大多数情况下,FPGA采用SPI接口,但一些较老的器件仍采用FPGA串行接口。
4、程序存储器
所有带处理器的系统都采用程序存储器,但是用户必须决定这个存储器是位于处理器内部还是外部。在做出了这个决策之后,用户才能进一步确定存储器的容量和类型。
5、数据存储器
与程序存储器类似,数据存储器可以位于微控制器内部,或者是外部器件,但这两种情况存在一些差别。有时微控制器内部包含SRAM(易失性)和EEPROM(非易失)两种数据存储器,但有时不包含内部EEPROM,在这种情况下,当需要存储大量数据时,用户可以选择外部的串行EEPROM或串行闪存器件。
6、易失性和非易失性存储器
存储器可分成易失性存储器或者非易失性存储器,前者在断电后将丢失数据,而后者在断电后仍可保持数据。用户有时将易失性存储器与后备电池一起使用,使其表现犹如非易失性器件,但这可能比简单地使用非易失性存储器更加昂贵。
7、串行存储器和并行存储器
对于较大的应用系统,微控制器通常没有足够大的内部存储器。这时必须使用外部存储器,因为外部寻址总线通常是并行的,外部的程序存储器和数据存储器也将是并行的。
8、EEPROM与闪存
存储器技术的成熟使得RAM和ROM之间的界限变得很模糊,如今有一些类型的存储器(比如EEPROM和闪存)组合了两者的特性。这些器件像RAM一样进行读写,并像ROM一样在断电时保持数据,它们都可电擦除且可编程,但各自有它们优缺点。
参考资料来源:网络——存储器
④ 存储器分为哪几种
存储器是用以保存和记录原始数据、运算步骤及中间结果等多种信息的装置。存储器又分内存储器和外存储器。内存储器可以直接和运算器联系。外存储器的容量比内存储器大,它与运算器不直接发生联系,但可以和内存储器交换代码。控制器是用来实现机器各部分的联系和控制,以保证计算过程的装置。控制器能够判读存储器中的程序,判读出指令后,分别发出指令脉冲,取出数据,送到运算器中进行运算。运算器是对代码进行算术运算和逻辑运算的装置。内存储器、运算器和控制器又统称为中央处理器。电子计算机进行自动化运算,都是由中央处理器来完成的。中央处理器是电子计算机内部完成指令读出、解释和执行的部件,简称CPU。
⑤ 什么是指计算机一次能并行存取
随着计算机应用领域的不断扩大,处理的信息量越来越多,并且现代计算机的I/O设备也在不断增加,因此,提高访存的速度已经成为了迫不及待的任务。于是就出现了并行存储器。
在介绍并行存储器之前,先来介绍一个概念:
**存储器的带宽:表示单位时间内存储器存取的信息量,可用字/秒或者位/秒表示。是衡量数据传输率的重要技术指标。**存储器的带宽是决定了以存储器为中心的机器获得信息的速度。可以通过下面的几种方式提高:
1.缩短存取周期
2.增加存储字长
3.增加存储体
双口RAM
为了提高CPU访问存储体的速度,可以采用双端口的存储器,多模块存储器等技术,它们同属于并行技术。前者为空间并行,后者为时间并行。
多模块存储器
我们还可以从时间上并行并行存取。我们知道CUP的速度要比存储器要快,如果我们同时从存储器中取出几条指令,那么我们就可以充分利用CPU资源,提高运行效率。
多体并行存储器
由多体模块构成,每个模块都有相同的容量和存取速度,有独立的读写控制电路,地址寄存器和数据寄存器。
多体并行存储器分为高位交叉编址和低位交叉编址两种。
高位交叉编址
当程序按体内地址顺序存放,即一个体存满之后,再存入下一个体时,这种方式称为顺序存储,
低位交叉编址
对应于高位交叉编址,低位交叉编址指的是将程序连续存放在相邻体中,又称交叉存储。
访存冲突
但是低位交叉存储可能导致访存冲突,当访存地址在相邻的四次访存中,出现在同一存储块内,就会发生访存冲突。
两种并行存储器的访问时间
设存储器的模块数为n,存取周期为T,总线传输周期为i,当采用流水线方式存取的时候,:
若采用高位交叉编址,那么连续读取n个字节所需的时间t1为: t1 = nT
若采用低位交叉编址,那么连续读取n个字节所需的时间t2为:t2 = T +(n - 1 )i
存储器的交叉模块数 m >= T/i
⑥ 存储器的分类及其各自的特点
存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
存储器的分类特点及其应用
在嵌入式系统中最常用的存储器类型分为三类:
1.随机存取的RAM;
2.只读的ROM;
3.介于两者之间的混合存储器
1.随机存储器(Random Access Memory,RAM)
RAM能够随时在任一地址读出或写入内容。 RAM的优点是读/写方便、使用灵活;
RAM的缺点是不能长期保存信息,一旦停电,所存信息就会丢失。 RAM用于二进制信息的临时存储或缓冲存储
2.只读存储器(Read-Only Memory,ROM)
ROM中存储的数据可以被任意读取,断电后,ROM中的数据仍保持不变,但不可以写入数据。
ROM在嵌入式系统中非常有用,常常用来存放系统软件(如ROM BIOS)、应用程序等不随时间改变的代码或数据。
ROM存储器按发展顺序可分为:掩膜ROM、可编程ROM(PROM)和可擦写可编程ROM(EPROM)。
3. 混合存储器
混合存储器既可以随意读写,又可以在断电后保持设备中的数据不变。混合存储设备可分为三种:
EEPROM NVRAM FLASH
(1)EEPROM
EEPROM是电可擦写可编程存储设备,与EPROM不同的是EEPROM是用电来实现数据的清除,而不是通过紫外线照射实现的。
EEPROM允许用户以字节为单位多次用电擦除和改写内容,而且可以直接在机内进行,不需要专用设备,方便灵活,常用作对数据、参数等经常修改又有掉电保护要求的数据存储器。
(2) NVRAM
NVRAM通常就是带有后备电池的SRAM。当电源接通的时候,NVRAM就像任何其他SRAM一样,但是当电源切断的时候,NVRAM从电池中获取足够的电力以保持其中现存的内容。
NVRAM在嵌入式系统中使用十分普遍,它最大的缺点是价格昂贵,因此,它的应用被限制于存储仅仅几百字节的系统关键信息。
(3)Flash
Flash(闪速存储器,简称闪存)是不需要Vpp电压信号的EEPROM,一个扇区的字节可以在瞬间(与单时钟周期比较是一个非常短的时间)擦除。
Flash比EEPROM优越的方面是,可以同时擦除许多字节,节省了每次写数据前擦除的时间,但一旦一个扇区被擦除,必须逐个字节地写进去,其写入时间很长。
存储器工作原理
这里只介绍动态存储器(DRAM)的工作原理。
工作原理
动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
存储器芯片
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。
⑦ 储存器可分为哪三类
储存器可分为随机存储器、只读存储器和外存储器三类。
一、随机存储器:随机存取存储器(random access memory)又称作“随机存储器”,是与CPU直接交换数据的内部存储器,也叫主存(内存)。它可以随时读写,而且速度很快,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介。
二、只读存储器:其英文简称是ROM,它所存储的数据通常都是装入主机之前就写好的,在工作的时候只能读取而不能像随机存储器那样随便写入,但是只读存储器有的所存储的数据十分稳定。而且只读存储器的结构十分简单,读出很简便,因此一般用于存储各种的程序与数据的地方。
三、外存储器:外存储器包括软盘存储器、硬盘存储器、移动存储器、闪存盘(优盘)、移动硬盘、固态硬盘(SSD)、光盘存储器等。外储存器是指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。
(7)多体并行存储器分为扩展阅读
储存器主要采用半导体器件和磁性材料。存储器中最小的存储单位就是一个双稳态半导体电路或一个CMOS晶体管或磁性材料的存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。
一个存储器包含许多存储单元,每个存储单元可存放一个字节。每个存储单元的位置都有一个编号,即地址,一般用十六进制表示。一个存储器中所有存储单元可存放数据的总和称为它的存储容量。
⑧ 存储器可分为哪三类
楼主 您好 很荣幸回答您的问题!
存储器有很多种分类的。详情见下文:
按存储介质分:
半导体存储器:用半导体器件组成的存储器。
磁表面存储器:用磁性材料做成的存储器。
按存储方式分
随机存储器:任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关。
顺序存储器:只能按某种顺序来存取,存取时间和存储单元的物理位置有关。
按存储器的读写功能分
只读存储器(ROM):存储的内容是固定不变的,只能读出而不能写入的半导体存储器。
随机读写存储器(RAM):既能读出又能写入的半导体存储器。
按信息的可保存性分
非永久记忆的存储器:断电后信息即消失的存储器。
永久记忆性存储器:断电后仍能保存信息的存储器。
按存储器用途分
根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。
了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。
我想您要需要的是:高速存储器,主存储器,外存储器!这三类吧!
⑨ 多体交叉存储器
地址顺序存放(一个体存满后,再存入下一个体),故又有顺序存储之称。高位地址可表示体号,低位地址为体内地址。
高位地址:又称片选地址
串行工作:并没有提高访问速度,一个一个访问,读m个字仍需 m个周期时间
设存储周期为 T ,总线传送周期为 t ,交叉模数为m。
1、一个4体并行低位交叉存储器,每个模块的容量是64K×32位,存取周期为200ns,在以下说法中,( )是正确的。
A. 在200ns内,存储器能向CPU提供256位二进制信息
B. 在200ns内,存储器能向CPU提供128位二进制信息
C. 在50ns内,每个模块能向CPU提供32位二进制信息
D. 都不对
解:对CPU来说,它可以在一个存取周期内连续访问4个模块,32位×4=128位。本题答案为B
2、采用4体并行低位交叉存储器,每个模块的容量是32K×16位,存取周期为400ns,在以下说法中, 是正确的。
A. 在0.1µs内,存储器能向CPU提供 2 6 位二进制信息
B. 在0.1µs内,存储器能向CPU提供 1 6 位二进制信息
C. 在0.4µs内,存储器能向CPU提供 2 6 位二进制信息
D. 都不对
解:400ns=0.4µs,16位×4=64位= 2 6 位。本题答案为C
3、多体并行方式有两种,其中高位交叉编址的多体存储器中,程序 ① 存放,而低位交叉编址的多体存储器中,程序 ② 。
解:本题答案为:① 按体内地址顺序 ② 连续存放在相邻体中。
采用多体交叉存储器时,主要由地址的低位部分来选择各个存储体。
采用多体交叉存储器时,当连续访问的存储单元位于不同的存储体时可获得较高的存取速度。
有M个存储体的低位交叉编址的多体存储器是采用模M编址方式
4、为了通过交叉访问提高存储系的访问速率,必须满足
5、一个4体低位交叉的存储器,假设存取周期为T,CPU每隔1/4存取周期启动一个存储体,试问依次访问64个字需多少个存取周期?
答:
本题中,只有访问第一个字需一个存取周期,从第二个字开始,每隔1/4存取周期即可访问一个字,因此,依次访问64个字需:
存取周期个数 =(64-1)×(1/4)T+T =(63/4+1)T =15.75+1 =16.75T
⑩ 计算机存储器可分为哪两大类它们的主要特点分别是什么
内部存储器和外部存储器两类。
内部存储器速度快,但断电后存储的数据丢失。如内存。
外部存储器速度相对慢,但断电后数据仍然保存。如硬盘。
在计算机中采用只有两个数码“0”和“1”的二进制来表示数据。记忆元件的两种稳定状态分别表示为“0”和“1”。日常使用的十进制数必须转换成等值的二进制数才能存入存储器中。
计算机中处理的各种字符,例如英文字母、运算符号等,也要转换成二进制代码才能存储和操作。
(10)多体并行存储器分为扩展阅读:
服务器在存储器环境按这样的方法分配存储器:在某个环境分配的存储器可以被环境析构器释放而不会影响其他环境中分配的存储器。
所有存储器分配(通过 palloc 等)都被当作在当前环境的区域中分配存储器.如果你试图释放(或再分配)不在当前环境的存储器,你将得到不可预料的结果。
当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。
基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。