㈠ raid是什么
RAID(独立磁盘冗余阵列)是一种数据存储虚拟化技术,将多个物理磁盘驱动器组件组合到一个或多个逻辑单元中,以实现数据冗余和/或提高性能的目的。
数据以多种方式(称为RAID级别)分布在驱动器上,具体取决于所需的冗余和性能级别。不同的方案按资料分布布局以单词“ RAID”命名,后跟一个数字,例如RAID 0或RAID1。每种方案或RAID级别在关键目标之间提供了不同的平衡:可靠性、性能和容量。大于RAID 0的RAID级别可提供针对不可恢复的扇区读取错误以及整个物理驱动器故障的保护。
RAID技术主要具有以下三个基本功能:
(1)通过磁盘数据条带化,可以实现对数据的块访问,减少了磁盘的机械搜索时间,提高了数据访问速度。
(2)通过同时排列数组中的多个磁盘,可以减少磁盘的机械搜索时间,并提高数据访问速度。
(3)通过镜像或存储同位信息,可以实现数据的冗余保护。
RAID 0和RAID 1之间的区别:
1. RAID 0读写速度快,数组容量是数组磁盘的总容量,无数据备份功能,安全性较差。
2. RAID 1的读写速度如单磁盘,容量为单磁盘容量,但磁盘互相备份,安全性高。
RAID 0的特点:
RAID 0的缺点是它不提供数据冗余,一旦用户数据损坏,损坏的数据将无法恢复。当RAID中任何硬盘驱动器出现故障时,RAID 0运行都可能导致整个数据损坏。通常不建议企业用户单独使用。
RAID 1的特征:
RAID 1通过硬盘数据镜像实现数据冗余,保护数据,在两个磁盘上生成备份数据,并且在原始数据繁忙时可以直接从镜像备份中读取资料,因此RAID 1可以提供读取性能。
RAID 0
RAID 0由条带化组成,但没有镜像或同位。与跨区卷相比,RAID 0卷的容量是相同的。它是集合中磁盘容量的总和。但是由于条带化将每个文件的内容分配到集合中的所有磁盘之间,因此任何磁盘的故障都会导致所有档(整个RAID 0卷)丢失。跨区卷损坏至少可以将档保留在正常运行的磁盘上。 RAID 0的好处是,对任何档的读写操作的吞吐量都乘以磁盘数量,因为与跨区卷不同,读写操作是同时进行的,而且代价是驱动器故障的完全脆弱性。实际上,平均故障率比等效的单个非RAID驱动器高。
RAID 1
RAID 1由数据镜像组成,没有同位或分段。数据被相同地写入两个驱动器,从而产生驱动器的“镜像集”。因此,RAID中的任何驱动器均可满足任何读取请求。如果将请求广播到RAID中的每个驱动器,则可以由首先访问数据的驱动器(根据其查找时间和循环等待时间)对请求进行服务,从而提高性能。如果针对控制器或软件进行了优化,则持续读取吞吐量将接近集合中每个驱动器的吞吐量总和。写入较慢,因为写入的数据必须更新到每个驱动器,而最慢的驱动器会限制写入性能。但只要有一个驱动器正常工作,该数组就会继续运行。
下面是RAID级别的对比表。
㈡ 请问RAID都分为哪些级别
1.RAID0级,无冗余无校验的磁盘阵列。数据同时分布在各个磁盘驱动器上,没有容错能力,读写速度在RAID中最快,但因为任何一个磁盘驱动器损坏都会使整个RAID系统失效,所以安全系数反倒比单个的磁盘驱动器还要低。一般用在对数据安全要求不高,但对速度要求很高的场合。
2.RAID1级,镜像磁盘阵列。每一个磁盘驱动器都有一个镜像磁盘驱动器,镜像磁盘驱动器随时保持与原磁盘驱动器的内容一致。RAID1具有最高的安全性,但只有一半的磁盘空间被用来存储数据。主要用在对数据安全性要求很高,而且要求能够快速恢复被损坏的数据的场合。
3.RAID2级,纠错海明码磁盘阵列。磁盘驱动器组中的第一个、第二个、第四个……第2n个磁盘驱动器是专门的校验盘,用于校验和纠错,例如七个磁盘驱动器的RAID2,第一、二、四个磁盘驱动器是纠错盘,其余的用于存放数据。使用的磁盘驱动器越多,校验盘在其中占的百分比越少。RAID2对大数据量的输入输出有很高的性能,但在少量数据的输入输出时性能不好。RAID2很少实际使用。
4.RAID3和RAID4,奇校验或偶校验的磁盘阵列。不论有多少数据盘,均使用一个校验盘,采用奇偶校验的方法检查错误。任何一个单独的磁盘驱动器损坏都可以恢复。RAID3和RAID4的数据读取速度很快,但写数据时要计算校验位的值以写入校验盘,速度有所下降。RAID3和RAID4的使用也不多。
5.RAID5级,无独立校验盘的奇偶校验磁盘阵列。同样采用奇偶校验来检查错误,但没有独立的校验盘,校验信息分布在各个磁盘驱动器上。RAID5对大小数据量的读写都有很好的性能,被广泛地应用。
从RAID1到RAID5的几种方案中,不论何时有磁盘损坏,都可以随时拔出损坏的磁盘再插入好的磁盘(需要硬件上的热插拔支持),数据不会受损,失效盘的内容可以很快地重建,重建的工作也由RAID硬件或RAID软件来完成。但RAID0不提供错误校验功能,所以有人说它不能算作是RAID,其实这也是RAID0为什么被称为0级RAID的原因——0本身就代表“没有”。
㈢ RAID的级别怎么划分标准是什么
Q:RAID是什么技术?
A:RAID,为Rendant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。 磁盘阵列其实也分为软阵列 (Software Raid)和硬阵列 (Hardware Raid) 两种. 软阵列即通过软件程序并由计算机的 CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的 RAID容错功能. 其他如热备用硬盘的设置, 远程管理等功能均一一欠奉. 硬阵列是由独立操作的硬件提供整个磁盘阵列的控制和计算功能. 不依靠系统的CPU资源.
由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 而且, 如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上 RAID 5 级的磁盘阵列均为硬阵列. 软 阵列只适用于 Raid 0 和 Raid 1. 对于我们做镜像用的镜像塔, 肯定不会用 Raid 0或 Raid 1。作为高性能的存储系统,巳经得到了越来越广泛的应用。RAID的级别从RAID概念的提出到现在,巳经发展了六个级别, 其级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。下面就介绍这四个级别。
RAID 0:将多个较小的磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。RAID 0亦称为带区集。它是将多个 磁盘并列起来,成为一个大硬盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。 所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数 据都无法使用。
RAID 1:两组相同的磁盘系统互作镜像,速度没有提高,但是允许单个磁盘错,可靠性最。RAID 1就是镜像。其原理为 在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。因 为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%, 是所有RAID上磁盘利用率最低的一个级别。
RAID Level 3 RAID 3存放数据的原理和RAID0、RAID1不同。RAID 3是以一个硬盘来存放数据的奇偶校验位,数据则分段存储于其余硬盘 中。它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。如果数据盘(物理)损坏,只要将坏硬盘换掉,RAID
控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。不过,如果校验盘(物理)损坏的话,则全部数据都 无法使用。利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。
RAID 5:向阵列中的磁盘写数据,奇偶校验数据存放在阵列中的各个盘上,允许单个磁盘出错。RAID 5也是以数据的校验 位来保证数据的安全,但它不是以单独硬盘来存放数据的校验位,而是将数据段的校验位交互存放于各个硬盘上。这样, 任何一个硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。硬盘的利用率为n-1。
RAID 0-1:同时具有RAID 0和RAID 1的优点。
冗余:采用多个设备同时工作,当其中一个设备失效时,其它设备能够接替失效设备继续工作的体系。在PC服务器上,通 常在磁盘子系统、电源子系统采用冗余技术
㈣ RAID分几个级分别是什么
RAID分为8个级别,分别如下:
1、RAID 0
RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。RAID 0没有提供冗余或错误修复能力,但实现成本是最低的。
2、RAID 1
RAID 1主要是通过二次读写实现磁盘镜像,所以磁盘控制器的负载也相当大,尤其是在需要频繁写入数据的环境中。为了避免出现性能瓶颈,使用多个磁盘控制器就显得很有必要。
3、RAID 0+1
RAID 0+1是把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。
4、RAID: LSI MegaRAID、Nytro和Syncro
MegaRAID、Nytro和Syncro都是LSI 针对RAID而推出的解决方案,并且一直在创造更新。LSI通过MegaRAID提供基本的可靠性保障;通过Nytro实现加速;通过Syncro突破容量瓶颈,让价格低廉的存储解决方案可以大规模扩展,并且进一步提高可靠性。
5、RAID2:带海明码校验
RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用一定的编码技术来提供错误检查及恢复。
6、RAID3:带奇偶校验码的并行传送
RAID3访问数据时一次处理一个带区,这样可以提高读取和写入速度。校验码在写入数据时产生并保存在另一个磁盘上。
7、RAID4:带奇偶校验码的独立磁盘结构
RAID4和RAID3很象,不同的是,它对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘。
8、RAID5:分布式奇偶校验的独立磁盘结构
RAID5的奇偶校验码存在于所有磁盘上,其中的p0代表第0带区的奇偶校验值,其它的意思也相同。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。
9、RAID6:带有两种分布存储的奇偶校验码的独立磁盘结构
RAID6是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合。
10、RAID7:优化的高速数据传送磁盘结构
RAID7所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性,提高系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。
11、RAID10:高可靠性与高效磁盘结构
RAID10是一个带区结构加一个镜象结构,新结构的价格高,可扩充性不好。主要用于数据容量不大,但要求速度和差错控制的数据库中。
12、RAID53:高效数据传送磁盘结构
RAID53就是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格十分高,不易于实现。
(4)数据存储盒RAID级别扩展阅读:
利用RAID技术于存储系统的好处主要有以下三种:
1、通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能;
2、通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度;
3、通过镜像或校验操作提供容错能力。
RAID技术的特点以及成就:
RAID技术的两大特点:一是速度、二是安全,由于这两项优点,RAID技术早期被应用于高级服务器中的SCSI接口的硬盘系统中,随着近年计算机技术的发展,PC机的CPU的速度已进入GHz 时代。
IDE接口的硬盘也不甘落后,相继推出了ATA66和ATA100硬盘。这就使得RAID技术被应用于中低档甚至个人PC机上成为可能。RAID通常是由在硬盘阵列塔中的RAID控制器或电脑中的RAID卡来实现的。
㈤ Raid级别有哪些
RAID分为6个级别,不同的级别应满足应用程序的需求。
RAID 0
特点:磁盘在两个以上的磁盘驱动器中传送数据,与I/O同时运行,提高I/O性能。若n代表磁盘数量,则每个磁盘驱动器中有n分之一的数据。
应用:读写性能较高。但是,没有数据冗余。RAID 0本身仅适用于对数据访问具有容错能力的应用程序,以及能通过其它途径重新形成的数据。
RAID 1
特点:具有磁盘镜像,能够保护数据,读性能有所提高。RAID 1将数据在两个以上的磁盘中形成镜像,所以磁盘之间非常相似。RAID 1利用n+n的保护模式,从而需要两倍的驱动器数量。
应用:读操作密集型的OLTP和其它事务数据具有较高性能和可靠性。其它应用程序也能从RAID 1中获益,包括邮件、操作系统、应用程序文件和随机读取环境。
RAID 0+1
特点:对数据进行分条和镜像,使用n+n个驱动器,性能(分条)和可靠性(镜像)较高。一个磁盘驱动器发生故障,不会影响性能和可靠性,而在RAID 0中,驱动器故障会影响性能和可靠性。另外,磁盘分条技术可以提高性能。
应用:OLTP和I/O密集型应用程序需要很高的性能和可靠性。这些性能包括事务日志、日志文件、数据索引等,其成本以每个I/O的花费来计算,而不是以每个存储单元的花费计算。
RAID 1+0 (RAID 10)
特点:与RAID 0+1相似,对数据进行分条和镜像,使用n+n个驱动器,性能(分条)和可靠性(镜像)较高。不同之处在于RAID 10对所有磁盘进行集体分条,然后实现镜像功能。
应用:OLTP和I/O密集型应用程序需要很高的性能和可靠性。这些性能包括事务日志、日志文件、数据索引等,其成本以每个I/O的花费来计算,而不是以每个存储单元的花费计算。
RAID 3
特点:在字节层面进行奇偶校验和分条,具有独立的专用磁盘驱动器,根据所需的驱动器数量,利用n+1的方式存储校验信息。
应用:为视频图像、地球物理学、生命科学和其它顺序处理的应用程序提供良好性能。但是,RAID 3不能很好地适用于那些对多用户或I/O流进行并发操作的应用程序。
RAID 4
特点:与RAID 3相同,但是提供块级的奇偶校验保护模式。
应用:利用读写缓存,能很好地适应文件服务环境。
RAID 5
特点:利用n+1的模式提供磁盘分条和旋转奇偶校验保护模式,为多用户和I/O流并发操作提供良好的可靠性,具有很好的读操作性能。利用空闲的磁盘驱动器,重新构建(磁盘重建)数据,防止重建后数据再次遭破坏。
应用:减少所需的磁盘数量,提供良好的可靠性和读操作性能,如果不利用写入缓存,写操作性能受到一定影响。RAID 5适用的应用程序包括关系型数据、读密集型数据库表格、文件共享和Web应用程序。
RAID 6
特点:利用双奇偶校验模式,对磁盘进行分条和旋转校验,旨在降低磁盘重建过程对数据可靠性的影响,尤其是使用大容量光纤通道和SATA磁盘驱动器时更是如此。RAID 6和其它多驱动器校验模式的问题在于,在写入数据或重建出现故障的磁盘驱动器时,需要校验奇偶,这时性能会受到影响。
应用:总体来说,如果你想实现高性能的读写操作,就要利用小型磁盘驱动器,避免使用RAID 6。另一方面,如果你想存储大量数据,而存储点有可能需要重建,正确配置RAID 5和RAID 6,就能满足应用程序的需求。
㈥ 总结RAID的各个级别以及RAID10于RAID01的区别
RAID的作用是什么?
多块独立的磁盘组织在一起,并提升磁盘I/O或者备份能力。
RAID-0
倒带盘
数据会拆分成两份同时写入,增加了磁盘的I/O能力,但没有容错性,其中一块磁盘损坏,数据就
会缺失损坏
RAID-1
镜像盘,需要至少两块硬盘
在A硬盘上的数据也会放置一份到B硬盘上,大大降低了硬盘的利用率,但冗余性有所上升
RAID-5
特点存在校验值,与倒带盘不同,其存在校验和,校验和是A1与A2进行与运算出来的,当其中一个盘
坏掉时,可以利用校验和恢复数据。
RAID-10
先进行RAID-0的镜像再进行RAID-1的倒带
每两块硬盘为一组数据,仅仅允许其中坏一块盘
RAID-01
先进行RAID-1的倒带再进行RAID-0的镜像
四块盘为一组,其中允许坏不是存储相同数据的两块硬盘
RAID-50
先进行RAID-0再进行RAID5