当前位置:首页 » 服务存储 » eisa总线其存储空间达到
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

eisa总线其存储空间达到

发布时间: 2022-12-11 12:24:51

1. ISA、AGP、PCI是微机中【 】的标准

答案:3.总线

总线发展路:ISA-->PCI-->AGP-->PCI-E。

<1>、ISA总线

最早的PC总线是IBM公司1981年在PC/XT 电脑采用的系统总线,它基于8bit的8088
处理器,被称为PC总线或者PC/XT总线。在1984年的时候,IBM 推出基于16-bit Intel 80286处理器的PC/AT
电脑,系统总线也相应地扩展为16bit,并被称呼为PC/AT 总线。而为了开发与IBM PC 兼容的外围设备,行业内便逐渐确立了以IBM PC
总线规范为基础的ISA(工业标准架构:Instry Standard Architecture )总线。

ISA 是8/16bit 的系统总线,最大传输速率仅为8MB/s ,但允许多个CPU
共享系统资源。由于兼容性好,它在上个世纪80年代是最广泛采用的系统总线,不过它的弱点也是显而易见的,比如传输速率过低、CPU占用率高、占用硬件中断资源等。后来在PC‘98
规范中,就开始放弃了ISA 总线,而Intel 从i810 芯片组开始,也不再提供对ISA 接口的支持。

使用286和386SX以下CPU的电脑似乎和8/16bit ISA 总线还能够相处融洽,但当出现了32-bit
外部总线的386DX处理器之后,总线的宽度就已经成为了严重的瓶颈,并影响到处理器性能的发挥。因此在1988年,康柏、惠普等9个厂商协同把ISA
扩展到32-bit,这就是着名的EISA(Extended ISA,扩展ISA)总线。EISA 总线的工作频率仍旧仅有8MHz ,并且与8/16bit
的ISA总线完全兼容,由于是32-bit 总线的缘故,带宽提高了一倍,达到了32MB/s .可惜的是,EISA
仍旧由于速度有限,并且成本过高,在还没成为标准总线之前,在20世纪90年代初的时候,就给PCI 总线给取代了。

<2>、PCI总线

PCI是Peripheral Component
Interconnect(外设部件互连标准)的缩写,它是目前个人电脑中使用最为广泛的接口,几乎所有的主板产品上都带有这种插槽。PCI插槽也是主板带有最多数量的插槽类型,在目前流行的台式机主板上,ATX结构的主板一般带有5~6个PCI插槽,而小一点的MATX主板也都带有2~3个PCI插槽,可见其应用的广泛性。

PCI是由Intel公司1991年推出的一种局部总线。从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,具体由一个桥接电路实现对这一层的管理,并实现上下之间的接口以协调数据的传送。管理器提供了信号缓冲,使之能支持10种外设,并能在高时钟频率下保持高性能,它为显卡,声卡,网卡,MODEM等设备提供了连接接口,它的工作频率为33MHz/66MHz。

最早提出的PCI 总线工作在33MHz 频率之下,传输带宽达到了133MB/s(33MHz X
32bit/8),基本上满足了当时处理器的发展需要。随着对更高性能的要求,1993年又提出了64bit 的PCI 总线,后来又提出把PCI
总线的频率提升到66MHz 。目前广泛采用的是32-bit、33MHz 的PCI 总线,64bit的PCI插槽更多是应用于服务器产品。

由于PCI 总线只有133MB/s
的带宽,对声卡、网卡、视频卡等绝大多数输入/输出设备显得绰绰有余,但对性能日益强大的显卡则无法满足其需求。目前PCI接口的显卡已经不多见了,只有较老的PC上才有,厂商也很少推出此类接口的产品。当然,很多服务器不需要显卡性能好,因此使用古老的PCI显卡。通常只有一些完全不带有显卡专用插槽(例如AGP或者PCI
Express)的主板上才考虑使用PCI显卡,例如为了升级845GL主板。PCI显卡性能受到极大限制,并且由于数量稀少,因此价格也并不便宜,只有在不得已的情况才考虑使用PCI显卡。

<3>、AGP总线

AGP(Accelerate Graphical
Port),加速图形接口。随着显示芯片的发展,PCI总线日益无法满足其需求。英特尔于1996年7月正式推出了AGP接口,它是一种显示卡专用的局部总线。严格的说,AGP不能称为总线,它与PCI总线不同,因为它是点对点连接,即连接控制芯片和AGP显示卡,但在习惯上我们依然称其为AGP总线。AGP接口是基于PCI
2.1 版规范并进行扩充修改而成,工作频率为66MHz。

AGP总线直接与主板的北桥芯片相连,且通过该接口让显示芯片与系统主内存直接相连,避免了窄带宽的PCI总线形成的系统瓶颈,增加3D图形数据传输速度,同时在显存不足的情况下还可以调用系统主内存。所以它拥有很高的传输速率,这是PCI等总线无法与其相比拟的。

由于采用了数据读写的流水线操作减少了内存等待时间,数据传输速度有了很大提高;具有133MHz及更高的数据传输频率;地址信号与数据信号分离可提高随机内存访问的速度;采用并行操作允许在CPU访问系统RAM的同时AGP显示卡访问AGP内存;显示带宽也不与其它设备共享,从而进一步提高了系统性能。

AGP标准在使用32位总线时,有66MHz和133MHz两种工作频率,最高数据传输率为266Mbps和533Mbps,而PCI总线理论上的最大传输率仅为133Mbps。目前最高规格的AGP
8X模式下,数据传输速度达到了2.1GB/s。

AGP接口的发展经历了AGP1.0(AGP1X、AGP2X)、AGP2.0(AGP
Pro、AGP4X)、AGP3.0(AGP8X)等阶段,其传输速度也从最早的AGP1X的266MB/S的带宽发展到了AGP8X的2.1GB/S。

AGP 1.0(AGP1X、AGP2X)

1996年7月AGP 1.0
图形标准问世,分为1X和2X两种模式,数据传输带宽分别达到了266MB/s和533MB/s。这种图形接口规范是在66MHz
PCI2.1规范基础上经过扩充和加强而形成的,其工作频率为66MHz,工作电压为3.3v,在一段时间内基本满足了显示设备与系统交换数据的需要。这种规范中的AGP带宽很小,现在已经被淘汰了,只有在前几年的老主板上还见得到。

AGP2.0(AGP4X)

显示芯片的飞速发展,图形卡单位时间内所能处理的数据呈几何级数成倍增长,AGP 1.0 图形标准越来越难以满足技术的进步了,由此AGP
2.0便应运而生了。1998年5月份,AGP 2.0
规范正式发布,工作频率依然是66MHz,但工作电压降低到了1.5v,并且增加了4x模式,这样它的数据传输带宽达到了1066MB/sec,数据传输能力大大地增强了。

AGP Pro

AGP Pro接口与AGP 2.0同时推出,这是一种为了满足显示设备功耗日益加大的现实而研发的图形接口标准,应用该技术的图形接口主要的特点是比AGP
4x略长一些,其加长部分可容纳更多的电源引脚,使得这种接口可以驱动功耗更大(25-110w)或者处理能力更强大的AGP显卡。这种标准其实是专为高端图形工作站而设计的,完全兼容AGP
4x规范,使得AGP 4x的显卡也可以插在这种插槽中正常使用。AGP
Pro在原有AGP插槽的两侧进行延伸,提供额外的电能。它是用来增强,而不是取代现有AGP插槽的功能。根据所能提供能量的不同,可以把AGP Pro细分为AGP
Pro110和AGP Pro50。在某些高档台式机主板上也能见到AGP Pro插槽,例如华硕的许多主板。

AGP 3.0(AGP8X)

2000年8月,Intel推出AGP3.0规范,工作电压降到0.8V,并增加了8x模式,这样它的数据传输带宽达到了2133MB/sec,数据传输能力相对于AGP
4X成倍增长,能较好的满足当前显示设备的带宽需求。

AGP接口的模式传输方式

不同AGP接口的模式传输方式不同。1X模式的AGP,工作频率达到了PCI总线的两倍—66MHz,传输带宽理论上可达到266MB/s。AGP
2X工作频率同样为66MHz,但是它使用了正负沿(一个时钟周期的上升沿和下降沿)触发的工作方式,在这种触发方式中在一个时钟周期的上升沿和下降沿各传送一次数据,从而使得一个工作周期先后被触发两次,使传输带宽达到了加倍的目的,而这种触发信号的工作频率为133MHz,这样AGP
2X的传输带宽就达到了266MB/s×2(触发次数)=533MB/s的高度。AGP
4X仍使用了这种信号触发方式,只是利用两个触发信号在每个时钟周期的下降沿分别引起两次触发,从而达到了在一个时钟周期中触发4次的目的,这样在理论上它就可以达到266MB/s×2(单信号触发次数)×2(信号个数)=1066MB/s的带宽了。在AGP
8X规范中,这种触发模式仍然使用,只是触发信号的工作频率变成266MHz,两个信号触发点也变成了每个时钟周期的上升沿,单信号触发次数为4次,这样它在一个时钟周期所能传输的数据就从AGP4X的4倍变成了8倍,理论传输带宽将可达到266MB/s×4(单信号触发次数)×2(信号个数)=2133MB/s的高度了。

目前常用的AGP接口为AGP4X、AGP
PRO、AGP通用及AGP8X接口。需要说明的是由于AGP3.0显卡的额定电压为0.8—1.5V,因此不能把AGP8X的显卡插接到AGP1.0规格的插槽中。这就是说AGP8X规格与旧有的AGP1X/2X模式不兼容。而对于AGP4X系统,AGP8X显卡仍旧在其上工作,但仅会以AGP4X模式工作,无法发挥AGP8X的优势。

<4>、PCI-E接口

PCI
Express(以下简称PCI-E)采用了目前业内流行的点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。相对于传统PCI总线在单一时间周期内只能实现单向传输,PCI-E的双单工连接能提供更高的传输速率和质量,它们之间的差异跟半双工和全双工类似。

PCI-E的接口根据总线位宽不同而有所差异,包括X1、X4、X8以及X16,而X2模式将用于内部接口而非插槽模式。PCI-E规格从1条通道连接到32条通道连接,有非常强的伸缩性,以满足不同系统设备对数据传输带宽不同的需求。此外,较短的PCI-E卡可以插入较长的PCI-E插槽中使用,PCI-E接口还能够支持热拔插,这也是个不小的飞跃。PCI-E
X1的250MB/秒传输速度已经可以满足主流声效芯片、网卡芯片和存储设备对数据传输带宽的需求,但是远远无法满足图形芯片对数据传输带宽的需求。
因此,用于取代AGP接口的PCI-E接口位宽为X16,能够提供5GB/s的带宽,即便有编码上的损耗但仍能够提供约为4GB/s左右的实际带宽,远远超过AGP
8X的2.1GB/s的带宽。

尽管PCI-E技术规格允许实现X1(250MB/秒),X2,X4,X8,X12,X16和X32通道规格,但是依目前形式来看,PCI-E
X1和PCI-E X16已成为PCI-E主流规格,同时很多芯片组厂商在南桥芯片当中添加对PCI-E X1的支持,在北桥芯片当中添加对PCI-E
X16的支持。除去提供极高数据传输带宽之外,PCI-E因为采用串行数据包方式传递数据,所以PCI-E接口每个针脚可以获得比传统I/O标准更多的带宽,这样就可以降低PCI-E设备生产成本和体积。另外,PCI-E也支持高阶电源管理,支持热插拔,支持数据同步传输,为优先传输数据进行带宽优化。

在兼容性方面,PCI-E在软件层面上兼容目前的PCI技术和设备,支持PCI设备和内存模组的初始化,也就是说过去的驱动程序、操作系统无需推倒重来,就可以支持PCI-E设备。目前PCI-E已经成为显卡的接口的主流,不过早期有些芯片组虽然提供了PCI-E作为显卡接口,但是其速度是4X的,而不是16X的,例如VIA
PT880 Pro和VIA PT880 Ultra,当然这种情况极为罕见。

2. PC总线有哪几种XT总线、ISA总线、EISA总线、PCI总线这四种总线各有何特点

PC机的系统总线又可分为ISA、EISA、MCA、VESA、PCI、AGP等多种标准。
一、ISA/EISA/MCA/VESA总线
ISA(Instry Standard Architecture)是IBM公司为286/AT电脑制定的总线工业标准,也称为AT标准。ISA总线的影响力非常大,直到现在仍存在大量ISA设备,最新的主板也还为它保留了一席之地。MCA (Micro Channel Architecture)是IBM公司专为PS/2系统开发的微通道总线结构。由于要求使用许可证,违背了PC发展开放的潮流,因此还未有效推广即告失败。
EISA(Extended Instry Standard Architecture),是EISA集团(由Compaq、HP、AST等组成)专为32位CPU设计的总线扩展工业标准,向下兼容ISA,当年在高档台式机上得到一定应用。VESA(Video Electronics Standards Association),是VESA组织(由IBM、Compaq等发起,有120多家公司参加)按Local Bus(局部总线)标准设计的一种开放性总线,但成本较高,只是适用于486的一种过渡标准,目前已经淘汰。
二、PCI总线
90年代后,随着图形处理技术和多媒体技术的广泛应用,在以Windows为代表的图形用户接口(GUI)进入PC机之后,要求PC具有高速的图形及 I/O运算处理能力,这对总线的速度提出了挑战。原有的ISA、EISA总线已远远不能适应要求,成为整个系统的主要瓶颈。1991年下半年,Intel 公司首先提出了PCI(Peripheral Component Interconnect)的概念,并联合IBM、Compaq、AST、HP、等100多家公司成立了PCI集团。PCI是一种先进的局部总线,已成为局部总线的新标准,是目前应用最广泛的总线结构。 PCI总线是一种不依附于某个具体处理器的局部总线,从结构上看,PCI是在CPU和原来的系统总线之间插入的一级总线,需要时具体由一个桥接电路,实现对这一层的智能设备取得总线控制权,以加速数据传输管理。
三、AGP总线
虽然现在PC机的图形处理能力越来越强,但要完成细致的大型3D图形描绘,PCI总线结构的性能仍然有限。为了让PC的3D应用能力能同图形工作站相比,Intel公司开发了AGP(Accelerated Graphics Port)标准,主要目的就是要大幅提高高档PC机的图形尤其 D图形的处理能力。严格说来,AGP不能称为总线,因为它是点对点连接,即连接控制芯片和AGP显示卡。AGP在主内存与显示卡之间提供了一条直接的通道,使得3D图形数据越过PCI总线,直接送入显示子系统。这样就能突破由于PCI总线形成的系统瓶颈,从而达到高性能3D图形的描绘功能。PCI及 AGP插槽外观见图1。标准接口的类型
在微机系统中采用标准接口技术,其目的是为了便于模块结构设计,可以得到更多厂商的广泛支持,便于“生产”与之兼容的外部设备和软件。不同类型的外设需要不同的接口,不同的接口是不通用的。以前在8086/286机器上存在过的ST506和ESDI等接口标准都已经淘汰,目前在微机中使用最广泛的接口是:IDE、EIDE、SCSI、USB和IEEE 1394五种。
一、 IDE/EIDE接口
IDE的原文是Integrated Device Electronics,即集成设备电子部件。它是由Compaq开发并由Western Digital公司生产的控制器接口。IDE采用了40线的单组电缆连接。由于把控制器集成到驱动器之中,适配卡已变得十分简单,现在的微机系统中已不再使用适配卡,而把适配电路集成到系统主板上,并留有专门的IDE连接器插口。IDE由于具有多种优点,且成本低廉,在个人微机系统中得到了广泛的应用。
增强型IDE (Enhanced IDE)是Western Digital为取代IDE而开发的接口标准。在采用EIDE接口的微机系统中,EIDE接口已直接集成在主板上,因此不必再购买单独的适配卡。与IDE 相比,EIDE具有支持大容量硬盘、可连接四台EIDE设备、有更高数据传输速率(13.3MB/s以上)等几方面的特点。为了支持大容量硬盘,EIDE 支持三种硬盘工作模式:NORMAL、LBA和LARGE模式。
二、Ultra DMA33和Ultra DMA66接口
在ATA-2标准推出之后,SFFC又推出了ATA-3标准。ATA-3标准的主要特点是提高了ATA-2的安全性和可靠性。ATA-3本身并没有定义更高的传输模式。此外,ATA标准本身只支持硬盘,为此SFFC将推出ATA-4标准,该标准将集成ATA-3和ATAPI并且支持更高的传输模式。在 ATA-4标准没有正式推出之前,作为一个过渡性的标准,Quantum和Intel推出了Ultra ATA(Ultra DMA)标准。
Ultra ATA的第一个标准是Ultra DMA33(简称UDMA33),也有人把它称为ATA-3。符合该标准的主板和硬盘早在1997年便已经投放市场,目前几乎所有的主板及硬盘都支持该标准。
Ultra ATA的第二个标准是Ultra DMA66(或者Ultra ATA-66)是由Quantum和Intel在1998年2月份提出的最新标准。Ultra DMA66进一步提高了数据传输率,突发数据传输率理论上可达66.6MB/s。并且采用了新型的CRC循环冗余校验,进一步提高了数据传输的可靠性,改用80针的排线(保留了与现有的电脑兼容的40针排线,增加了40条地线),以保证在高速数据传输中降低相邻信号线间的干扰。
目前,有Intel 810、VIA Apollo Pro等芯片组提供了对Ultra DMA66硬盘的支持。部分主板也提供了支持Ultra DMA66硬盘的接口。而新出的大部分硬盘都支持Ultra DMA-66接口。
三、SCSI接口
SCSI的原文是Small Computer System Interface,即小型计算机系统接口。SCSI也是系统级接口(外观如图2),可与各种采用SCSI接口标准的外部设备相连,如硬盘驱动器、扫描仪、光驱、打印机和磁带驱动器等。采用SCSI标准的这些外设本身必须配有相应的外设控制器。SCSI接口早期只在小型机上使用,近年来也在PC机中广泛采用。 最新的Ultra3 SCSI的Ultra160/m接口标准,进一步把数据传输率提高到160MB/s。昆腾也在1998年11月推出了第一个支持Ultra160/m接口标准的硬盘Atlas10K和Atlas四代。SCSI对PC来说应是一种很好的配置,它不仅是一个接口,更是一条总线。相信随着技术的进一步发展, SCSI也会像EIDE一样广泛应用在微机系统和外设中。
四、USB接口
USB(Universal Serial Bus)接口(外观如图3)的提出是基于采用通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC机连接外设的范围的目的。目前PC中似乎每个设备都有它自己的一套连接设备。外设接口的规格不一、有限的接口数量,已无法满足众多外设连接的迫切需要。解决这一问题的关键是,提供设备的共享接口来解决个人计算机与周边设备 的通用连接。
USB技术应用是计算机外设连接技术的重大变革。现在USB接口标准属于中低速的界面传输,面向家庭与小型办公领域的中低速设备。比如键盘、鼠标、游戏杆、显示器、数字音箱、数字相机以及Modem等,目的是在统一的USB接口上实现中低速外设的通用连接。PC主机上只需要一个USB端口,其他的连接可以通过USB接口和USB集线器在桌面上完成。USB系统由USB主机(HOST)、集线器(HUB)、连接电缆、USB外设组成。下一代的USB接口,数据传输率将提高到120Mbps~240Mbps,并支持宽带宽数字摄像设备及新型扫描仪、打印机及存储设备。
五、IEEE 1394接口
IEEE 1394是一种串行接口标准,这种接口标准允许把电脑、电脑外部设备、各种家电非常简单地连接在一起。从IEEE 1394可以连接多种不同外设的功能特点来看,也可以称为总线,即一种连接外部设备的机外总线。IEEE 1394的原型是运行在Apple Mac电脑上的Fire Wire(火线),由IEEE采用并且重新进行了规范。它定义了数据的传输协定及连接系统,可用较低的成本达到较高的性能,以增强电脑与外设如硬盘、打印机、扫描仪,与消费性电子产品如数码相机、DVD播放机、视频电话等的连接能力。由于要求相应的外部设备也具有IEEE 1394接口功能才能连接到1394总线上,所以,直到1995年第3季度Sony推出的数码摄像机加上了IEEE 1394接口后,IEEE 1394才真正引起了广泛的注意。
六、Device Bay
Device Bay是由Microsoft、Intel和Compaq公司共同开发的标准,这一技术可让所有设备协同运作,包括CD-ROM、DVD-ROM、磁带、硬盘驱动器以及各种符合IEEE 1394的设备。
由于Device Bay技术能够处理类型广泛的设备,所以它可创建一种新PC:主板将仅包括CPU,所有驱动器和设备都在外部与计算机相连,并包括所有数字家电,例如电视和电话。
尽管Device Bay的规范已于1997年制定完毕,但由于这一技术研发经费开销过高,因此很可能会搁浅。迄今Microsoft还没有准备在未来的操作系统中,支持DeviceBay的具体计划。

3. EISA总线原理

EISA:支持体系结构为PC机,总线位数为16位,理论带宽 5.33M实际带宽11M,EISA自810以后消失!

4. EISA总线的介绍

EISA(Extended Instry Standard Architecture:扩展工业标准结构)是EISA集团为配合32位CPU而设计的总线扩展标准。它吸收了IBM微通道总线的精华,并且兼容ISA总线。但现今已被淘汰。

5. 系统总线:ISA、MCA、EISA 都是怎么样的区别

主板总线的种类<BR><BR> 主板有各种不同的总线,功能较差或不稳定的总线早已被淘汰。效率高、速度快且稳定的总线为我们现在的主板所采用,现将目前主板内部使用的总线介绍如下:<BR><BR> ISA总线:(XT/AT/386/486/586/686用)<BR><BR> 工业标准体系结构总线()。<BR><BR> SA总线为目前主板还在使用的总线,它是以前XT/AT机延用下来的接口,所以分:<BR><BR> XTISA总线(XT主板8bitI/O插槽)<BR><BR> ATISA总线(AT主板16bitI/O插槽)<BR><BR> EISA总线:<BR><BR> 增强的工业标准体系结构总线()。<BR><BR> EISA总线其主板I/O插槽为32bit与ISA总线I/O插槽共用,但ISA总线在上层,<BR><BR> EISA总线在下层,此种总线市面较少用。<BR><BR> MCA总线:<BR><BR> 微通道总线(Micro-ChannelBus)。<BR><BR> 为IBMPS/2I/O插槽使用,为32bit,但与ISA总线不兼容,此种总线市面较少用。<BR><BR> Local总线:(486用)<BR><BR> 局部总线(VLBus:)。<BR><BR> 视频电子标准协会制订,普遍用于486的主板及外围设备接口,为32bit的i/o插槽。局部总线是与CPU的接脚直接相通的总线,故局部总线又称为CPU总线。由于CPU的速度越来越快,接在扩展槽的扩展卡或外围设备无法大幅度的提升速度,而造成稳定性和匹配性较差,因为与CPU挂接在同一条总线上,直接影响到CPU的工作效率,扩展槽不能超过三个,故目前局部总线的主板己被淘汰。<BR><BR> PCI总线:(486/586/686)<BR><BR> 外设部件互连总线()。<BR><BR> 是由Intel、IBM、DEC公司所制订的,PCIBus与CPU中间经过一个桥接器(Bridge)电路,不直接与CPU相连的总线,故稳定性和匹配性较佳,提升了CPU的工作效率,扩展槽可达三个以上,为32bit/64bit的总线,是目前较新的586/686主板及外围设备使用的标准接口。<BR><BR> USB总线<BR><BR> 通用串行总线(UniversalSerialBus)。<BR><BR> USB总线规格的制订是由Intel、Microsoft等领导世界电脑硬件和软件的大公司所主导,解决各种外围设备接头不统一的问题,可接127个外围设备,是未来主板和外围设备连接头的改变,所以USB总线的未来电脑主机与外围设备将具有这个全面制订改良的标准接口。其他如提供多媒体的媒体总线(MediaBus)、提供给主机各系统的电力总线(PowerBus)、提供给较快外围设备IEEE1394总线,及提供给686主板的3D图形加速接口AGP总线等。<BR><BR> 2.概念荟萃<BR><BR> 总线<BR><BR> 微型计算机是由若干系统部件构成的,这些系统部件在一起工作才能形成一个完整的微型计算机系统。例如,80486或奔腾处理器不是一台微型计算机。微处理器不包含存储器或输入/输出接口,形象地说,微处理会思考,但不能记忆,也不能听或者说,这就要求用一些其它部件和微处理一起构成一台可用的微型计算机。通常,要构成一台微型计算机系统,一般先以各种大规模集成电路芯片核心组成插件(例如,CPU插件、存储器插件、打印机接口插件、软件适配器插件等);再由若干插件组成主机;最后再配上所需要的外部设备,组成一个完整的计算机系统。<BR><BR> 从所周知,微型计算机系统是一个信息处理系统,各部件之间存在大量的信息流动,因此,系统与系统之间,插件与插件之间以及同一插件上各芯片之间需要用通信线路连接起来。由于所有信号都要通过通信线路传送,所以通信线的设置和连接方式是十分重要的。最直观的方法是根据各大功能部件的需要分别设置与其它部件通信的线路,进行专线式的信息传送。这种方式的传送速率可以很高,只受传输线本身的限制,且信息传送控制简单,但整个机器所需要的传送线的数量巨大,增加了复杂性,加重了发送信息部件的负载,同时这种方式不便于实现机器的模块化。另一种方法是设置公共的通信线,即总线。所谓总线,就是指能为多个功能部件服务的一组信息传输线,它是计算机中系统与系统之间、或者各部件之间进行信息传送的公共通路。<BR><BR> 芯片组(ChipSet)<BR><BR> 什么叫芯片组(ChipSet),其实芯片就是一块集成电路片,它是内部元件、功能和接脚比较多的芯片的集合体。早期的主板是由许多TTL芯片和一些LSI的芯片所组合而成,所以一块大AT的主板就有一百多块芯片元件,生产一块主板不但耗时费力而且成本高。后来美国一家名叫晶技公司(Chips)把一百多块芯片元件,浓缩为五块大的芯片组和几块TTL芯片组合成的一块叫BABYSize或称小AT的主板。由于这种主板的芯片组把许多的芯片电路集合在一块狭窄的芯片里,当材质和技术不成熟时,会造成高频的干扰、温度的增加和特性的匹配等不稳定的情况,所以小AT大概经过一两年的改善,在技术、材质己有些突破,从而奠定了以后芯片组的基本结构。继Chips公司以后相继有几十家公司投入设计和生产,故主板就有很多的品牌和编号(见生产芯片组厂商),早期小AT的主板有Chips、G2、Suntek、EFA等品牌。在"物相竞择,优胜劣汰"的市场竞争,这些品牌或己销声匿迹,或改头换面,从事其他用途的开发设计。目前比较新的,功能比较多的芯片组采用BGA的封装,可设计300多支接脚至800多支接脚。<BR><BR> BGA芯片组<BR><BR> BGA球形阵列的封装是BallGridArray的缩写,接脚的焊接是以球锡阵列方式排列,分布于芯片的背面,再加温与电路板相连接,以增加芯片的接脚数,其封装的脚数为QFP封装的2.5倍。目前300支接脚至800支接脚芯片的脚距低于0.3mm时,即以BGA的封装设计,如PentiumTX系列的芯片即为BGA的封装,所以BGA是未来可缩小电路体积、降低成本和多接脚芯片的主要封装,是未来半导体封装业的主流,也是未来必然采用的高级封装技术。<BR><BR> AGP总线<BR><BR> 当CPU的速度一直在加快的时候,CPU的的外围设备,假如没有跟着步伐提升速度的话,那么整个系统的结构在速度上就失去了平衡,尤其是在面对当前图形和影像庞大的数据处理时,PCI总线的结构已渐感沉重,无法负担大量数据的处理。随着PentiumIlCPU的推进,当前PClVGA无法跟进的瓶颈,使这些快速先进的CPU无用武之地,所以Intel公司为了使CPU与外界的管道畅通,发挥CPU的功能,制订了AGP总线的规格。<BR><BR> 所谓AGP(AcceleratedGraphicsPort)加速图形端口,其最主要的结构是在AGP芯片的显示卡与主存之间建立的专用通道,使主存与显示卡的显示内存之间建立一条新的数据传输通道,让影像和图形数据直接传送到显示卡而不需要经过PCI总线。AGP总线为32bit数据和66MHz频宽的总线,速度比PCI为快,为PCI总线的4倍,可将影像和图形的数据直接由CPU置于主存中,再由快速的AGP系统芯片组与外界作影像和图形数据的传送,是未来配合PentiumIlCPU和在真正32位的WindowsNT操作系统环境之下一展身手,发挥其功能的主要结构。

6. ISA的Instry Standard Architecture

ISA即指指令集架构(Instruction Set Architecture)是与程序设计有关的计算机架构的一部分,包括本地数据类型、指令、寄存器、地址模式、内存架构、中断和意外处理和外部 I/O 。一个 ISA 包括一系列 opcodes(机器语言)的一个规格,本地命令由一个特定的 CPU 设计来实现。
ISA插槽是基于ISA总线(Instrial Standard Architecture,工业标准结构总线)的扩展插槽,其颜色一般为黑色,比PCI接口插槽要长些,位于主板的最下端。其工作频率为8MHz左右,为16位插槽,最大传输率16MB/sec,可插接显卡,声卡,网卡以及所谓的多功能接口卡等扩展插卡。其缺点是CPU资源占用太高,数据传输带宽太小,是已经被淘汰的插槽接口。 目前还能在许多老主板上看到ISA插槽,某些品牌的845E主板甚至875P主板上都还带有ISA插槽,主要是为了满足特殊行业用户的需求。现在新出品的主板上,例如Intel915,945,G31,G41等,已经看不到ISA插槽的身影了。
ISA的发展最早的PC总线是IBM公司1981年在PC/XT 电脑采用的系统总线,它基于8bit的8088 处理器,被称为PC总线或者PC/XT总线。在1984年的时候,IBM 推出基于16-bit Intel 80286处理器的PC/AT 电脑,系统总线也相应地扩展为16bit,并被称呼为PC/AT 总线。而为了开发与IBM PC 兼容的外围设备,行业内便逐渐确立了以IBM PC 总线规范为基础的ISA(工业标准架构:Instry Standard Architecture )总线。
ISA 是8/16bit 的系统总线,最大传输速率仅为8MB/s ,但允许多个CPU 共享系统资源。由于兼容性好,它在上个世纪80年代是最广泛采用的系统总线,不过它的弱点也是显而易见的,比如传输速率过低、CPU占用率高、占用硬件中断资源等。后来在PC‘98 规范中,就开始放弃了ISA 总线,而Intel 从i810 芯片组开始,也不再提供对ISA 接口的支持。
使用286和386SX以下CPU的电脑似乎和8/16bit ISA 总线还能够相处融洽,但当出现了32-bit 外部总线的386DX处理器之后,总线的宽度就已经成为了严重的瓶颈,并影响到处理器性能的发挥。因此在1988年,康柏、惠普等9个厂商协同把ISA 扩展到32-bit,这就是着名的EISA(Extended ISA,扩展ISA)总线。EISA 总线的工作频率仍旧仅有8MHz ,并且与8/16bit 的ISA总线完全兼容,由于是32-bit 总线的缘故,带宽提高了一倍,达到了32MB/s .可惜的是,EISA 仍旧由于速度有限,并且成本过高,在还没成为标准总线之前,在20世纪90年代初的时候,就被PCI 总线给取代了。
ISA总线又称AT总线,是在PC/AT微机上所配备的扩展系统总线。
PC/AT的扩展总线系统设计的最大速度为8MHz,比PC/XT总线几乎快了近一倍,而最佳的数据传输率达20MB/s。不过80286 CPU的执行速度更快,因此要增加额外的等待周期,方能使扩展总线与CPU之间进行数据传输。改善的方式是在总线控制器中增加缓冲器,作为高速的微处理器与较低速的AT总线之间的缓冲器,从而使AT总线可以在比CPU低得多的环境下工作。
由于IBM-PC./XT/AT系统总线的开放性,全世界的PC机制造商纷纷向IBM靠拢,从而使IBM-PC系列风靡全球。为了满足众多PC兼容机厂商的要求,美国电气和电子工程师学会(IEEE)成立了一个委员会,并确定以PC/AT总线为标准,称之为工业标准体系结构ISA(Instry Standard Architecture),即ISA总线标准。
为了充分地发挥80286的优良性能,同时又要最大限度地与PC/AT总线兼容,ISA总线在原XT总线的基础上,又增加了一个36脚的扩展槽,将数据总线扩展为16位,地址总线扩展为24位,将中断的数目从8个扩充到15个,并提供了中断共享功能,而DMA通道也由4个扩充到8个。从此,这种16位的扩展总线一直是各制造厂商严格遵守的标准,至今仍广泛地使用。但目前市场上销售的以Pentium为CPU的PC机,其主板已不提供这个插槽。
ISA总线扩展插槽由两部分组成,一部分有62引脚,其信号分布及名称与PC/XT总线的扩展槽基本相同,仅有很小的差异。另一部分是AT机的添加部分,由36引脚组成。这36引脚分成两列,分别称为C列和D列。