当前位置:首页 » 服务存储 » 存储基础与应用环境
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储基础与应用环境

发布时间: 2022-12-15 12:53:19

① 运用哪几种方法可以解决存储过程的数据安全问题

在这个信息爆炸的年代,现代人每天不论于公于私, 都面临必须经手大量数字信息、 而在数据安全问题上会出现各种麻烦;另一方面, 随着数据量的增加,人们对存储认识程度也日益加深, 特别是企业对于存储过程中数据安全问题尤为关注。一个稳定、 安全、可靠的存储基础架构对企业来说是必不可少的。 企业的信息系统不可避免地受到来自外界的安全危胁, 包括自然灾害、网络、硬件、软件等方面,也包括人员的操作失误。 数据存储的任何失误都可能给企业带来巨大的经济损失。 随着数据价值不断提升,以及存储网络化不断发展, 数据遭受的安全威胁日益增多,若无存储安全防范措施, 一旦攻击者成功渗透到数据存储系统中, 其负面影响将是无法估计的。这要求企业在特定存储系统结构下, 从存储安全性综合考虑。 而企业在业务运作的过程中最常面临的存储安全问题, 主要是由自然灾害,网络、硬件,人员的操作失误这几方面引起的。 自然灾害导致数据存储安全 首先,这个不是一个人为的行为, 大量的数据存储在企业的服务器存储系统中, 业务在运营中由于停电或是数据传输过程中的线路突然短路导致的数 据的丢失情况,对于企业是一个不小的损失,在这种状态下, 由于自然灾害原因导致企业数据的丢失可以说对于一个企业的数据信 息是一个很大的安全威胁,系统的正常运行,数据库的合理优化, 操作人员的完善的操作程序都确保数据的稳定安全,而突发的停电、 火灾以及后备电源的不到位对于中小企业是时常面临的问题, 同时数据的存储安全成为面对该情况时必须要解决的问题, 也是企业及时需要应对的措施,保证数据的安全, 但如何面对该情况应对企业数据的存储安全呢? 网络硬件 其次, 企业数据的硬件环境方面的问题也会导致存储过程中数据安全, 众所周知信息化快速发展的今天,硬件的更新换代速度之快, 从而使得企业的传统的存储环境已经难以应对如今海量的数据需求, 企业也要升级换代才可以适应现在数据存储的环境要求。 硬件环境的老化导致传输速率的降低, 同时网络的优化也需要良好的硬件环境作为基础, 在传输数据的过程中如果数据量过于庞大, 而企业的硬件环境没有改善那么网络的延迟导致系统的崩溃, 从而丢失数据会造成巨大的经济损失,而对于这些方面, 就需要企业根据业务发展的需要有针对性地升级存储服务器的配置, 提高网络的良性环境,保证存储过程数据安全。 人员的操作失误 “金无足赤,人无完人” 是对于当今任何企业在数据管理人员方面的一句良言, 每个人在工作的过程中不可避免的犯错误或者在操作上失误, 特别是对于从事数据库管理工作的人员,数据量之大, 系统运行之繁琐,都会给工作中带来不必要的失误, 从而对于企业的数据上的安全和完整性存在危胁, 同时中小企业的数据管理人员还肩负存储系统的运维工作, 这就对其数据存储过程中的安全性提出了更高的要求, 面对着企业存储过程数据安全问题,应该如何的解决, 采取什么样的措施保证数据的安全是摆在每个企业面前的主要问题, 数据是企业运营的核心, 强大的数据的支持保障企业在市场中能够乘风破浪, 如何解决存储过程数据安全问题, 下面针对以上的问题给以简单的建议。 一般而言,解决存储过程中的数据安全问题, 企业有很多可以采用的方案: 异地备份可以避免发生自然灾害时的数据损失;采用RAID( 独立磁盘冗余阵列)可以减少磁盘部件的损坏;采用镜像技术 可以减少存储设备损坏;快照可以迅速恢复遭破坏的数据, 减少宕机损失。 而这些技术采用可以很好的应对企业面临的自然灾害,网络、硬件, 人员的操作失误这几方面引起的数据的安全问题。 异地备份 异地备份是保护数据的最安全的方式,无论发生什么情况自然灾害, 那怕是火灾、地震,当其他保护数据的手段都不起作用时, 异地容灾的优势就体现出来了,异地备份问题在于速度和成本, 这要求拥有足够带宽的网络连接和优秀的数据复制管理软件。 通常状态下主要三方面实现异地备份,一是基于磁盘阵列, 通过软件的复制模块,实现磁盘阵列之间的数据复制, 这种方式适用于在复制的两端具有相同的磁盘阵列。 二是基于主机方式,这种方式与磁盘阵列无关。 三是基于存储管理平台,它与主机和磁盘阵列均无关。 RAID RAID系统使用许多小容量磁盘驱动器来存储大量数据, 并且使可靠性和冗余度得到增强。对计算机来说, 这样一种阵列就如同由多个磁盘驱动器构成的一个逻辑单元。 所有的RAID系统共同的特点是“热交换”能力: 用户可以取出一个存在缺陷的驱动器,并插入一个新的予以更换。 对大多数类型的RAID来说,不必中断服务器或系统, 就可以自动重建某个出现故障的磁盘上的数据。 镜像 这个技术是针对如果故障发生在异地分公司,可以使用镜像技术, 进行不同卷的镜像或异地卷的远程镜像, 或采用双机容错技术自动接管单点故障机, 保证无单点故障和本地设备遇到不可恢复的硬件毁坏时, 仍可以启动异地与此相同环境和内容的镜像设备, 以保证服务不间断。当然,这样做必然会提升对设备的投资力度。 快照 在数据保护技术中,快照技术(snapshot) 是极为基础和热门的技术之一,应用在很多存储过程中, 比如数据复制和备份都在使用这种技术。 IBM的FlashCopy、IBM NAS的PSM软件以及VERITAS的FlashSnap软件 都是快照技术的代表。快照可以迅速恢复遭破坏的数据, 减少宕机损失, 可以针对与数据库管理人员在操作中的失误进行数据恢复。 综述: 对于企业在存储过程中的数据安全问题,还有很多解决的方案, 存储安全固然十分重要, 但是存储安全只是数据中心整个安全解决方案的一个组成部分。 安全是一个内涵很广泛的话题, 存储在业务流程中扮演的并非是主角,但确实是关键角色, 因为存储包含了公司绝大部分记录,如果没有存储, 很多业务流程将没法继续。因此, 对于面对存储过程数据安全问题每个企业应该注视起来, 投入更多的精力,数据是一个企业的核心竞争力, 安全强大的数据是企业腾飞的保证,存储技术的发展, 硬件环境的完善相信会给企业数据安全无疑提供强有力的支持。

② 如何搭建私有云存储

虚拟化技术在企业私有云IT基础架构中仍然占据重要地位,同时,为了进一步提升应用效率,越来越多的生产环境也正在逐步变革,从以虚拟机为中心的架构向以容器和微服务为中心的云原生架构过渡,在这个过程中,存储如何有效支撑各种云主机应用与微服务应用,对于企业的私有云数据中心提出了新的挑战。

企业面临的问题

存储设施七国八制,硬件锁定缺少弹性

多种云平台对于存储的要求各不相同,块/文件/对象存储对应不同类型的应用,对外提供不同的服务接口,一种存储设备无法满足多种类型的云平台存储需求,而且传统存储在扩展性方面不能满足云时代大规模云平台对存储在线弹性扩容的需求,在可维护性方面则面临硬件架构绑定、运维复杂、难以维保等问题,而且这些问题会随着存储设备种类和数量的增多进一步放大。

业务调度变更频繁,资源不能共享

随着开发测试虚拟机以及容器、微服务平台在企业私有云平台的上线,大型企业的应用快速迭代、频繁发布对存储系统的支撑提出了严峻挑战,不同业务的数据保存在不同厂商的存储设备中,数据流动性差,不仅导致存储空间及性能资源浪费严重,数据灾备方案也很难统一化。

开源产品难以维护,不能实现企业级产品化

基于开源虚拟化技术的云平台如OpenStack为众多客户提供了快速构建私有云基础设施的能力,但是存储部分却不一样,开源的存储系统如Ceph虽然可以小规模部署试用, 但在大规模商用时会遇到很多问题:与硬件和企业级应用生态融合程度不高,严重依赖人工开发运维,在性能和服务质量方面不能满足核心业务的需求

杉岩私有云存储解决方案

杉岩私有云存储解决方案充分发挥了杉岩统一存储平台(USP)的云适配、开放等优势,支持各种复杂的应用负载,可灵活支撑私有云的虚拟化平台,如VMware、Citrix、OpenStack等虚拟化和云平台,以及通过Kubernetes软件一致性认证的所有容器云平台,如:Rancher、Openshift、Kubernetes等。

通过杉岩统一存储平台,用户可快速构建能够兼容所有主流虚拟化平台与容器微服务平台的统一存储资源池,面对各种虚拟机和微服务需求,池化的存储平台为大规模云环境提供了可靠的存储基础架构支撑,帮助用户从纷繁复杂的基础架构运维工作中解放出来,更关注于私有云上运行的业务本身。

客户价值

资源整合,链接企业信息孤岛

单资源池提供块、文件、对象多种存储服务,支持虚拟化平台和数据库应用;强大的存储资源生命周期管理能力,跨云平台在线迁移数据,实现数据共享和提高资源利用率;存储卷QoS等级和性能优先级在线调整,可根据企业资源和业务需求合理配置资源。

开放兼容,适配多种私有云平台

通过VMware VAAI和Citrix Ready认证,针对主流虚拟化平台优化I/O性能,大幅提升虚拟机访问的性能。通过OpenStack Cinder认证,可提供块和对象存储基础架构支撑支持容器平台CSI接口认证,为Kubernetes生态的容器应用提供块和文件存储服务。

智能管理,解决规模化运维难题

向导式安装部署和自助扩容配置,极大提升易用性和可维护性,管理自动化降低运维成本;针对大规模集群优化的可靠性管理,检测和修复硬盘软错误的专利技术,节约用户硬件投资。存储视角的管理功能,可视化展示主机、容器与存储的映射关系和性能监控协助管理员快速定位和解决问题。

③ 存储如何应用于数据聚合环境

如今,由于学校各校区需要将更多的数据保存更长的时间,存储需求已经被公认为聚合数据中心环境的一个组成部分。虚拟和聚合环境需要共享存储,IT部门可以利用共享串联SCSI接口连接内置高密刀片服务器来实现这一需求,还可以通过基于以太网的iSCSI、NAS(NFS和CIFS)、FCoE和传统的光纤通道来实现。 多协议和统一存储解决方案支持SAS、iSCSI、光纤通道和FCoE等各种技术和NAS、NFS和CIFS各种文件格式混搭,这种解决方案在聚合环境中应用得越来越普遍。多协议存储系统将传统块级和文件级存储技术都整合到一个统一的解决方案之中,从而降低成本和复杂性,提高灵活性、弹性和可扩展性。 共享存储对于聚合环境来说是很重要的,因为它允许不同的服务器访问相同的存储资源,这样它们就可以支持它们托管的各种应用。虚拟服务器消除了特定应用对具体服务器的依赖性,共享存储可以让虚拟机、它们的应用程序和数据全部托管,因为实际的存储并非受限于某个专用系统或服务器。正如IT组织所知,随着信息相关性的增长,是不存在数据衰退的。解决数据增长、相关基础设施资源管理(IRM)以及数据中心基础设施管理(DCIM)的任务以及其他的数据保护成本可能会象禁止某些数据被存储下来一样简单。 数据足迹还原(DFR)包含了一系列有助于提升效率的技巧、技术和最佳方法,这样就可以让系统利用有限的资源完成更多的任务。减少一个小区的数据足迹有很多好处,包括减少对能源、冷却、存储容量和带宽等IT基础设施资源的需求或最大化利用那些资源,同时以及时备份、业务连续性、灾难恢复、性能和正常运行率等形式增强应用服务的品质。如果某个校区没有制定DFR战略,那么现在是时候制定并执行这样的战略了。现在有很多不同的DFR技术,可以解决各种存储容量优化需求,有些是以时间/性能为中心,有些则专注于空间/性能。 不同的解决方案使用不同的标准来衡量效率和效用。哪种DFR技术是最好的呢? 那取决于它想要实现什么样的商业和IT目标。例如,你的目标是否是无需考虑性能问题,只需以最低成本实现最大存储容量? 或者是企业需要综合考虑性能和容量优化问题? IT员工想把DFR技术应用于初级、连网、活跃数据和应用,还是次级、近线、非活跃或离线数据? 某些存储优化技术可以减少数据量和/或优化可用存储容量。 而另一些存储优化技术则专注于提高性能或生产力。简而言之,减小数据足迹的应用范围已经超出了重复数据删除技术在备份和其他早期部署方案中的应用范围。对某些应用程序来说,缩率是一个重要的问题,因此各校区需要能够实现那一目标是工具和技术。 同样,对于需要以性能优先同时希望从数据缩减中受益的应用程序来说,也有不少工具可以实现这一目标。各厂商已经开始扩展它们现有的能力和技术,以满足不断变化的需求和标准。责编:李红燕

④ 如何实现数据存储的管理

:数据存储备份和存储管理源于上世纪70年代的终端/主机计算模式,当时由于数据集中在主机上,因此,易管理的海量存储设备——磁带库是当时必备的设备。80年代以后,由于PC的发展,尤其是90年代应用最广的客户机/服务器模式的普及以及互联网的迅猛发展,使得存储容量、存储模式和存储要求都发生了根本性的变化,一些新兴的存储技术迅速崛起,为构建一个更安全的信息时代提供了更多的选择。
编者按如何确保所有数据能够得到可靠备份,及时进行灾难恢复是存储管理软件的核心任务。此外存储管理软件还存在以下一些基本功能,诸如改进系统和应用I/O性能及存储管理能力,提高数据和应用系统的高可用性,减少由于各种原因中断数据存取或者应用系统宕机的时间,实现技术有分级存储管理(HSM)、ClusterServer(集群服务器)等。
首先是能提供一些可以识别和分析存储访问模式的VolumeManager工具。VolumeManager通过复杂的磁盘配置能均衡I/O负载,在不影响应用的同时能够优化应用数据的布局。它还可将数据条形散放到多个物理盘上以提高性能,同时还具有在不中断应用的情况下,识别和消除性能瓶颈的能力,从而增强系统和应用的性能。另外,VolumeManager在减少系统中断时间、增加数据完整性等方面也有不俗表现。它允许对磁盘进行在线的管理和更改配置,减少对系统产生极大影响的停机时间,同时利用冗余技术提高数据可用性,防止数据被丢失和破坏。
其次还有一个非常重要的可快速恢复的日志式文件系统FileSystem,它能在不间断数据访问的条件下,对文件作在线备份,并在系统重启或崩溃前允许访问数据并恢复文件,从而大大提高用户和管理员的生产效率。FileSystem在系统崩溃前还能将未完成的数据记录在一个事件日志中,利用恢复程序重现,从而保持了数据的完整性。
VolumeManager和FileSystem都工作在操作系统一级,可实现集群与故障恢复、自动管理、备份与HSM以及基于浏览器的远程管理等。两者有机结合后,利用双方特有的对磁盘和数据的管理能力,能给企业的系统提供尽可能高的性能、可用性及可管理性。
在此基础之上便是整个存储管理的核心任务——备份技术。
数据存储备份技术一般包含硬件技术及软件技术等,硬件技术主要是磁带机技术,软件技术主要是通用和专用备份软件技术等。我们主要从软件技术方面加以讨论。备份软件技术在整个数据存储备份过程中具有相当的重要性,因为它不仅关系到是否支持磁带的各种先进功能,而且在很大程度上决定着备份的效率。最好的备份软件不一定就是操作系统所提供的备份功能,很多厂商都提供了许多专业的备份软件。专业备份软件能通过优化数据传输率,即可以自动以较高的传输率进行数据传输。这不仅能缩短备份时间、提高数据存储备份速度,而且对磁带机设备本身也有好处。另外,专业备份软件还支持新磁带机技术,如HP的TapeAlert技术,差不多所有主流专业备份软件均提供支持。
对于存储模式来说比较常见的有DAS、NAS和SAN等。DAS(DirectAttachedStorage-直接连接存储)是指将存储设备通过SCSI接口或光纤通道直接连接到一台计算机上。当服务器在地理上比较分散、很难通过远程连接进行互连时,直接连接存储是比较好的解决方案。直接连接存储也可帮助企业继续保留已有的传输速率并不很高的网络系统。
网络正成为主要的信息处理模式,需要存储的数据大量增加,数据作为取得竞争优势的战略性资产其重要性在增加,是目前发展的趋势。NAS和SAN的出现正响应了这一点。NAS就是网络连接存储,即将存储设备通过标准的网络拓扑结构(例如以太网),连接到一群计算机上。它的重点在于帮助工作组和部门级机构解决迅速增加存储容量的需求。这种方法从两方面改善了数据的可用性。第一,即使相应的应用服务器不再工作了,仍然可以读出数据。第二,简易服务器本身不会崩溃,因为它避免了引起服务器崩溃的首要原因,即应用软件引起的问题。另外,NAS产品是真正即插即用的产品,其设备的物理位置非常灵活。
SAN(存储区域网络)通过光纤通道连接到一群计算机上。在该网络中提供了多主机连接,但并非通过标准的网络拓扑,并且通过同一物理通道支持广泛使用的SCSI和IP协议。它的结构允许任何服务器连接到任何存储阵列,这样不管数据置放在哪里,服务器都可直接存取所需的数据。SAN解决方案是从基本功能剥离出存储功能,所以运行备份操作就无需考虑它们对网络总体性能的影响。这个方案也使得管理及集中控制实现简化,特别是对于全部存储设备都集群在一起的时候。
集群通常用于加强应用软件的可用性与可扩展性。某些集群架构技术会加入单一系统印象的概念,可从单点以单一系统的方式来管理多台计算机。集群服务器可支持多达上百台互相连接的服务器,结合为松散结合的单位来执行作业,保护彼此的应用软件免于故障。由于集群服务器可完全整合应用软件服务架构,因此可建置高效的应用软件执行环境,即使整个系统出现故障,终端计算机都还可以使用几乎所有的应用软件。集群服务器软件包括引擎、编译器、负载计算器、代理、指令与图形化系统管理接口等组件。集群化运算环境的最大优势是卓越的数据处理能力。原则上,任何类型的多重主机架构存储设备,包括直接连接的磁盘,都可以用来当作集群数据存储设备。为求得最大的系统可用性,最适合使用拥有多重主机存取路径的容错或高可用性存储子系统。
分层次的管理方式可以解决存储容量不断增长导致的如何有效扩充容量的问题。在很多情况下,它更多地用于分布式网络环境中。分级,其实就是意味着用不同的介质来实现存储,如RAID系统、光存储设备、磁带等,每种存储设备都有其不同的物理特性和不同的价格。例如,要备份的时候,备份文件一般存储在速度相对比较慢、容量相对比较大、价格相对比较低的存储设备上如磁带,这样做很经济实用。那么如何实现分级呢?从原理上来讲,分级存储是从在线系统上迁移数据的一种方法。文件由HSM系统选择进行迁移,然后被拷贝到HSM介质上。当文件被正确拷贝后,一个和原文件相同名字的标志文件被创建,但它只占用比原文件小得多的磁盘空间。以后,当用户访问这个标志文件时,HSM系统能将原始文件从正确的介质上恢复过来。分级存储可以有不同的实施方式,HSM根据两级或三级体系将动态迁移/回迁的数据分类,从而实现分级存储。
存储应用的深入必然带来对整体解决方案的需求,这不仅包括硬件,还包括相应的软件以及服务。一个软硬件兼容的融合应用环境是大势所趋。比如,存储虚拟化的提出就证明了这一趋势。因为它有利于提高存储利用率、简化管理和降低成本,构建一个融合的存储应用大环境。总之,随着网络技术的发展、计算机能力的不断提高,数据量也在不断膨胀。数据备份与恢复等存储技术方面的问题显得越来越重要,存储管理技术的发展必将引起业界的高度重视。
相关链接:当前主流的存储介质
磁盘阵列、磁带库
磁盘阵列的最大特点是数据存取速度特别快,其主要功能是可提高网络数据的可用性及存储容量,并将数据有选择性地分布在多个磁盘上,从而提高系统的数据吞吐率。另外,磁盘阵列还能够免除单块硬盘故障所带来的灾难后果,通过把多个较小容量的硬盘连在智能控制器上,可增加存储容量。磁盘阵列是一种高效、快速、易用的网络存储备份设备。
广义的磁带库产品包括自动加载磁带机和磁带库。自动加载磁带机和磁带库实际上是将磁带和磁带机有机结合组成的。自动加载磁带机是一个位于单机中的磁带驱动器和自动磁带更换装置,它可以从装有多盘磁带的磁带匣中拾取磁带并放入驱动器中,或执行相反的过程。自动加载磁带机能够支持例行备份过程,自动为每日的备份工作装载新的磁带。一个拥有工作组服务器的小公司或分理处可以使用自动加载磁带机来自动完成备份工作。
磁带库是像自动加载磁带机一样的基于磁带的备份系统,它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。它的存储容量可达到数百PB(1PB=100万GB),可以实现连续备份、自动搜索磁带,也可以在驱动管理软件控制下实现智能恢复、实时监控和统计,整个数据存储备份过程完全摆脱了人工干涉。磁带库不仅数据存储量大得多,而且在备份效率和人工占用方面拥有无可比拟的优势。在网络系统中,磁带库通过SAN(存储局域网络)系统可形成网络存储系统,为企业存储提供有力保障,很容易完成远程数据访问、数据存储备份,或通过磁带镜像技术实现多磁带库备份,无疑是数据仓库、ERP等大型网络应用的良好存储设备。
光盘塔、光盘库和光盘网络镜像服务器
光盘不仅存储容量巨大,而且成本低、制作简单、体积小,更重要的是其信息可以保存100年至300年。光盘塔由几台或十几台CD-ROM驱动器并联构成,可通过软件来控制某台光驱的读写操作。光盘塔可以同时支持几十个到几百个用户访问信息。光盘库也叫自动换盘机,它利用机械手从机柜中选出一张光盘送到驱动器进行读写。它的库容量极大,机柜中可放几十片甚至上百片光盘。光盘库的特点是:安装简单、使用方便,并支持几乎所有的常见网络操作系统及各种常用通信协议。
光盘网络镜像服务器不仅具有大型光盘库的超大存储容量,而且还具有与硬盘相同的访问速度,其单位存储成本(分摊到每张光盘上的设备成本)大大低于光盘库和光盘塔,因此光盘网络镜像服务器已开始取代光盘库和光盘塔,逐渐成为光盘网络共享设备中的主流产品。

⑤ 大数据时代下的三种存储架构

大数据时代下的三种存储架构_数据分析师考试

大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。

传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。

基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。

尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。

目前市场上的存储架构如下:

(1)基于嵌入式架构的存储系统

节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。

(2)基于X86架构的存储系统

平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。

此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。

面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。

该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。

平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。

(3)基于云技术的存储方案

当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。

与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。

一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。

高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。

针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。

云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。

对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。

云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。

以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货

⑥ 食材存储的基本要求

要求:
1)所有易腐败变质食品的冷藏温度要保持在4-5℃以下。
2)冷藏室内的食物不能装得太挤,各种食物之间要留有空隙,以利于空气流通。
3)尽量减少冷藏室门的开启次数。
4)保持冷藏室内部的清洁,要定期做好冷藏室的卫生工作。
5)将生、熟食品分开储藏,最好每种食品都有单独的包装。
6)如果只有一个冷藏室,要将熟食放在生食的上方,以防生食带菌的汁液滴到熟食上。
7)需冷藏的食品应先使用干净卫生的容器包装好才能放进冰箱,避免互相串味。
8)需要冷藏的热食品,要迅速降温变凉,然后再放入冷藏室。
9)需要经常检查冷藏室的温度,避免由于疏忽或机器故障而使温度升高,导致食品在冷藏室内变质。
10)保证食品原料在冷藏保质期内使用。
11)冷藏食品原料保存中的其他注意事项:
①入库前需仔细检查食品原料,避免把已经变质、污染过的食品送入冷藏室;
②已加工的食品和剩余食品应密封冷藏,以免受冷干缩或串味,并防止滴水或异物混入;
③带有强烈气味的食品应密封冷藏,以免影响其他食品;
④冷藏设备的底部、靠近制冷设备处及货架底层是温度最低的地方,这些位置适于存放奶制品、肉类、禽类、水产类食品原料。
哪些食物储存地方不对营养减半?

1、牛奶:躲着光线储存

阳光的杀菌能力很强,在杀死细菌的同时也会将牛奶中的营养物质消灭掉,一般在阳光下放置的牛奶在4分钟左右就会变质、酸化,而在冷藏柜中则可以保值4个小时左右。

通常情况下在阳光照射下维生素B2会快速的流失掉,而其他的维生素成分也会相应的出现受损的情况。

专家支招:在超市买完牛奶以后,要将牛奶放置在货架的最后一排,当牛奶被打开以后尽量在4分钟以内喝完。

2、茶叶:绿茶存冰箱,红茶常温放

绿茶对身体的功效很多,可以预防心脏病、癌症、阿尔兹海默症等疾病,但是当绿茶是常温中放置6个月以后,成分内的儿茶素含量就会减少32%。

专家支招:建议将绿茶放置在冰箱温度5℃左右的环境下存放,如果想存放的时间更长,建议放置在冷冻室内。像乌龙茶、红茶、茉莉花茶则并不需要放置到冰箱中,仅需要放置在干燥、密封、避光的环境下存放即可。

3、果蔬:两种同放,变质易“传染”

果蔬之间出现变质也会被感染,主要表现在将成熟的果蔬与没有成熟的果蔬放置在一起时,会起到催熟的效果。

专家支招:建议将不宜存放的蔬菜放置在冰箱中保存,像萝卜、胡萝卜、白菜这些耐放的食物可以放在阳台中储存。

⑦ 如何构建云数据中心

NewMedia新媒体联盟创始人、移动互联网时代的趋势观察家袁国宝在他的新作《新基建:数字经济重构经济增长新格局》一书中写到详细云数据中心的构建步骤主要分为3步。

新基建

一、虚拟化

利用软硬件管理程序将物理资源映射为虚拟资源的技术被称为虚拟化技术。对关键IT资源进行虚拟化,是打造云数据中心的基础和前提。

云数据中心需要虚拟化的关键IT资源主要有服务器、存储及网络。其中,服务器虚拟化主要包括Unix服务器虚拟化与x86服务器虚拟化。Unix服务器又被称为小型机,而小型机厂商普遍为自身的小型机产品开发了差异化的虚拟化程序,导致这些虚拟化程序无法对其他厂商的小型机产品进行虚拟化。

目前,市场中常见的x86服务器虚拟化产品有VMware ESX/ESXi、微软的Hyper-V、开源KVM虚拟机等。Oracle和华为等服务器厂商还开发了基于Xenia内核的虚拟化平台。

云数据中心需要同时调用不同厂商以及不同类型的服务器资源,而对服务器进行虚拟化后,便可以有效解决不同服务器间的硬件差异问题,使用户获得标准逻辑形式的计算资源。

存储虚拟化的逻辑为:在物理存储系统上增加一个虚拟层,从而将物理存储虚拟化为逻辑存储单元。通过存储虚拟化,云数据中心服务商可以将不同品牌、不同级别的存储设备资源整合到一个大型的逻辑存储空间内,然后对这个存储空间进行划分,以便满足不同用户的个性化需要。

网络虚拟化涉及到了网络设备及网络安全设备、网络本身的虚拟化。其中,需要虚拟化的网络设备及网络安全设备有网卡、路由器、交换机、HBA卡、防火墙、IDS/IPS、负载均衡设备等。网络本身的虚拟化主要涉及到FC存储网络与IP网络的虚拟化。

目前,个体与组织对网络需求愈发个性化,为了更加低成本地满足其需求,云数据中心厂商对网络进行虚拟化成为必然选择。与此同时,网络虚拟化后,云数据中心可以在网络环境与多层应用环境中将非同组用户实现逻辑隔离,这既能提高数据安全性,又能降低网络管理复杂性。

将关键IT资源进行虚拟化后,云数据中心服务商便可以对这些资源进行统一调配与集中共享,大幅度增加资源利用率。测试数据显示,未虚拟化前,数据中心IT资源利用率仅有10%~20%,而虚拟化后的资源利用率达到了50%~60%。

二、资源池化

资源池化是指IT资源完成虚拟化后,为其标上特定的功能标签,再将其分配到不同的资源组,最终完成其池化。

资源池化可以解决不同结构IT设备的规格与标准的差异问题,对资源进行逻辑分类、分组,最终将资源用标准化的逻辑形式提供给用户。资源池化过程中,云数据中心服务商可按照硬件特性,对不同服务等级的资源池组进行划分。云数据中心的资源池主要包括服务器资源池、存储资源池及网络资源池。

存储资源池化过程中,云数据中心服务商需要重点分析存储容量、FC SAN网络需要的HBA卡的端口数量、IP网络所需的网卡端口数量等是否与自身的业务规模相匹配。

网络资源池化过程中,云数据中心服务商则需要重点分析进出口链路带宽、HBA卡与端口数量、IP网卡与端口数量,安全设备端口数量与带宽等是否与自身的业务规模相匹配。

三、自动化

自动化是指使IT资源都具备按照预设程序进行处理的过程。如果说IT资源的虚拟化与池化能够让数据中心的计算能力、存储空间、网络带宽与链路等成为动态化的基础设施,那么,IT资源的自动化便是让数据中心获得了一套能够对基础设施进行自动化管理的有效工具。

云数据中心可以利用基于SOA的流程管理工具对数据中心的业务任务、IT任务进行统一IT编排。然后利用可编程的工作流程工具从资产中解耦工作流程及流程的执行逻辑。在IT编排工具的帮助下,系统设计师可以对现有工作流程进行修改,添加新的工作流程,甚至利用可重复使用的适配器对资产进行修改等,不需要重新开展工作,有效降低开发人力、物力成本。

⑧ 存储基础3 存储阵列NAS SAN

存储阵列在IT架构下主要有两种:
盘控一体化架构和盘控分离化架构

管理口的默认IP地址是A控 192.168.128.101 B控 192.168.128.102

存储结构:直接连接存储(DAS)、网络连接存储(NAS)、存储区域网络(SAN)

通过存储的通道不同分为IP SAN 和FC SAN
而无论是IP SAN还是FC SAN都有三种组网结构:
1、直连组网

主机和存储之间通过专用的通道去连接,这个通道可以基于是IP的,也可以是FC。这种通道的实现方式主要是把存储资源通过这个通道提供给上层服务器使用
缺点:所有的存储资源只能为一台服务器提供存储
2、单交换组网

它可以通过网络侧的交换机或者说FC的交换机实现把存储资源共享给多台服务器提供存储
缺点在于应用服务器和交换机以及存储 资源之间只有一条承载链路,任何一条链路出现问题都会导致服务器和应用之间连接失败

3、双交换组网

采用的是两台或主备的方式去实现交换机的连接,所有的应用服务器和存储之间也是通过两条链路去连接,中间断开任何一条链路都不影响整个存储和应用服务之间应用的访问

注意:提到SAN存储,默认指的是FC SAN

无论是IP SAN 还是FC SAN都有以下四个组件:

采用的是光纤作为承载通道。
FC协议栈

我们大多用的是FC-0 FC-1 FC-2这三层,也可以称FC是大二层架构
FC-0主要是定义了物理层的介质,比如:光纤或者铜线、相应的标准、距离等
FC-1主要是定义了协议的编解码的过程
FC-2主要是定义了帧、流控制以及质量控制方面
FC-3主要是加密
FC-4主要是上层协议的封装,比如SCSI,完成SCSI协议到FC协议的转换传输

FC的三种拓扑架构
1、点对点

通过主机侧安装的hub卡以及光纤线缆和设备去连接
缺点:所有的存储只能为一台应用服务器提供服务

2、仲裁环

通过光纤集线器去完成把存储资源共享给多台服务器,提供存储。
缺点:它们都在环路上工作,任何环路上的设备出问题都会导致环路出问题,安全性不高
3、FC-SW

采用交换式的方式去实现FC的组网,这种方式采用FC交换机去实现为更多的上层服务器提供存储资源,同时也可以实现双交换组网的一种方式

它的承载通道采用TCP/IP协议进行承载
实现IP SAN有三种方式:
第一种:

软件主要实现的是从SCSI协议封装成iSCSI的过程
以太网卡主要实现的是把数据传输到外界
第二种:

与第一种的区别就是TOE网卡分担了网卡的一些功能
第三种:

iSCSI卡即完成了数据的封装也完成了数据的发放
不占用任何的主机资源

FC SAN与IP SAN的区别

FC SAN因为距离原因,大多只能在数据中心去做
IP SAN因为是TCP/IP做承载,所以可用于大区域数据

FC SAN速度快,传输效率高
FC SAN成本高
FC SAN采用的是专用的HBA卡 不会被外界攻击

FC SAN更多用在容灾备份的场景

NAS(Network Attached Storage)网络附加存储 :是一种将分布、独立的数据进行整合,集中化管理,以便与对不同主机和应用服务器进行访问的技术。

SAN的所有文件存储都是在主机这侧完成的。
而NAS是把自己的文件系统和自己的操作系统都是在内部实现的,也就是说NAS有自己的文件系统和自己的操作系统去管理自己的内部数据。

NAS对不同操作系统开放的协议不同
Windows是CIFS
Linux是NFS

NAS还支持FTP和HTTP,对外提供文件共享

CIFS(Common Internet File System),通用Internet文件系统,NAS对Windows系统提供文件共享所用的一个协议。
它使程序可以访问远程Internet计算机上的文件并要求此计算机的服务,CIFS可以看做是应用程序协议,如文件传输协议和超文本传输协议的一个实现
架构:C/S
应用:Windows系统共享文件的环境
传输协议:TCP/IP
对网络性能要求较高,如果丢包高的话,会访问失败

NFS (Network File System)网络文件系统。
应用在Linux/Unix文件系统中,通过使用NFS,用户和程序可以像访问本地文件一样访问远端系统上的文件。
架构:C/S
传输:TCP或者UDP
因为支持两种传输协议,所以网络的可靠性安全性方面比CIFS要低
因为Windows上的软件是集成的所以不需要安装,而Linux和Unix则需要安装软件

NAS内部的组成:

NAS文件系统IO与性能影响
主机、网络、NAS本身内部的性能

NAS和SAN的区别:

⑨ 大数据爆发性增长 存储技术面临难题

大数据爆发性增长 存储技术面临难题

随着大数据应用的爆发性增长,大数据已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。从目前技术发展的情况来看,大数据存储技术的发展正面临着以下几个难题:

1、容量问题

这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。

“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。

2、延迟问题

“大数据”应用还存在实时性的问题。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。

3、并发访问

一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。

4、安全问题

某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。

5、成本问题

成本问题“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。

对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。

6、数据的积累

许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

7、数据的灵活性

大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

存储介质正在改变,云计算倍受青睐

存储之于安防的地位,其已经不仅是一个设备而已,而是已经升华到了一个解决方案平台的地步。作为图像数据和报警事件记录的载体,存储的重要性是不言而喻的。

安防监控应用对存储的需求是什么?首先,海量存储的需求。其次,性能的要求。第三,价格的敏感度。第四,集中管理的要求。第五,网络化要求。安防监控技术发展到今天经历了三个阶段,即:模拟化、数字化、网络化。与之相适应,监控数据存储也经历了多个阶段,即:VCR模拟数据存储、DVR数字数据存储,到现在的集中网络存储,以及发展到云存储阶段,正是在一步步迎合这种市场需求。在未来,安防监控随着高清化,网络化,智能化的不断发展,将对现有存储方案带来不断挑战,包括容量、带宽的扩展问题和管理问题。那么,基于大数据战略的海量存储系统--云存储就倍受青睐了。

基于大数据战略的安防存储优势明显

当前社会对于数据的依赖是前所未有的,数据已变成与硬资产和人同等重要的重要资料。如何存好、保护好、使用好这些海量的大数据,是安防行业面临的重要问题之一。那么基于大数据战略的安防存储其优势何在?

目前的存储市场上,原有的视频监控方案容量、带宽难以扩展。客户往往需要采购更多更高端的设备来扩充容量,提高性能,随之带来的是成本的急剧增长以及系统复杂性的激增。同时,传统的存储模式很难在完全没有业务停顿的情况下进行升级,扩容会对业务带来巨大影响。其次,传统的视频监控方案难于管理。由于视频监控系统一般规模较大,分布特征明显,大多独立管理,这样就把整个系统分割成了多个管理孤岛,相互之间通信困难,难以协调工作,以提高整体性能。除此之外,绿色、安全等也是传统视频监控方案所面临的突出问题。

基于大数据战略的云存储技术与生俱来的高扩展、易管理、高安全等特性为传统存储面临的问题带来了解决的契机。利用云存储,用户可以方便的进行容量、带宽扩展,而不必停止业务,或改变系统架构。同时,云存储还具有高安全、低成本、绿色节能等特点。基于云存储的视频监控解决方案是客户应对挑战很好的选择。王宇说,进入二十一世纪,云存储作为一种新的存储架构,已逐步走入应用阶段,云存储不仅轻松突破了SAN的性能瓶颈,而且可以实现性能与容量的线性扩展,这对于拥有大量数据的安防监控用户来说是一个新选择。

以英特尔推出的Hadoop分布式文件系统(HDFS)为例,其提供了一个高度容错性和高吞吐量的海量数据存储解决方案。目前已经在各种大型在线服务和大型存储系统中得到广泛应用,已经成为海量数据存储的事实标准。

随着信息系统的快速发展,海量的信息需要可靠存储的同时,还能被大量的使用者快速地访问。传统的存储方案已经从构架上越来越难以适应近几年来的信息系统业务的飞速发展,成为了业务发展的瓶颈和障碍。HDFS通过一个高效的分布式算法,将数据的访问和存储分布在大量服务器之中,在可靠地多备份存储的同时还能将访问分布在集群中的各个服务器之上,是传统存储构架的一个颠覆性的发展。最重要的是,其可以满足以下特性:可自我修复的分布式文件存储系统,高可扩展性,无需停机动态扩容,高可靠性,数据自动检测和复制,高吞吐量访问,消除访问瓶颈,使用低成本存储和服务器构建。

以上是小编为大家分享的关于大数据爆发性增长 存储技术面临难题的相关内容,更多信息可以关注环球青藤分享更多干货

⑩ 2.请讲解下 存储器的发展过程3.光纤的应用领域

存储器的发展过程:

1.汞延迟线

汞延迟线是基于汞在室温时是液体,同时又是导体,每比特数据用机械波的波峰(1)和波谷(0)表示。机械波从汞柱的一端开始,一定厚度的熔融态金属汞通过一振动膜片沿着纵向从一端传到另一端,这样就得名“汞延迟线”。在管的另一端,一传感器得到每一比特的信息,并反馈到起点。设想是汞获取并延迟这些数据,这样它们便能存储了。这个过程是机械和电子的奇妙结合。缺点是由于环境条件的限制,这种存储器方式会受各种环境因素影响而不精确。

1950年,世界上第一台具有存储程序功能的计算机EDVAC由冯?诺依曼博士领导设计。它的主要特点是采用二进制,使用汞延迟线作存储器,指令和程序可存入计算机中。

1951年3月,由ENIAC的主要设计者莫克利和埃克特设计的第一台通用自动计算机UNIVAC-I交付使用。它不仅能作科学计算,而且能作数据处理。

2.磁带

UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。

磁带是所有存储媒体中单位存储信息成本最低、容量最大、标准化程度最高的常用存储介质之一。它互换性好、易于保存,近年来,由于采用了具有高纠错能力的编码技术和即写即读的通道技术,大大提高了磁带存储的可靠性和读写速度。根据读写磁带的工作原理可分为螺旋扫描技术、线性记录(数据流)技术、DLT技术以及比较先进的LTO技术。

根据读写磁带的工作原理,磁带机可以分为六种规格。其中两种采用螺旋扫描读写方式的是面向工作组级的DAT(4mm)磁带机和面向部门级的8mm磁带机,另外四种则是选用数据流存储技术设计的设备,它们分别是采用单磁头读写方式、磁带宽度为1/4英寸、面向低端应用的Travan和DC系列,以及采用多磁头读写方式、磁带宽度均为1/2英寸、面向高端应用的DLT和IBM的3480/3490/3590系列等。

磁带库是基于磁带的备份系统,它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。它的存储容量可达到数百PB,可以实现连续备份、自动搜索磁带,也可以在驱动管理软件控制下实现智能恢复、实时监控和统计,整个数据存储备份过程完全摆脱了人工干涉。

磁带库不仅数据存储量大得多,而且在备份效率和人工占用方面拥有无可比拟的优势。在网络系统中,磁带库通过SAN(Storage Area Network,存储区域网络)系统可形成网络存储系统,为企业存储提供有力保障,很容易完成远程数据访问、数据存储备份或通过磁带镜像技术实现多磁带库备份,无疑是数据仓库、ERP等大型网络应用的良好存储设备。

3.磁鼓

1953年,第一台磁鼓应用于IBM 701,它是作为内存储器使用的。磁鼓是利用铝鼓筒表面涂覆的磁性材料来存储数据的。鼓筒旋转速度很高,因此存取速度快。它采用饱和磁记录,从固定式磁头发展到浮动式磁头,从采用磁胶发展到采用电镀的连续磁介质。这些都为后来的磁盘存储器打下了基础。

磁鼓最大的缺点是利用率不高, 一个大圆柱体只有表面一层用于存储,而磁盘的两面都利用来存储,显然利用率要高得多。 因此,当磁盘出现后,磁鼓就被淘汰了。

4.磁芯

美国物理学家王安1950年提出了利用磁性材料制造存储器的思想。福雷斯特则将这一思想变成了现实。

为了实现磁芯存储,福雷斯特需要一种物质,这种物质应该有一个非常明确的磁化阈值。他找到在新泽西生产电视机用铁氧体变换器的一家公司的德国老陶瓷专家,利用熔化铁矿和氧化物获取了特定的磁性质。

对磁化有明确阈值是设计的关键。这种电线的网格和芯子织在电线网上,被人称为芯子存储,它的有关专利对发展计算机非常关键。这个方案可靠并且稳定。磁化相对来说是永久的,所以在系统的电源关闭后,存储的数据仍然保留着。既然磁场能以电子的速度来阅读,这使交互式计算有了可能。更进一步,因为是电线网格,存储阵列的任何部分都能访问,也就是说,不同的数据可以存储在电线网的不同位置,并且阅读所在位置的一束比特就能立即存取。这称为随机存取存储器(RAM),它是交互式计算的革新概念。福雷斯特把这些专利转让给麻省理工学院,学院每年靠这些专利收到1500万~2000万美元。

最先获得这些专利许可证的是IBM,IBM最终获得了在北美防卫军事基地安装“旋风”的商业合同。更重要的是,自20世纪50年代以来,所有大型和中型计算机也采用了这一系统。磁芯存储从20世纪50年代、60年代,直至70年代初,一直是计算机主存的标准方式。

5.磁盘

世界第一台硬盘存储器是由IBM公司在1956年发明的,其型号为IBM 350 RAMAC(Random Access Method of Accounting and Control)。这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘。1968年,IBM公司提出“温彻斯特/Winchester”技术,其要点是将高速旋转的磁盘、磁头及其寻道机构等全部密封在一个无尘的封闭体中,形成一个头盘组合件(HDA),与外界环境隔绝,避免了灰尘的污染,并采用小型化轻浮力的磁头浮动块,盘片表面涂润滑剂,实行接触起停,这是现代绝大多数硬盘的原型。1979年,IBM发明了薄膜磁头,进一步减轻了磁头重量,使更快的存取速度、更高的存储密度成为可能。20世纪80年代末期,IBM公司又对磁盘技术作出一项重大贡献,发明了MR(Magneto Resistive)磁阻磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度比以往提高了数十倍。1991年,IBM生产的3.5英寸硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此,硬盘容量开始进入了GB数量级。IBM还发明了PRML(Partial Response Maximum Likelihood)的信号读取技术,使信号检测的灵敏度大幅度提高,从而可以大幅度提高记录密度。

目前,硬盘的面密度已经达到每平方英寸100Gb以上,是容量、性价比最大的一种存储设备。因而,在计算机的外存储设备中,还没有一种其他的存储设备能够在最近几年中对其统治地位产生挑战。硬盘不仅用于各种计算机和服务器中,在磁盘阵列和各种网络存储系统中,它也是基本的存储单元。值得注意的是,近年来微硬盘的出现和快速发展为移动存储提供了一种较为理想的存储介质。在闪存芯片难以承担的大容量移动存储领域,微硬盘可大显身手。目前尺寸为1英寸的硬盘,存储容量已达4GB,10GB容量的1英寸硬盘不久也会面世。微硬盘广泛应用于数码相机、MP3设备和各种手持电子类设备。

另一种磁盘存储设备是软盘,从早期的8英寸软盘、5.25英寸软盘到3.5英寸软盘,主要为数据交换和小容量备份之用。其中,3.5英寸1.44MB软盘占据计算机的标准配置地位近20年之久,之后出现过24MB、100MB、200MB的高密度过渡性软盘和软驱产品。然而,由于USB接口的闪存出现,软盘作为数据交换和小容量备份的统治地位已经动摇,不久会退出历史舞台。

6. 光盘

光盘主要分为只读型光盘和读写型光盘。只读型指光盘上的内容是固定的,不能写入、修改,只能读取其中的内容。读写型则允许人们对光盘内容进行修改,可以抹去原来的内容,写入新的内容。用于微型计算机的光盘主要有CD-ROM、CD-R/W和DVD-ROM等几种。

上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。

从LD的诞生至计算机用的CD-ROM,经历了三个阶段,即LD-激光视盘、CD-DA激光唱盘、CD-ROM。下面简单介绍这三个阶段性的产品特点。

LD-激光视盘,就是通常所说的LCD,直径较大,为12英寸,两面都可以记录信息,但是它记录的信号是模拟信号。模拟信号的处理机制是指,模拟的电视图像信号和模拟的声音信号都要经过FM(Frequency Molation)频率调制、线性叠加,然后进行限幅放大。限幅后的信号以0.5微米宽的凹坑长短来表示。

CD-DA激光唱盘 LD虽然取得了成功,但由于事先没有制定统一的标准,使它的开发和制作一开始就陷入昂贵的资金投入中。1982年,由飞利浦公司和索尼公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EMF(8~14位调制)编码之后记录到盘上。数字记录代替模拟记录的好处是,对干扰和噪声不敏感,由于盘本身的缺陷、划伤或沾污而引起的错误可以校正。

CD-DA系统取得成功以后,使飞利浦公司和索尼公司很自然地想到利用CD-DA作为计算机的大容量只读存储器。但要把CD-DA作为计算机的存储器,还必须解决两个重要问题,即建立适合于计算机读写的盘的数据结构,以及CD-DA误码率必须从现有的10-9降低到10-12以下,由此就产生了CD-ROM的黄皮书(Yellow Book)标准。这个标准的核心思想是,盘上的数据以数据块的形式来组织,每块都要有地址,这样一来,盘上的数据就能从几百兆字节的存储空间上被迅速找到。为了降低误码率,采用增加一种错误检测和错误校正的方案。错误检测采用了循环冗余检测码,即所谓CRC,错误校正采用里德-索洛蒙(Reed Solomon)码。黄皮书确立了CD-ROM的物理结构,而为了使其能在计算机上完全兼容,后来又制定了CD-ROM的文件系统标准,即ISO 9660。

在上世纪80年代中期,光盘的发展非常快,先后推出了WORM光盘、磁光盘(MO)、相变光盘(Phase Change Disk,PCD)等新品种。20世纪90年代,DVD-ROM、CD-R、CD-R/W等开始出现和普及,目前已成为计算机的标准存储设备。

光盘技术进一步向高密度发展,蓝光光盘是不久将推出的下一代高密度光盘。多层多阶光盘和全息存储光盘正在实验室研究之中,可望在5年之内推向市场。

7.纳米存储

纳米是一种长度单位,符号为nm。1纳米=1毫微米,约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。与纳米存储有关的主要进展有如下内容。

1998年,美国明尼苏达大学和普林斯顿大学制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系。一个量子磁盘相当于我们现在的10万~100万个磁盘,而能源消耗却降低了1万倍。

1988年,法国人首先发现了巨磁电阻效应,到1997年,采用巨磁电阻原理的纳米结构器件已在美国问世,它在磁存储、磁记忆和计算机读写磁头等方面均有广阔的应用前景。

2002年9月,美国威斯康星州大学的科研小组宣布,他们在室温条件下通过操纵单个原子,研制出原子级的硅记忆材料,其存储信息的密度是目前光盘的100万倍。这是纳米存储材料技术研究的一大进展。该小组发表在《纳米技术》杂志上的研究报告称,新的记忆材料构建在硅材料表面上。研究人员首先使金元素在硅材料表面升华,形成精确的原子轨道;然后再使硅元素升华,使其按上述原子轨道进行排列;最后,借助于扫瞄隧道显微镜的探针,从这些排列整齐的硅原子中间隔抽出硅原子,被抽空的部分代表“0”,余下的硅原子则代表“1”,这就形成了相当于计算机晶体管功能的原子级记忆材料。整个试验研究在室温条件下进行。研究小组负责人赫姆萨尔教授说,在室温条件下,一次操纵一批原子进行排列并不容易。更为重要的是,记忆材料中硅原子排列线内的间隔是一个原子大小。这保证了记忆材料的原子级水平。赫姆萨尔教授说,新的硅记忆材料与目前硅存储材料存储功能相同,而不同之处在于,前者为原子级体积,利用其制造的计算机存储材料体积更小、密度更大。这可使未来计算机微型化,且存储信息的功能更为强大。

光纤应用领域:

计算机和微电子制造

用于各种不同的微电子制造工艺和数据储存处理。

.图像记录和打印

用于所有形式的图像处理和永久性图像记录。

.工业制造

用于传统的工业制造和用作高功率二极管激光泵浦光源

.医学用于医学诊断和治疗

.科学研究

用于科学研究,包括可调、窄带宽系统,超快和高能量激光器和高功率泵浦光源。

.通信

用于通信市场上的有源和无源光电产品。