当前位置:首页 » 服务存储 » 存储空间体系结构
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储空间体系结构

发布时间: 2022-12-18 17:05:12

Ⅰ 简述单片机存储空间的两种基本结构

单片机存储器分为两种结构,一种为普林斯顿体系结构(Princeton结构),一种为哈佛结构(Harvard结构)。普林斯顿体系结构是一种将将程序指令存储和数据存储统一编址的存储器结构。哈佛结构是一种将程序指令存储和数据存储分开编址的存储器结构。

Ⅱ 现代计算机储存器的分级体系

在计算机系统中存储层次可分为高速缓冲存储器、主存储器、辅助存储器三级。高速缓冲存储器用来改善主存储器与中央处理器的速度匹配问题。辅助存储器用于扩大存储空间。

存储系统的性能在计算机中的地位日趋重要,主要原因是:

1、冯诺伊曼体系结构是建筑在存储程序概念的基础上,访存操作约占中央处理器(CPU)时间的70%左右。

2、存储管理与组织的好坏影响到整机效率。

3、现代的信息处理,如图像处理、数据库、知识库、语音识别、多媒体等对存储系统的要求很高。

内储存器(内存)

内储存器直接与CPU相连接,由存取速度较快的电子元件构成,但储存容量较小。用来存放当前运行程序的指令和数据,并直接与 CPU 交换信息,是 CPU 处理数据的主要来源。

内储存器由许多储存单元组成,每个单元能存放一个二进制数或一条由二进制编码表示的指令。内储存器是由随机储存器和只读储存器构成的。只读存储器(ROM,Read Only Memory)用于机器的开机初始化工作和系统默认的设备参数设置。

Ⅲ 微型计算机的存储体系如何

微型计算机的存储体系是怎样的?

1、快速存储(内存不保留信息 断电消失)。

2、慢速存储(硬盘 可保留信息 断电不消失)。

3、CPU 缓存 用于存放 CPU指令和设备的I/O处理指令等。

4、其他。。。。。。光盘啊。。磁盘啊。。。U盘啊。。。。。

微型计算机中的多级存储体系以及工作原理

1. 多级存储体系
多级存储结构构成的存储体系是一个整体。从CPU看来,这个整体的速度接近于Cache和寄存器的操作速度、容量是辅存(或海量存储器)的容量,每位价格接近于辅存的位价格。从而较好地解决了存储器中速度、容量、价格三者之间的矛盾,满足了计算机系统的应用需要。

2. 工作原理
存储器的层次结构能够成功的关键在于处理器访问存储器的频率递减。在执行程序期间,处理器的指令存储访问和数据存储访问呈现簇状,典型的程序包括许多迭代循环和子程序,一旦程序进入一个循环或子程序执行,就会重复访问一个小范围的指令集合。同理,对表和数组的操作涉及到存取一簇数据,经过很长一段时间,程序访问的簇会改变,但在较短的时间内,处理器主要访问存储器中固定的簇。

Ⅳ 分层次的存储器结构与多级存储体系是一样的吗

肯定不一样啊。多级存储是一种拓扑结构 ,为了缓解主存储器读写速度慢,不能满足CPU运行速度需要的矛盾,另一方面又要解决主存储器容量小,存不下更多的程序和数据的难题,当前计算机系统中,广泛采用了多级结构的存储器系统。它的应用是建立在程序运行的局部性原理之上的。
分级存储是将数据采取不同的存储方式分别存储在不同性能的存储设备上,减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。分级存储是根据数据的重要性、访问频率、保留时间、容量、性能等指标,将数据采取不同的存储方式分别存储在不同性能的存储设备上,通过分级存储管理实现数据客体在存储设备之间的自动迁移。数据分级存储的工作原理是基于数据访问的局部性。通过将不经常访问的数据自动移到存储层次中较低的层次,释放出较高成本的存储空间给更频繁访问的数据,可以获得更好的性价比。这样,一方面可大大减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能

Ⅳ 计算机三级存储体系是什么

计算机的存储体系中,“三级存储”指的是:高速缓冲存储器、主存储器、辅助存储器。

三级存储的用途:高速缓冲存储器用来改善主存储器与中央处理器的速度匹配问题;辅助存储器用于扩大存储空间。

计算机存储器包括主存(main memory),辅存(mass storage)和寄存器(register)。主存就是平时所说的内存,计算机运行时操作系统和其它进程的代码存储在其中。辅存主要指硬盘,也包括其它辅助存储设备,如软盘,U盘,光盘等,可以存放大量数据。寄存器位于CPU内,在指令执行时起临时存放作用。

寄存器和主存、主存和辅存之间存在不停的数据传输和交流,其速度和容量就影响了计算机的性能。如果寄存器和主存之间每条指令和每个数据都进行一次传输,那么计算机的运行速度就受到限制。因此出现了高速缓冲存储器(cache memory),用于成批处理寄存器内的数据,以同主存进行交流。

而且频繁使用的数据,CPU可以直接从高速缓存中读取,减少CPU的等待时间,提高系统效率。内存的容量有限,有时不能一次载入硬盘中所需的数据,这里会出现虚拟存储(virtual memory)的概念。

虚拟存储是指当要接收的数据超过内存容量时,系统会在硬盘内分配足够的空间存储这些数据,再把这些数据分成很多页(page),再根据需要实时地把一定的页载入内存,这样用户感觉内存的容量就比真实的容量偏大。

另外,缓冲区(buffer)是用于存储速度不同步的设备或优先级不同的设备之间传输数据的区域,使进程之间的相互等待变少,从而使从速度慢的设备读入数据时,速度快的设备的操作进程不发生间断。

这里再顺便说下脱机(spooling)的概念。脱机是指当多个进程要求同时使用非共享资源如打印机时,系统会根据需求把所有的数据同时读取到硬盘,再在打印机上逐个打印,这样给用户的感觉就是一台打印机同时打印多个进程包含的文件。

Ⅵ 大数据时代下的三种存储架构

大数据时代下的三种存储架构_数据分析师考试

大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。

传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。

基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。

尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。

目前市场上的存储架构如下:

(1)基于嵌入式架构的存储系统

节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。

(2)基于X86架构的存储系统

平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。

此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。

面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。

该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。

平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。

(3)基于云技术的存储方案

当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。

与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。

一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。

高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。

针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。

云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。

对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。

云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。

以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅶ 谁能简述三大网络存储

网络存储结构大致分为三种:直连式存储、网络存储设备和存储网络。
1、开放系统的直连式存储(Direct-Attached Storage,简称DAS)已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。直连式存储与服务器主机之间的连接通道通常采用SCSI连接,随着服务器CPU的处理能力越来越强,存储硬盘空间越来越大,阵列的硬盘数量越来越多,SCSI通道将会成为IO瓶颈;服务器主机SCSI ID资源有限,能够建立的SCSI通道连接有限。
2、NAS(Network Attached Storage:网络附属存储)按字面简单说就是连接在网络上,具备资料存储功能的装置,因此也称为“网络存储器”。它是一种专用数据存储服务器。它以数据为中心,将存储设备与服务器彻底分离,集中管理数据,从而释放带宽、提高性能、降低总拥有成本、保护投资。其成本远远低于使用服务器存储,而效率却远远高于后者。目前国际着名的NAS企业有Netapp、EMC、OUO等。
3、SAN(Storage Area Network )是一个集中式管理的高速存储网络,由多供应商存储系统、存储管理软件、应用程序服务器和网络硬件组成,能够帮助您充分利用您所拥有的商业信息的价值。由于SAN的基础是存储接口,所以是与传统网络不同的一种网络,常常被称为服务器后面的网络。

Ⅷ 计算机采用分层次存储体系结构的原因 答完整

在计算机网络技术中,网络的体系结构指的是通信系统的整体设计,它的目的是为网络硬件、软件、协议、存取控制和拓扑提供标准。现在广泛采用的是开放系统互连OSI(Open System Interconnection)的参考模型,它是用物理层、数据链路层、网络层、传送层、对话层、表示层和应用层七个层次描述网络的结构。你应该注意的是,网络体系结构的优劣将直接影响总线、接口和网络的性能。而网络体系结构的关键要素恰恰就是协议和拓扑。目前最常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。

采用分层次的结构原因:各层功能相对独立,各层因技术进步而做的改动不会影响到其他层,从而保持体 系结构的稳定性

Ⅸ 什么是分级的存储体系结构它主要解决了什么问题

分级存储是将数据采取不同的存储方式分别存储在不同性能的存储设备上,减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。分级存储是根据数据的重要性、访问频率、保留时间、容量、性能等指标,将数据采取不同的存储方式分别存储在不同性能的存储设备上,通过分级存储管理实现数据客体在存储设备之间的自动迁移。

数据分级存储的工作原理是基于数据访问的局部性。通过将不经常访问的数据自动移到存储层次中较低的层次,释放出较高成本的存储空间给更频繁访问的数据,可以获得更好的性价比。这样,一方面可大大减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。

(9)存储空间体系结构扩展阅读

在分级数据存储结构中,存储设备一般有磁带库、磁盘或磁盘阵列等,而磁盘又可以根据其性能分为FC磁盘、SCSI磁盘、SATA磁盘等多种,而闪存存储介质(非易失随机访问存储器(NVRAM))也因为较高的性能可以作为分级数据存储结构中较高的一级。一般,磁盘或磁盘阵列等成本高、速度快的设备,用来存储经常访问的重要信息,而磁带库等成本较低的存储资源用来存放访问频率较低的信息。

信息生命周期管理(Information Lifecycle Management,ILM)是StorageTek公司针对不断变化的存储环境推出的先进存储管理理念,ILM试图实现根据数据在整个生命周期过程中不断变化的数据访问需求而进行数据的动态分布。

分级存储和ILM在存储体系结构上基本相同,目标也都是使不同级别的数据在给定时间和不同级别的存储资源能够更好的匹配。二者本质差别是数据分级的标准不同:前者标准为数据近期被访问的概率;后者标准为数据近期对企业的价值。