⑴ 顺序存储表示法为什么不是树的存储形式
顺序存储表示法是树的存储形式的原因:顺序存储方式不仅能用于存储线性结构,还可以用来存放非线性结构,例如完全二叉树是属于非线性结构,但其最佳存储方式是顺序存储方式。
对于一般的家谱树(一般的多叉树)来说,我们可以很清楚的看出层次关系,树的层数表示代数(一共多少代人),树的最后一层表示最后一代人,由于多叉链表法表示的不方便,因此被迫无奈采用孩子兄弟表示法(二叉链表法)。
结构
二叉树的顺序存储就是用一组连续的存储单元存放二又树中的结点元素,一般按照二叉树结点自上向下、自左向右的顺序存储。使用此存储方式,结点的前驱和后继不一定是它们在逻辑上的邻接关系,非常适用于满二又树和完全二又树。根据完全二叉树和满二叉树的特性,假设将图1中的完全二又树存放在一维数组bree中,将发现结点的编号正好与数组元素的下标对应。
⑵ 假设二叉树的存储结构是顺序的,用递归算法实现二叉树上度为0、1、2结点个数的统计,并输出统计结果
假设根结点在 a[0],且二叉树存储的都是正整数、非结点元素都是0或负值,已经放在数组中了,相关的程序段如下(Pascal代码):
var n:array[0..2]of integer; i:integer;
procere work(k:integer);
var t:integer;
begin
if a[k]>0 then
begin
if a[k+k]>0 work(k+k);
if a[k+k+1]>0 work(k+k+1);
t:=ord(a[k+k]>0)+ord(a[k+k+1]>0);
inc(a[t]);
end;
end;
主程序调用:
word(0);
for i:=0 to 2 do
writeln('Degree[',i,'] has ',n[i]);
⑶ c语言(高分)
1.相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值.
比如阶乘函数:f(n)=n*f(n-1)
在f(3)的运算过程中,递归的数据流动过程如下:
f(3){f(i)=f(i-1)*i}-->f(2)-->f(1)-->f(0){f(0)=1}-->f(1)-->f(2)--f(3){f(3)=6}
而递推如下:
f(0)-->f(1)-->f(2)-->f(3)
由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意.
2.所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串行(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对于一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
3.索引查找是在索引表和主表(即线性表的索引存储结构)上进行的查找。索引查找的过程是:首先根据给定的索引值K1,在索引表上查找出索引值等于KI的索引项,以确定对应予表在主表中的开始位置和长度,然后再根据给定的关键字K2,茬对应的子表中查找出关键字等于K2的元素(结点)。对索引表或子表进行查找时,若表是顺序存储的有序表,则既可进行顺序查找,也可进行二分查找,否则只能进行顺序查找。
设数组A是具有mainlist类型的一个主表,数组B是具有inde)dist类型的在主表A 上建立的一个索引表,m为索引表B的实际长度,即所含的索引项的个数,KI和K2分别为给定待查找的索引值和关键字(当然它们的类型应分别为索引表中索引值域的类型和主表中关键字域在索引存储中,不仅便于查找单个元素,而且更便于查找一个子表中的全部元素。当需要对一个子袁中的全部元素依次处理时,只要从索引表中查找出该子表的开始位
置即可。由此开始位置可以依次取出该子表中的每一个元素,所以整个查找过程的时间复杂度为,若不是采用索引存储,而是采用顺序存储,即使把它组织成有序表而进行二分查找时,索引查找一个子表中的所有元素与二分查找一个子表中的所有元素相比。
若在主表中的每个子表后都预留有空闲位置,则索引存储也便于进行插入和删除运算,因为其运算过程只涉及到索引表和相应的子表,只需要对相应子表中的元素进行比较和移动,与其它任何子表无关,不像顺序表那样需涉及到整个表中的所有元素,即牵一发而动全身。
在线性表的索引存储结构上进行插入和删除运算的算法,也同查找算法类似,其过程为:首先根据待插入或删除元素的某个域(假定子表就是按照此域的值划分的)的值查找索引表,确定出对应的子表,然后再根据待插入或删除元素的关键字,在该子表中做插入或删除元素的操作。因为每个子表不是顺序存储,就是链接存储,所以对它们做插入或删除操作都是很简单的。
4.插入法排序
#define N 10
#include"stdio.h"
main()
{ int i,j,k,t,a[N];
clrscr();
printf("Please input %d numbers:\n",N);
for(i=0;i<N;i++)
scanf("%d",&a[i]);
for(i=1;i<N;i++)
{
for(j=0;j<i;j++)
{if(a[j]>a[i])
{t=a[i];
for(k=i;k>=j;k--)
a[k]=a[k-1];
a[j]=t;
}
}
}
printf("small to big order:\n");
for(i=0;i<N;i++)
printf("%-2d",a[i]);
printf("\n");
getch();
}
⑷ 二叉树的中序、前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现,应包含建树的实现。
二叉树的遍历是指按照一定次序访问二叉树中的所有节点,且每个节点仅被访问一次的过程。是最基本的运算,是其他运算的基础。
二叉树有两种存储结构:顺序存储和链式存储
顺序存储: (对完全二叉树来说,可以充分利用存储空间,但对于一般的二叉树,只有少数的存储单元被利用)
[cpp] view plain
typedef struct
{
ElemType data[MaxSize];
int n;
}SqBTree;
链式存储:
[csharp] view plain
typedef struct node
{
ElemType data;
struct node *lchild;
struct node *rchild;
} BTNode;
二叉树三种递归的遍历方法:
先序遍历 访问根节点→先序遍历左子树→先序遍历右子树
中序遍历 中序遍历左子树→访问根节点→中序遍历右子树
后序遍历 后序遍历左子树→后序遍历右子树→访问根节点
二叉树遍历的递归算法:
[cpp] view plain
void preOrder(BTNode *b) //先序遍历递归算法
{
if (b!=NULL)
{
visit(b);
preOrder(b->lchild);
preOrder(b->rchild);
}
}
void InOrder(BTNode *b) //中序遍历递归算法
{
if(b!=NULL)
{
InOrder(b->lchild);
visit(b);
InOrder(b->rchild);
}
}
void PostOrder(BTNode *b) //后序遍历递归算法
{
if(b!=NULL){
PostOrder(b->lchild);
PostOrder(b->rchild);
visit(b);
}
}
二叉树非递归遍历算法:
有两种方法:①用栈存储信息的方法 ②增加指向父节点的指针的方法 暂时只介绍下栈的方法
先序遍历:
[cpp] view plain
void PreOrder(BTNode *b)
{
Stack s;
while(b!=NULL||!s.empty())
{
if(b!=NULL){
visit(b);
s.push(b);
b=b->left;
}
else{
b=s.pop();
b=b->right;
}
}
}
中序遍历:
[cpp] view plain
void InOrder(BTNode *b){
Stack s;
while(b!=NULL||!s.empty()){
if (b!=NULL)
{
s.push(b);
s=s->left
}
if(!s.empty()){
b=s.pop();
visit(b);
b=b->right;
}
}
}
后序遍历:
[cpp] view plain
void PostOrder(BTNode *b){
Stack s;
while(b!=NULL){
s.push(b);
}
while(!s.empty()){
BTNode* node=s.pop();
if(node->bPushed){
visit(node);
}
else{
s.push(node);
if(node->right!=NULL){
node->right->bPushed=false;
s.push(node->right);
}
if(node->left!=NULL){
node->left->bpushed=false;
s.push(node->left);
}
node->bPushed=true; //如果标识位为true,则表示入栈
}
}
}
层次遍历算法:(用队列的方法)
[cpp] view plain
void levelOrder(BTNode *b){
Queue Q;
Q.push(b);
while(!Q.empty()){
node=Q.front();
visit(node);
if(NULL!=node->left){
Q.push(node->left);
}
if(NULL!=right){
Q.push(node->right);
}
}
}<span style=""></span>
已知先序和中序求后序的算法:(已知后序和中序求先序的算法类似,但已知先序和后序无法求出中序)
[cpp] view plain
int find(char c,char A[],int s,int e) /* 找出中序中根的位置。 */
{
int i;
for(i=s;i<=e;i++)
if(A[i]==c) return i;
}
/* 其中pre[]表示先序序,pre_s为先序的起始位置,pre_e为先序的终止位置。 */
/* 其中in[]表示中序,in_s为中序的起始位置,in_e为中序的终止位置。 */
/* pronum()求出pre[pre_s~pre_e]、in[in_s~in_e]构成的后序序列。 */
void pronum(char pre[],int pre_s,int pre_e,char in[],int in_s,int in_e)
{
char c;
int k;
if(in_s>in_e) return ; /* 非法子树,完成。 */
if(in_s==in_e){printf("%c",in[in_s]); /* 子树子仅为一个节点时直接输出并完成。 */
return ;
}
c=pre[pre_s]; /* c储存根节点。 */
k=find(c,in,in_s,in_e); /* 在中序中找出根节点的位置。 */
pronum(pre,pre_s+1,pre_s+k-in_s,in,in_s,k-1); /* 递归求解分割的左子树。 */
pronum(pre,pre_s+k-in_s+1,pre_e,in,k+1,in_e); /* 递归求解分割的右子树。 */
printf("%c",c); /* 根节点输出。 */
}
main()
{
char pre[]="abdc";
char in[]="bdac";
printf("The result:");
pronum(pre,0,strlen(in)-1,in,0,strlen(pre)-1);
getch();
}
⑸ 一棵完全二叉树以顺序方式存储,设计一个递归算法,对该完全二叉树进行中序遍历。
这棵树根节点是tree[1],顺序存储。最后一个叶子节点是tree[maxnode];
void mid(int treenode)
{ if (treenode > maxnode) return;
mid(treenode * 2);
visit(treenode) /*访问treenode节点*/
mid(treenode * 2 + 1);
}
⑹ 题目是1.___是实现递归所必须的存储结构。
肯定是栈啊,递归函数中先调用的函数后结束,满足后进先出的性质。
逻辑结构描述的是元素之间的位置关系,而存储结构是元素在内存中是怎样存储的,顺序存储或链式存储。
⑺ 顺序存储方式只能用于存储线性结构吗
不是。
顺序存储方式不仅能用于存储线性结构,还可以用来存放非线性结构,例如完全二叉树是属于非线性结构,但其最佳存储方式是顺序存储方式。
数据的逻辑结构包括线性结构、树、图、集合这四种,在线性结构里面又有线性表、栈、队列等等。而数据的存储结构只有两种:顺序存储结构和链式存储结构,这两种存储结构,前面一个是利用数据元素在存储器中的相对位置表示其逻辑结构,另外一个是用指针来表示其逻辑关系。
顺序存储结构
的主要优点是节省存储空间,因为分配给数据的存储单元全用存放结点的数据(不考虑c/c++语言中数组需指定大小的情况),结点之间的逻辑关系没有占用额外的存储空间。
采用这种方法时,可实现对结点的随机存取,即每一个结点对应一个序号,由该序号可以直接计算出来结点的存储地址。但顺序存储方法的主要缺点是不便于修改,对结点的插入、删除运算时,可能要移动一系列的结点。
⑻ 二叉树先序遍历递归算法和非递归算法本质区别
1. 先序遍历
在先序遍历中,对节点的访问工作是在它的左右儿子被访问之前进行的。换言之,先序遍历访问节点的顺序是根节点-左儿子-右儿子。由于树可以通过递归来定义,所以树的常见操作用递归实现常常是方便清晰的。递归实现的代码如下:
void PreOrderTraversal(BinTree BT)
{
if( BT )
{
printf(“%d\n”, BT->Data); //对节点做些访问比如打印
PreOrderTraversal(BT->Left); //访问左儿子
PreOrderTraversal(BT->Right); //访问右儿子
}
}
由递归代码可以看出,该递归为尾递归(尾递归即递归形式在函数末尾或者说在函数即将返回前)。尾递归的递归调用需要用栈存储调用的信息,当数据规模较大时容易越出栈空间。虽然现在大部分的编译器能够自动去除尾递归,但是即使如此,我们不妨自己去除。非递归先序遍历算法基本思路:使用堆栈
a. 遇到一个节点,访问它,然后把它压栈,并去遍历它的左子树;
b. 当左子树遍历结束后,从栈顶弹出该节点并将其指向右儿子,继续a步骤;
c. 当所有节点访问完即最后访问的树节点为空且栈空时,停止。
实现代码如下:
void PreOrderTraversal(BinTree BT)
{
BinTree T = BT;
Stack S = CreatStack(MAX_SIZE); //创建并初始化堆栈S
while(T || !IsEmpty(S))
{
while(T) //一直向左并将沿途节点访问(打印)后压入堆栈
{
printf("%d\n", T->Data);
Push(S, T);
T = T->Left;
}
if (!IsEmpty(S))
{
T = Pop(S); //节点弹出堆栈
T = T->Right; //转向右子树
}
}
}
由以上例子可以看出,递归与非递归的本质区别就是递归是不断循环调用同一过程,非递归是循环执行同一个动作,并且非递归有入栈与出栈的过程,因此更节省存储空间。个人浅见,欢迎指正。