当前位置:首页 » 服务存储 » 主流消息队列怎么存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

主流消息队列怎么存储

发布时间: 2023-01-11 13:49:26

A. 消息队列核心原理

消息队列已经逐渐成为分布式应用场景、内部通信、以及秒杀等高并发业务场景的核心手段,它具有低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。
无论是 RabbitMQ、RocketMQ、ActiveMQ、Kafka还是其它等,都有的一些基本原理、术语、机制等,总结分享出来,希望大家在使用消息队列技术的时候能够快速理解。

1.消息生产者Procer:发送消息到消息队列。
2.消息消费者Consumer:从消息队列接收消息。
3.Broker:概念来自与Apache ActiveMQ,指MQ的服务端,帮你把消息从发送端传送到接收端。
4.消息队列Queue:一个先进先出的消息存储区域。消息按照顺序发送接收,一旦消息被消费处理,该消息将从队列中删除。

1)消息的转储:在更合适的时间点投递,或者通过一系列手段辅助消息最终能送达消费机。
2)规范一种范式和通用的模式,以满足解耦、最终一致性、错峰等需求。
3)其实简单理解就是一个消息转发器,把一次RPC做成两次RPC。发送者把消息投递到broker,broker再将消息转发一手到接收端。
总结起来就是两次RPC加一次转储,如果要做消费确认,则是三次RPC。

点对点模型 用于 消息生产者 和 消息消费者 之间 点到点 的通信。
点对点模式包含三个角色:

发布订阅模型包含三个角色:

生产者发送一条消息到队列queue,只有一个消费者能收到。
发布者发送到topic的消息,只有订阅了topic的订阅者才会收到消息。

基于Queue消息模型,利用FIFO先进先出的特性,可以保证消息的顺序性。

即消息的Ackownledge确认机制,为了保证消息不丢失,消息队列提供了消息Acknowledge机制,即ACK机制,当Consumer确认消息已经被消费处理,发送一个ACK给消息队列,此时消息队列便可以删除这个消息了。如果Consumer宕机/关闭,没有发送ACK,消息队列将认为这个消息没有被处理,会将这个消息重新发送给其他的Consumer重新消费处理。

主要是用“记录”和“补偿”的方式。
1.本地事务维护业务变化和通知消息,一起落地,然后RPC到达broker,在broker成功落地后,RPC返回成功,本地消息可以删除。否则本地消息一直靠定时任务轮询不断重发,这样就保证了消息可靠落地broker。
2.broker往consumer发送消息的过程类似,一直发送消息,直到consumer发送消费成功确认。
3.我们先不理会重复消息的问题,通过两次消息落地加补偿,下游是一定可以收到消息的。然后依赖状态机版本号等方式做判重,更新自己的业务,就实现了最终一致性。
4.如果出现消费方处理过慢消费不过来,要允许消费方主动ack error,并可以与broker约定下次投递的时间。
5.对于broker投递到consumer的消息,由于不确定丢失是在业务处理过程中还是消息发送丢失的情况下,有必要记录下投递的IP地址。决定重发之前询问这个IP,消息处理成功了吗?如果询问无果,再重发。
6.事务:本地事务,本地落地,补偿发送。本地事务做的,是业务落地和消息落地的事务,而不是业务落地和RPC成功的事务。消息只要成功落地,很大程度上就没有丢失的风险。

消息的收发处理支持事务,例如:在任务中心场景中,一次处理可能涉及多个消息的接收、处理,这应该处于同一个事务范围内,如果一个消息处理失败,事务回滚,消息重新回到队列中。

消息的持久化,对于一些关键的核心业务来说是非常重要的,启用消息持久化后,消息队列宕机重启后,消息可以从持久化存储恢复,消息不丢失,可以继续消费处理。

在实际生产环境中,使用单个实例的消息队列服务,如果遇到宕机、重启等系统问题,消息队列就无法提供服务了,因此很多场景下,我们希望消息队列有高可用性支持,例如RabbitMQ的镜像集群模式的高可用性方案,ActiveMQ也有基于LevelDB+ZooKeeper的高可用性方案,以及Kafka的Replication机制等。

B. 到底什么是消息队列Java中如何实现消息队列

“消息队列”是在消息的传输过程中保存消息的容器。和我们学过的LinkedHashMap,TreeSet等一样,都是容器。既然是容器,就有有自己的特性,就像LinkedHashMap是以键值对存储。存取顺序不变。而消息队列,看到队列就可以知道。这个容器里面的消息是站好队的,一般遵从先进先出原则。

java中已经为我们封装好了很多的消息队列。在java 1.5版本时推出的java.util.concurrent中有很多现成的队列供我们使用。特性繁多,种类齐全。是你居家旅游开发必备QAQ。

下面简单列举这个包中的消息队列

  1. :阻塞队列 BlockingQueue

  2. 数组阻塞队列 ArrayBlockingQueue

  3. 延迟队列 DelayQueue

  4. 链阻塞队列 LinkedBlockingQueue

  5. 具有优先级的阻塞队列 PriorityBlockingQueue

  6. 同步队列 SynchronousQueue

  7. 阻塞双端队列 BlockingDeque

  8. 链阻塞双端队列 LinkedBlockingDeque

    不同的队列不同的特性决定了队列使用的时机,感兴趣的话你可以详细了解。具体的使用方式我就不赘述了

C. 消息队列之zeroMQ、rabbitMQ、kafka

      首先消息是网络通讯的载体,队列可以理解是一种先进先出的数据结构,消息队列是存放消息的容器,是分布式系统中的重要组件。消息队列的优势在于:解耦、异步、削峰,把相关性不

强的模块独立分开视为解耦,异步就是非必要逻辑异步方式处理,加快响应速度,削峰是避免短期高并发导致系统问题进行缓冲队列处理。消息队列的缺点在于:加强系统复杂性、系统可用性降低,使

用了消息队列系统出现问题排查的范围就变大、需要考虑消息队列导致的问题。

          本文说明主流的消息队列,针对使用过的zeroMQ和rabbitMQ、Kakfa:

          zeroMQ :C语言开发,号称最快的消息队列,本着命名zero的含义,中油中间架构使用简单,表面上是基于socket的封装套接字API,在多个节点应用场景下非常灵活、架构的可扩展性很强,

实现N到M的协同处理;

            zmq的socket模式: req、rep、push、pull、pub、sub、router、dealer。

          (1)req和rep:请求回应模型,req和rep都可以请求和回答,不同的只是req是先send再rec,rep是先rec再send。支持N个请求端一个接收端,也支持N个接收端一个请求端。N个接收端采

用rr负载均衡。 哪个是“一”端,哪个就bind端口,“N”端就只能connect,所以,req+rep无论谁bind端口,肯定要有一个是“一”。

          (2)  router和dealer:随时可以发送和接收的req和rep,看起来router+dealer跟 req+rep属于同类功能。因为router和dealer可以随时发送接收,所以它们可以用来做路由。一个router用来响

应N个req,然后它在响应处理的时候,再通过另一个socket把请求扔出去,接收者是另外的M个rep,这就做到N:M。

         (3)pub和sub :订阅和推送,对应发布者和订阅者。

         (4)push和pull:就是管道,一个只推数据,一个只拉数据。

           rabbitMQ :使用erlang语言开发,高并发特点,基于AMQP(即Advanced Message Queuing Protocol)的开源高级消费队列,AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/

订阅)、可靠性、安全),企业级适应性和稳定性,并且有WEB管理界面方便用户查看和管理。以下是rabbitMQ的结构图:

         (1)Procer:数据发送方,一般一个Message有两个部分:payload(有效载荷)和label(标签),payload是数据实际载体,label是exchange的名字或者一个tag,决定发给哪个Consumer;

         (2)Exchange: 内部 消息交换器,exchange从生产者那收到消息后,一般会指定一个Routing Key,来指定这个消息的路由规则,当然Routing Key需要与Exchange Type及Binding key联合使用

才能最终生效,根据路由规则,匹配查询表中的routing key,分发消息到queue中;

         (3)binding:即绑定,绑定(Binding)Exchange与Queue的同时,一般会指定一个Binding key,但不一定会生效,依赖于Exchange Type;

         (4)Queue:即队列是rabbitmq内部对象,用于存储消息,一个message可以被同时拷贝到多个queue中,queue对load balance的处理是完美的。对于多个Consumer来说,RabbitMQ 使用循

环的方式(round-robin)的方式均衡的发送给不同的Consumer;

         (5)Connection与Channel: Connection 就是一个TCP的连接,Procer和Consumer都是通过TCP连接到RabbitMQ Server, Channel 是为了节省开销建立在上述的TCP连接中的接口,大部

分的业务操作是在Channel这个接口中完成的,包括定义Queue、定义Exchange、绑定Queue与Exchange、发布消息等;

        (6)Consumer:即数据的接收方,如果有多个消费者同时订阅同一个Queue中的消息,Queue中的消息会被平摊给多个消费者;

        (7)Broker: 即RabbitMQ Server,其作用是维护一条从Procer到Consumer的路线,保证数据能够按照指定的方式进行传输;

       (8)Virtual host:即虚拟主机,当多个不同的用户使用同一个RabbitMQ server提供的服务时,可以划分出多个vhost,每个用户在自己的vhost创建exchange/queue;

         rabbitMQ消息转发中的路由转发是重点,生产者Procer在发送消息时,都需要指定一个RoutingKey和Exchange,Exchange收到消息后可以看到消息中指定的RoutingKey,再根据当前

Exchange的ExchangeType,按一定的规则将消息转发到相应的queue中去。三种Exchage type:

       (1)Direct exchange :直接转发路由,原理是通过消息中的routing key,与binding 中的binding-key 进行比对,若二者匹配,则将消息发送到这个消息队列;

          比如:消息生成者生成一个message(payload是1,routing key为苹果),两个binding(binding key分别为苹果、香蕉);exchange比对消息的routing key和binding key后,将消息发给了queue1,消息消费者1获得queue1的消息;

       (2)Topic exchange: 通配路由,是direct exchange的通配符模式,

          比如:消息生成者生成一个message(payload是1,routing key为quick.orange.rabbit),两个binding(binding key分别为*.orange. 、 *.*.rabbit);exchange比对消息的routing key和binding key

后,exchange将消息分发给两个queue,两个消费者获得queue的消息;

     (3)Fanout exchange: 复制分发路由,原理是不需要routkey,当exchange收到消息后,将消息复制多份转发给与自己绑定的消息队列,

          比如:消息生成者生成一个message(payload是1,routing key为苹果),两个binding(binding key分别为苹果、香蕉);exchange将消息分发给两个queue,两个消费者获得queue的消息;

       rabbiMQ如何保证消息的可靠性?

     (1)Message rability:消息持久化,非持久化消息保存在内存中,持久化消息写入内存同时也写入磁盘;

     (2)Message acknowledgment:消息确认机制,可以要求消费者在消费完消息后发送一个回执给RabbitMQ,RabbitMQ收到消息回执(Message acknowledgment)后才将该消息从Queue中移

除。通过ACK。每个Message都要被acknowledged(确认,ACK)。

     (3)生产者消息确认机制:AMQP事务机制、生产者消息确认机制(publisher confirm)。

     最后, 对比一下zeroMQ、rabbitMQ、kafka主流的消息队列的性能情况:

      对比方向                                                                          概要

      吞吐量                             万级 RabbitMQ 的吞吐量要比 十万级甚至是百万级Kafka 低一个数量级。ZeroMQ号称最快的消息队列系统,尤其针对大吞吐量的需求场景。

      可用性                            都可以实现高可用。RabbitMQ 都是基于主从架构实现高可用性。 kafka 也是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用

      时效性                             RabbitMQ 基于erlang开发,所以并发能力很强,性能极其好,延时很低,达到微秒级。其他两个个都是 ms 级。

      功能支持                          Kafka 功能较为简单,主要支持简单的MQ功能,在大数据领域实时计算以及日志采集被大规模使用;ZeroMQ能够  实现RabbitMQ不擅长的高级/复杂 的队列

      消息丢失                          RabbitMQ有ack模型,也有事务模型,保证至少不会丢数据,  Kafka 理论上不会丢失,但不排除批量情况下。

      开发环境                          RabbitMQ需要erlang支持、kafka基于zookeeper管理部署、zeroMQ程序编译调用即可

      封装库                               基于c++开发,使用RabbitMQ-C,cppKafka,而zeroMQ基于C语言开发,无需封装

D. Kafka 设计详解之队列

在 上文 中我们介绍了 Kafka 的网络通信,本文打算详细分析 Kafka 的核心 — 队列 的设计和实现,来对 Kafka 进行更深一步的了解。

队列是一种先进先出(FIFO)的数据结构,它是 Kafka 中最重要的部分,负责收集生产者生产的消息,并将这些消息传递给消费者。要实现一个队列有多种方式,Kafka 作为一个消息队列中间件,在设计队列时主要要考虑两个问题:

乍一看到这个问题,我们会想,内存的读取速度远快于磁盘,如果追求性能,内存也充足的话,当然是将生产者产生的消息数据写到内存(比如用一个数组或者链表来存储队列数据),供消费者消费。真的是这样吗?
下面我们依次分析下写内存和写磁盘文件的优缺点,首先,内存的优点是读写速度非常快,但是,如果我们的目标是设计“大数据量”下的“高吞吐量”的消息队列,会有以下几个问题:

接下来我们来分析一下磁盘,写磁盘文件方式存储队列数据的优点就是能规避上述内存的缺点,但其有很严重的缺点,就是读写速度慢,如果纯依靠磁盘,那消息队列肯定做不到“高吞吐量”这个目标。

分析了内存跟磁盘的优缺点,好像我们还是只能选写内存,但我们忽视了磁盘的两个情况:一是磁盘慢是慢在随机读写,如果是顺序读写,他的速度能达到 600MB/sec(RAID-5 磁盘阵列),并不慢,如果我们尽可能地将数据的读写设计成顺序的,可以大大提升性能。二是 现代的操作系统会(尽可能地)将磁盘里的文件进行缓存

有了操作系统级别的文件缓存,那用磁盘存储队列数据的方式就变得有优势了。首先,磁盘文件的数据会有文件缓存,所以不必担心随机读写的性能;其次,同样是使用内存,磁盘文件使用的是操作系统级别的内存,相比于在 Java 内存堆中存储队列,它没有 GC 问题,也没有 Java 对象的额外内存开销,更可以规避应用重启后的内存 load 数据耗时的问题,而且,文件缓存是操作系统提供的,因为我们只要简单的写磁盘文件,系统复杂性大大降低。

因此,Kafka 直接使用磁盘来存储消息队列的数据。

刚才我们已经决定用磁盘文件来存储队列数据,那么要如何选择数据结构呢?一般情况下,如果需要查找数据并随机访问,我们会用 B+ 树来存储数据,但其时间复杂度是 O(log N),由于我们设计的是消息队列,我们可以完全顺序的写收到的生产者消息,消费者消费时,只要记录下消费者当前消费的位置,往后消费就可以了,这样可以对文件尽可能的进行顺序读写,同时,时间复杂度是O(1)。其实,这跟我们写日志的方式很像,每条日志顺序 append 到日志文件。

之前我们已经确定采用直接顺序写磁盘文件的方式来存储队列数据,下面我们来剖析下具体的实现细节。

在 Kafka 中,用一个文件夹存储一条消息队列,成为一个 Log,每条消息队列由多个文件组成,每个文件称为一个 LogSegment,每当一个 LogSegment 的大小到达阈值,系统就会重新生成一个 LogSegment;当旧的 LogSegment 过期需要清理时(虽然磁盘空间相对于内存会宽裕很多,我们可以保存更长时间的消息数据,比如一周,以供消费者更灵活的使用,但还是需要定期清理太老的数据),系统会根据清理策略删除这些文件。

现在我们知道一个队列(Log)是由多个队列段文件(LogSegment)组成的,那么 Kafka 是如何将这些文件逻辑上连接从而组成一条有序队列的呢?在生成每个队列段文件时,Kafka 用该段的初始位移来对其命名,如在新建一个队列时,会初始化第一个队列段文件,那么其文件名就是0,假设每个段的大小是固定值 L,那么第二个段文件名就是 L,第 N 个就是 (N - 1)* L。这样,我们就可以根据文件名对段文件进行排序,排序后的顺序就是整个队列的逻辑顺序。

了解了队列的基本实现,下面我们就来分析下队列的核心操作—读和写。

写操作发生在生产者向队列生产消息时,在上篇文章讲网络通信时我们已经说到,所有的客户端请求会根据协议转到一个 Handler 来具体处理,负责写操作的 Handler 叫 ProcerHandler,整个写请求的流程如下:

之前我们说过,如果是顺序写,由于省掉了磁头寻址的时间,磁盘的性能还是很高的,我们看到 Kakfa 队列是以顺序方式写的,所以性能很高。但是,如果一台 Kafka 服务器有很多个队列,而硬盘的磁头是有限的,所以还是得在不同的队列直接来回切换寻址,性能会有所下降。

队列的读操作发送在消费者消费队列数据时,由于队列是线性的,只需要记录消费者上次消费到了哪里(offset),接下去消费就好了。那么首先会有一个问题,由谁来记消费者到底消费到哪里了?

一般情况下,我们会想到让服务端来记录各个消费者当前的消费位置,当消费者来拉数据,根据记录的消费位置和队列的当前位置,要么返回新的待消费数据,要么返回空。让服务端记录消费位置,当遇到网络异常时会有一些问题,比如服务端将消息发给消费者后,如果网络异常消费者没有收到消息,那么这条消息就被“跳过”了,当然我们可以借鉴二阶段提交的思想,服务端将消息发送给消费者后,标记状态为“已发送”,等消费者消费成功后,返回一个 ack 给服务端,服务端再将其标记为“成功消费”。不过这样设计还是会有一个问题,如果消费者没有返回 ack 给服务端,此时这条消息可能在已经被消费也可能还没被消费,服务端无从得知,只能根据人为策略跳过(可能会漏消息)或者重发(可能存在重复数据)。另一个问题是,如果有很多消费者,服务端需要记录每条消息的每个消费者的消费状态,这在大数据的场景下,非常消耗性能和内存。

Kafka 将每个消费者的消费状态记录在消费者本身(隔一段时间将最新消费状态同步到 zookeeper),每次消费者要拉数据,就给服务端传递一个 offset,告诉服务端从队列的哪个位置开始给我数据,以及一个参数 length,告诉服务端最多给我多大的数据(批量顺序读数据,更高性能),这样就能使服务端的设计复杂度大大降低。当然这解决不了一致性的问题,不过消费者可以根据自己程序特点,更灵活地处理事务。

下面就来分析整个读的流程:

分布式系统中不可避免的会遇到一致性问题,主要是两块:生产者与队列服务端之间的一致性问题、消费者与队列服务端之间的一致性问题,下面依次展开。

当生产者向服务端投递消息时,可能会由于网络或者其他问题失败,如果要保证一致性,需要生产者在失败后重试,不过重试又会导致消息重复的问题,一个解决方案是每个消息给一个唯一的 id,通过服务端的主动去重来避免重复消息的问题,不过这一机制目前 Kafka 还未实现。目前 Kafka 提供配置,供用户不同场景下选择允许漏消息(失败后不重试)还是允许重复消息(失败后重试)。

由于在消费者里我们可以自己控制消费位置,就可以更灵活的进行个性化设计。如果我们在拉取到消息后,先增加 offset,然后再进行消息的后续处理,如果在消息还未处理完消费者就挂掉,就会存在消息遗漏的问题;如果我们在拉取到消息后,先进行消息处理,处理成功后再增加 offset,那么如果消息处理一半消费者挂掉,会存在重复消息的问题。要做到完全一致,最好的办法是将 offset 的存储与消费者放一起,每消费一条数据就将 offset+1。

本文介绍了 Kafka 的队列实现以及其读写过程。Kafka 认为操作系统级别的文件缓存比 Java 的堆内存更省空间和高效,如果生产者消费者之间比较“和谐”的话,大部分的读写操作都会落在文件缓存,且在顺序读写的情况下,硬盘的速度并不慢,因此选择直接写磁盘文件的方式存储队列。在队列的读写过程中,Kafka 尽可能地使用顺序读写,并使用零拷贝来优化性能。最后,Kafka 让消费者自己控制消费位置,提供了更加灵活的数据消费方式。

E. 消息队列会把消息 存储到哪里

消息队列由内核创建,所以最后的数据存放在内核中,并由内核维护!

F. 消息队列(mq)是什么

消息队列(英语:Message queue)是一种进程间通信或同一进程的不同线程间的通信方式,软件的贮列用来处理一系列的输入,通常是来自用户。

消息队列提供了异步的通信协议,每一个贮列中的纪录包含详细说明的资料,包含发生的时间,输入设备的种类,以及特定的输入参数,也就是说:消息的发送者和接收者不需要同时与消息队列交互。消息会保存在队列中,直到接收者取回它。

一个WIMP环境像是Microsoft Windows,借由优先的某些形式(通常是事件的时间或是重要性的顺序)来存储用户产生的事件到一个事件贮列中。系统把每个事件从事件贮列中传递给目标的应用程序。

实现

实际上,消息队列常常保存在链表结构中。拥有权限的进程可以向消息队列中写入或读取消息。

目前,有很多消息队列有很多开源的实现,包括JBoss Messaging、JORAM、Apache ActiveMQ、Sun Open Message Queue、RabbitMQ、IBM MQ、Apache Qpid、Apache RocketMQ和HTTPSQS。


(6)主流消息队列怎么存储扩展阅读:

优缺点

消息队列本身是异步的,它允许接收者在消息发送很长时间后再取回消息,这和大多数通信协议是不同的。例如WWW中使用的HTTP协议(HTTP/2之前)是同步的,因为客户端在发出请求后必须等待服务器回应。然而,很多情况下我们需要异步的通信协议。

比如,一个进程通知另一个进程发生了一个事件,但不需要等待回应。但消息队列的异步特点,也造成了一个缺点,就是接收者必须轮询消息队列,才能收到最近的消息。

和信号相比,消息队列能够传递更多的信息。与管道相比,消息队列提供了有格式的数据,这可以减少开发人员的工作量。但消息队列仍然有大小限制。

消息队列除了可以当不同线程或进程间的缓冲外,更可以透过消息队列当前消息数量来侦测接收线程或进程性能是否有问题。

G. 消息队列(mq)是什么

“消息队列”是在消息的传输过程中保存消息的容器。

“消息”是在两台计算机间传送的数据单位。消息可以非常简单,例如只包含文本字符串;也可以更复杂,可能包含嵌入对象。

消息被发送到队列中。“消息队列”是在消息的传输过程中保存消息的容器。消息队列管理器在将消息从它的源中继到它的目标时充当中间人。队列的主要目的是提供路由并保证消息的传递;如果发送消息时接收者不可用,消息队列会保留消息,直到可以成功地传递它。

(7)主流消息队列怎么存储扩展阅读:

队列的介绍:循环队列

在实际使用队列时,为了使队列空间能重复使用,往往对队列的使用方法稍加改进:无论插入或删除,一旦rear指针增1或front指针增1 时超出了所分配的队列空间,就让它指向这片连续空间的起始位置。

自己真从MaxSize-1增1变到0,可用取余运算rear%MaxSize和front%MaxSize来实现。这实际上是把队列空间想象成一个环形空间,环形空间中的存储单元循环使用,用这种方法管理的队列也就称为循环队列。除了一些简单应用之外,真正实用的队列是循环队列。

在循环队列中,当队列为空时,有front=rear,而当所有队列空间全占满时,也有front=rear。

为了区别这两种情况,规定循环队列最多只能有MaxSize-1个队列元素,当循环队列中只剩下一个空存储单元时,队列就已经满了。因此,队列判空的条件时front=rear,而队列判满的条件时front=(rear+1)%MaxSize。

H. 消息队列原理及选型

消息队列(Message Queue)是一种进程间通信或同一进程的不同线程间的通信方式。

Broker(消息服务器)
Broker的概念来自与Apache ActiveMQ,通俗的讲就是MQ的服务器。

Procer(生产者)
业务的发起方,负责生产消息传输给broker

Consumer(消费者)
业务的处理方,负责从broker获取消息并进行业务逻辑处理

Topic(主题)
发布订阅模式下的消息统一汇集地,不同生产者向topic发送消息,由MQ服务器分发到不同的订阅 者,实现消息的广播

Queue(队列)
PTP模式下,特定生产者向特定queue发送消息,消费者订阅特定的queue完成指定消息的接收。

Message(消息体)
根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输

点对点模型用于消息生产者和消息消费者之间点到点的通信。

点对点模式包含三个角色:

每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,可以放在内存 中也可以持久化,直到他们被消费或超时。

特点:

发布订阅模型包含三个角色:

多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。

特点:

AMQP即Advanced Message Queuing Protocol,是应用层协议的一个开放标准,为面向消息的中间件设计。消息中间件主要用于组件之间的解耦,消息的发送者无需知道消息使用者的存在,反之亦然。AMQP 的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。

优点:可靠、通用

MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。

优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统

STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。

优点:命令模式(非topicqueue模式)

XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。

优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大

RabbitMQ 是实现 AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。 RabbitMQ 主要是为了实现系统之间的双向解耦而实现的。当生产者大量产生数据时,消费者无法快速消费,那么需要一个中间层。保存这个数据。

RabbitMQ 是一个开源的 AMQP 实现,服务器端用Erlang语言编写,支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP 等,支持 AJAX。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。

Channel(通道)
道是两个管理器之间的一种单向点对点的的通信连接,如果需要双向交流,可以建立一对通道。

Exchange(消息交换机)
Exchange类似于数据通信网络中的交换机,提供消息路由策略。

RabbitMq中,procer不是通过信道直接将消息发送给queue,而是先发送给Exchange。一个Exchange可以和多个Queue进行绑定,procer在传递消息的时候,会传递一个ROUTING_KEY,Exchange会根据这个ROUTING_KEY按照特定的路由算法,将消息路由给指定的queue。和Queue一样,Exchange也可设置为持久化,临时或者自动删除。

Exchange有4种类型:direct(默认),fanout, topic, 和headers。
不同类型的Exchange转发消息的策略有所区别:

Binding(绑定)
所谓绑定就是将一个特定的 Exchange 和一个特定的 Queue 绑定起来。Exchange 和Queue的绑定可以是多对多的关系。

Routing Key(路由关键字)
exchange根据这个关键字进行消息投递。

vhost(虚拟主机)
在RabbitMq server上可以创建多个虚拟的message broker,又叫做virtual hosts (vhosts)。每一个vhost本质上是一个mini-rabbitmq server,分别管理各自的exchange,和bindings。vhost相当于物理的server,可以为不同app提供边界隔离,使得应用安全的运行在不同的vhost实例上,相互之间不会干扰。procer和consumer连接rabbit server需要指定一个vhost。

假设P1和C1注册了相同的Broker,Exchange和Queue。P1发送的消息最终会被C1消费。
基本的通信流程大概如下所示:

Consumer收到消息时需要显式的向rabbit broker发送basic。ack消息或者consumer订阅消息时设置auto_ack参数为true。

在通信过程中,队列对ACK的处理有以下几种情况:

即消息的Ackownledge确认机制,为了保证消息不丢失,消息队列提供了消息Acknowledge机制,即ACK机制,当Consumer确认消息已经被消费处理,发送一个ACK给消息队列,此时消息队列便可以删除这个消息了。如果Consumer宕机/关闭,没有发送ACK,消息队列将认为这个消息没有被处理,会将这个消息重新发送给其他的Consumer重新消费处理。

消息的收发处理支持事务,例如:在任务中心场景中,一次处理可能涉及多个消息的接收、处理,这应该处于同一个事务范围内,如果一个消息处理失败,事务回滚,消息重新回到队列中。

消息的持久化,对于一些关键的核心业务来说是非常重要的,启用消息持久化后,消息队列宕机重启后,消息可以从持久化存储恢复,消息不丢失,可以继续消费处理。

fanout 模式
模式特点:

direct 模式
任何发送到Direct Exchange的消息都会被转发到routing_key中指定的Queue。

如果一个exchange 声明为direct,并且bind中指定了routing_key,那么发送消息时需要同时指明该exchange和routing_key。

简而言之就是:生产者生成消息发送给Exchange, Exchange根据Exchange类型和basic_publish中的routing_key进行消息发送 消费者:订阅Exchange并根据Exchange类型和binding key(bindings 中的routing key) ,如果生产者和订阅者的routing_key相同,Exchange就会路由到那个队列。

topic 模式
前面讲到direct类型的Exchange路由规则是完全匹配binding key与routing key,但这种严格的匹配方式在很多情况下不能满足实际业务需求。

topic类型的Exchange在匹配规则上进行了扩展,它与direct类型的Exchage相似,也是将消息路由到binding key与routing key相匹配的Queue中,但这里的匹配规则有些不同。
它约定:

以上图中的配置为例,routingKey=”quick.orange.rabbit”的消息会同时路由到Q1与Q2,routingKey=”lazy.orange.fox”的消息会路由到Q1,routingKey=”lazy.brown.fox”的消息会路由到Q2,routingKey=”lazy.pink.rabbit”的消息会路由到Q2(只会投递给Q2一次,虽然这个routingKey与Q2的两个bindingKey都匹配);routingKey=”quick.brown.fox”、routingKey=”orange”、routingKey=”quick.orange.male.rabbit”的消息将会被丢弃,因为它们没有匹配任何bindingKey。

RabbitMQ,部署分三种模式:单机模式,普通集群模式,镜像集群模式。

普通集群模式
多台机器部署,每个机器放一个rabbitmq实例,但是创建的queue只会放在一个rabbitmq实例上,每个实例同步queue的元数据。

如果消费时连的是其他实例,那个实例会从queue所在实例拉取数据。这就会导致拉取数据的开销,如果那个放queue的实例宕机了,那么其他实例就无法从那个实例拉取,即便开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,但得等这个实例恢复了,然后才可以继续从这个queue拉取数据, 这就没什么高可用可言,主要是提供吞吐量 ,让集群中多个节点来服务某个queue的读写操作。

镜像集群模式

queue的元数据和消息都会存放在多个实例,每次写消息就自动同步到多个queue实例里。这样任何一个机器宕机,其他机器都可以顶上,但是性能开销太大,消息同步导致网络带宽压力和消耗很重,另外,没有扩展性可言,如果queue负载很重,加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue。此时,需要开启镜像集群模式,在rabbitmq管理控制台新增一个策略,将数据同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

Kafka 是 Apache 的子项目,是一个高性能跨语言的分布式发布/订阅消息队列系统(没有严格实现 JMS 规范的点对点模型,但可以实现其效果),在企业开发中有广泛的应用。高性能是其最大优势,劣势是消息的可靠性(丢失或重复),这个劣势是为了换取高性能,开发者可以以稍降低性能,来换取消息的可靠性。

一个Topic可以认为是一类消息,每个topic将被分成多个partition(区),每个partition在存储层面是append log文件。任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一标记一条消息。它唯一的标记一条消息。kafka并没有提供其他额外的索引机制来存储offset,因为在kafka中几乎不允许对消息进行“随机读写”。

Kafka和JMS(Java Message Service)实现(activeMQ)不同的是:即使消息被消费,消息仍然不会被立即删除。日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,那么两天后,文件会被清除,无论其中的消息是否被消费。kafka通过这种简单的手段,来释放磁盘空间,以及减少消息消费之后对文件内容改动的磁盘IO开支。

对于consumer而言,它需要保存消费消息的offset,对于offset的保存和使用,有consumer来控制;当consumer正常消费消息时,offset将会"线性"的向前驱动,即消息将依次顺序被消费。事实上consumer可以使用任意顺序消费消息,它只需要将offset重置为任意值。(offset将会保存在zookeeper中,参见下文)

kafka集群几乎不需要维护任何consumer和procer状态信息,这些信息有zookeeper保存;因此procer和consumer的客户端实现非常轻量级,它们可以随意离开,而不会对集群造成额外的影响。

partitions的设计目的有多个。最根本原因是kafka基于文件存储。通过分区,可以将日志内容分散到多个server上,来避免文件尺寸达到单机磁盘的上限,每个partiton都会被当前server(kafka实例)保存;可以将一个topic切分多任意多个partitions,来消息保存/消费的效率。此外越多的partitions意味着可以容纳更多的consumer,有效提升并发消费的能力。(具体原理参见下文)。

一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性。

基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个server为"leader";leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可。由此可见作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个"leader",kafka会将"leader"均衡的分散在每个实例上,来确保整体的性能稳定。

Procers
Procer将消息发布到指定的Topic中,同时Procer也能决定将此消息归属于哪个partition;比如基于"round-robin"方式或者通过其他的一些算法等。

Consumers
本质上kafka只支持Topic。每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer。发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费。

如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡。

如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者。

在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息。kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的。事实上,从Topic角度来说,消息仍不是有序的。

Kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。

Guarantees

Kafka就比较适合高吞吐量并且允许少量数据丢失的场景,如果非要保证“消息可靠传输”,可以使用JMS。

Kafka Procer 消息发送有两种方式(配置参数 procer.type):

对于同步方式(procer.type=sync)?Kafka Procer 消息发送有三种确认方式(配置参数 acks):

kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力。

持久性
kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性。且无论任何OS下,对文件系统本身的优化几乎没有可能。文件缓存/直接内存映射等是常用的手段。因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数。

性能
需要考虑的影响性能点很多,除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题。kafka并没有提供太多高超的技巧;对于procer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息。不过消息量的大小可以通过配置文件来指定。对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次和交换。 其实对于procer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑。可以将任何在网络上传输的消息都经过压缩。kafka支持gzip/snappy等多种压缩方式。

生产者
负载均衡: procer将会和Topic下所有partition leader保持socket连接;消息由procer直接通过socket发送到broker,中间不会经过任何“路由层“。事实上,消息被路由到哪个partition上,有procer客户端决定。比如可以采用“random““key-hash““轮询“等,如果一个topic中有多个partitions,那么在procer端实现“消息均衡分发“是必要的。

其中partition leader的位置(host:port)注册在zookeeper中,procer作为zookeeper client,已经注册了watch用来监听partition leader的变更事件。
异步发送:将多条消息暂且在客户端buffer起来,并将他们批量的发送到broker,小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率。不过这也有一定的隐患,比如说当procer失效时,那些尚未发送的消息将会丢失。

消费者
consumer端向broker发送“fetch”请求,并告知其获取消息的offset;此后consumer将会获得一定条数的消息;consumer端也可以重置offset来重新消费消息。

在JMS实现中,Topic模型基于push方式,即broker将消息推送给consumer端。不过在kafka中,采用了pull方式,即consumer在和broker建立连接之后,主动去pull(或者说fetch)消息;这中模式有些优点,首先consumer端可以根据自己的消费能力适时的去fetch消息并处理,且可以控制消息消费的进度(offset);此外,消费者可以良好的控制消息消费的数量,batch fetch。

其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态。这就要求JMS broker需要太多额外的工作。在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的。当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset。由此可见,consumer客户端也很轻量级。

对于JMS实现,消息传输担保非常直接:有且只有一次(exactly once)。
在kafka中稍有不同:

at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。

at least once: 消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。

exactly once: kafka中并没有严格的去实现(基于2阶段提交,事务),我们认为这种策略在kafka中是没有必要的。

通常情况下“at-least-once”是我们首选。(相比at most once而言,重复接收数据总比丢失数据要好)。

kafka高可用由多个broker组成,每个broker是一个节点;

创建一个topic,这个topic会划分为多个partition,每个partition存在于不同的broker上,每个partition就放一部分数据。

kafka是一个分布式消息队列,就是说一个topic的数据,是分散放在不同的机器上,每个机器就放一部分数据。

在0.8版本以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。

0.8版本以后,才提供了HA机制,也就是就是replica副本机制。每个partition的数据都会同步到其他的机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。

写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。

kafka会均匀的将一个partition的所有replica分布在不同的机器上,从而提高容错性。

如果某个broker宕机了也没事,它上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。

写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。

消息丢失会出现在三个环节,分别是生产者、mq中间件、消费者:

RabbitMQ

Kafka
大体和RabbitMQ相同。

Rabbitmq
需要保证顺序的消息投递到同一个queue中,这个queue只能有一个consumer,如果需要提升性能,可以用内存队列做排队,然后分发给底层不同的worker来处理。

Kafka
写入一个partition中的数据一定是有序的。生产者在写的时候 ,可以指定一个key,比如指定订单id作为key,这个订单相关数据一定会被分发到一个partition中去。消费者从partition中取出数据的时候也一定是有序的,把每个数据放入对应的一个内存队列,一个partition中有几条相关数据就用几个内存队列,消费者开启多个线程,每个线程处理一个内存队列。

I. 消息队列(mq)是什么

生产者先将消息投递一个叫队列的容器中,然后再从这个容器中取出消息,最后再转发给消费者。

消息队列是 Microsoft 的消息处理技术,它在任何安装 Microsoft Windows 的计算机组合中,为任何应用程序提供消息处理和消息队列功能,无论这些计算机是否在同一个网络上或者是否同时联机。

消息队列网络是能够相互间来回发送消息的任何一组计算机。网络中的不同计算机在确保消息顺利处理的过程中扮演不同的角色。它们中有些提供路由信息以确定如何发送消息,有些保存整个网络的重要信息,而有些只是发送和接收消息。

消息队列的类型介绍:

消息队列目前主要有两种类型:POSIX消息队列以及系统V消息队列,系统V消息队列目前被大量使用。每个消息队列都有一个队列头,用结构struct msg_queue来描述。队列头中包含了该消息队列的大量信息。包括消息队列键值、用户ID、组ID、消息队列中消息数目等等。

消息队列就是一个消息的链表,可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的。