⑴ 分区存储管理中常用哪些分配策略
1、固定分区存储管理
其基本思想是将内存划分成若干固定大小的分区,每个分区中最多只能装入一个作业。当作业申请内存时,系统按一定的算法为其选择一个适当的分区,并装入内存运行。由于分区大小是事先固定的,因而可容纳作业的大小受到限制,而且当用户作业的地址空间小于分区的存储空间时,造成存储空间浪费。
一、空间的分配与回收
系统设置一张“分区分配表”来描述各分区的使用情况,登记的内容应包括:分区号、起始地址、长度和占用标志。其中占用标志为“0”时,表示目前该分区空闲;否则登记占用作业名(或作业号)。有了“分区分配表”,空间分配与回收工作是比较简单的。
二、地址转换和存储保护
固定分区管理可以采用静态重定位方式进行地址映射。
为了实现存储保护,处理器设置了一对“下限寄存器”和“上限寄存器”。当一个已经被装入主存储器的作业能够得到处理器运行时,进程调度应记录当前运行作业所在的分区号,且把该分区的下限地址和上限地址分别送入下限寄存器和上限寄存器中。处理器执行该作业的指令时必须核对其要访问的绝对地址是否越界。
三、多作业队列的固定分区管理
为避免小作业被分配到大的分区中造成空间的浪费,可采用多作业队列的方法。即系统按分区数设置多个作业队列,将作业按其大小排到不同的队列中,一个队列对应某一个分区,以提高内存利用率。
2、可变分区存储管理
可变分区存储管理不是预先将内存划分分区,而是在作业装入内存时建立分区,使分区的大小正好与作业要求的存储空间相等。这种处理方式使内存分配有较大的灵活性,也提高了内存利用率。但是随着对内存不断地分配、释放操作会引起存储碎片的产生。
一、空间的分配与回收
采用可变分区存储管理,系统中的分区个数与分区的大小都在不断地变化,系统利用“空闲区表”来管理内存中的空闲分区,其中登记空闲区的起始地址、长度和状态。当有作业要进入内存时,在“空闲区表”中查找状态为“未分配”且长度大于或等于作业的空闲分区分配给作业,并做适当调整;当一个作业运行完成时,应将该作业占用的空间作为空闲区归还给系统。
可以采用首先适应算法、最佳(优)适应算法和最坏适应算法三种分配策略之一进行内存分配。
二、地址转换和存储保护
可变分区存储管理一般采用动态重定位的方式,为实现地址重定位和存储保护,系统设置相应的硬件:基址/限长寄存器(或上界/下界寄存器)、加法器、比较线路等。
基址寄存器用来存放程序在内存的起始地址,限长寄存器用来存放程序的长度。处理机在执行时,用程序中的相对地址加上基址寄存器中的基地址,形成一个绝对地址,并将相对地址与限长寄存器进行计算比较,检查是否发生地址越界。
三、存储碎片与程序的移动
所谓碎片是指内存中出现的一些零散的小空闲区域。由于碎片都很小,无法再利用。如果内存中碎片很多,将会造成严重的存储资源浪费。解决碎片的方法是移动所有的占用区域,使所有的空闲区合并成一片连续区域,这一技术称为移动技术(紧凑技术)。移动技术除了可解决碎片问题还使内存中的作业进行扩充。显然,移动带来系统开销加大,并且当一个作业如果正与外设进行I/O时,该作业是无法移动的。
3、页式存储管理
基本原理
1.等分内存
页式存储管理将内存空间划分成等长的若干区域,每个区域的大小一般取2的整数幂,称为一个物理页面有时称为块。内存的所有物理页面从0开始编号,称作物理页号。
2.逻辑地址
系统将程序的逻辑空间按照同样大小也划分成若干页面,称为逻辑页面也称为页。程序的各个逻辑页面从0开始依次编号,称作逻辑页号或相对页号。每个页面内从0开始编址,称为页内地址。程序中的逻辑地址由两部分组成:
逻辑地址
页号p
页内地址 d
3.内存分配
系统可用一张“位示图”来登记内存中各块的分配情况,存储分配时以页面(块)为单位,并按程序的页数多少进行分配。相邻的页面在内存中不一定相邻,即分配给程序的内存块之间不一定连续。
对程序地址空间的分页是系统自动进行的,即对用户是透明的。由于页面尺寸为2的整数次幂,故相对地址中的高位部分即为页号,低位部分为页内地址。
3.5.2实现原理
1.页表
系统为每个进程建立一张页表,用于记录进程逻辑页面与内存物理页面之间的对应关系。地址空间有多少页,该页表里就登记多少行,且按逻辑页的顺序排列,形如:
逻辑页号
主存块号
0
B0
1
B1
2
B2
3
B3
2.地址映射过程
页式存储管理采用动态重定位,即在程序的执行过程中完成地址转换。处理器每执行一条指令,就将指令中的逻辑地址(p,d)取来从中得到逻辑页号(p),硬件机构按此页号查页表,得到内存的块号B’,便形成绝对地址(B’,d),处理器即按此地址访问主存。
3.页面的共享与保护
当多个不同进程中需要有相同页面信息时,可以在主存中只保留一个副本,只要让这些进程各自的有关项中指向内存同一块号即可。同时在页表中设置相应的“存取权限”,对不同进程的访问权限进行各种必要的限制。
4、段式存储管理
基本原理
1.逻辑地址空间
程序按逻辑上有完整意义的段来划分,称为逻辑段。例如主程序、子程序、数据等都可各成一段。将一个程序的所有逻辑段从0开始编号,称为段号。每一个逻辑段都是从0开始编址,称为段内地址。
2.逻辑地址
程序中的逻辑地址由段号和段内地址(s,d)两部分组成。
3.内存分配
系统不进行预先划分,而是以段为单位进行内存分配,为每一个逻辑段分配一个连续的内存区(物理段)。逻辑上连续的段在内存不一定连续存放。
3.6.2实现方法
1.段表
系统为每个进程建立一张段表,用于记录进程的逻辑段与内存物理段之间的对应关系,至少应包括逻辑段号、物理段首地址和该段长度三项内容。
2.建立空闲区表
系统中设立一张内存空闲区表,记录内存中空闲区域情况,用于段的分配和回收内存。
3.地址映射过程
段式存储管理采用动态重定位,处理器每执行一条指令,就将指令中的逻辑地址(s,d)取来从中得到逻辑段号(s),硬件机构按此段号查段表,得到该段在内存的首地址S’, 该段在内存的首地址S’加上段内地址d,便形成绝对地址(S’+d),处理器即按此地址访问主存。
5、段页式存储管理
页式存储管理的特征是等分内存,解决了碎片问题;段式存储管理的特征是逻辑分段,便于实现共享。为了保持页式和段式上的优点,结合两种存储管理方案,形成了段页式存储管理。
段页式存储管理的基本思想是:把内存划分为大小相等的页面;将程序按其逻辑关系划分为若干段;再按照页面的大小,把每一段划分成若干页面。程序的逻辑地址由三部分组成,形式如下:
逻辑地址
段号s
页号p
页内地址d
内存是以页为基本单位分配给每个程序的,在逻辑上相邻的页面内存不一定相邻。
系统为每个进程建立一张段表,为进程的每一段各建立一张页表。地址转换过程,要经过查段表、页表后才能得到最终的物理地址。
⑵ 简述操作系统的内存管理方法中,固定分区法和动态分区法的相同点和不同点
单一连续分配
内存在此方式下分为系统区和用户区,系统区仅提供给操作系统使用,通常在低地址部分;用户区是为用户提供的、除系统区之外的内存空间。这种方式无需进行内存保护。
这种方式的优点是简单、无外部碎片,可以釆用覆盖技术,不需要额外的技术支持。缺点是只能用于单用户、单任务的操作系统中,有内部碎片,存储器的利用率极低。
固定分区分配
固定分区分配是最简单的一种多道程序存储管理方式,它将用户内存空间划分为若干个固定大小的区域,每个分区只装入一道作业。当有空闲分区时,便可以再从外存的后备作业队列中,选择适当大小的作业装入该分区,如此循环。
⑶ 操作系统中存储管理的任务是什么,大多采用什么方案来解决
操作系统中存储管理的任务一般都是以保存系统中应用程序在操作过程中的信息,数据和文档,然后会一一存储在管理的系统中,这就是日常的任务
⑷ 存储管理分区分配算法实现的课程设计
—、计算机操作系统课程设计方案
课程概况
计算机操作系统是中央电大计算机科学与技术专业(本科)的一门统设必修课。课程教学总学时72,4学分,开设一学期。前修课程为计算机组成原理、面向对象程序设计和数据结构。
计算机操作系统课是计算机专业的重要课程之一,通过学习使学员掌握计算机操作系统的设计基本原理及组成;计算机操作系统的基本概念和相关的新概念、名词及术语;了解计算机操作系统的发展特点和设计技巧和方法;对常用计算机操作系统(DOS、Windows和UNIX或Linux)会进行基本的操作使用。
• 课程主要内容
主要内容包括:计算机操作系统概述、作业管理、文件管理、存储管理、输入输出设备管理、进程及处理机管理、操作系统结构及程序设计。
二、教学内容体系及教学要求
第一章 操作系统概述
教学内容:
操作系统定义及发展;操作系统的形成和五大类型;操作系统的五大功能;表征操作系统的属性;操作系统的配置、“生成”概念
教学要求:
熟练掌握:什么是操作系统;知道操作系统有五大类型和五大功能;
掌握:至少掌握一种实际揽操作系统的安装、使用和维护;
了解:初步了解如何认识、熟悉和解剖操作系统
第二章 人机交互界面、任务、作业管理
教学内容:
人机交互界面的发展特点;第一、二、三代界面开发特点;基本的键盘命令和系统调用操作系统Shell语言;作业调度算法;
教学要求:
熟练掌握:能进行一些人机接口界面的设计;
掌握:掌握操作系统人机接口界面的基本设计思想;
了解:操作系统传统的接口界面
第三章 文件管理
教学内容:
文件管理的任务与功能;文件的结构与分类;文件的物理结构和逻辑结构;文件的目录结构;文件的存取控制和安全机制;文件系统与模型结构;
教学要求:
熟练掌握:文件的基本存取控制和系统管理;
掌握:文件系统的目录分类管理特点;
了解:文件系统的编程设计
第四章 内部存储管理
教学内容:
内存的分区、分页、分段管理概念;物理地址与逻辑地址;内存“扩充”技术;页式存储管理;段式存储管理;内存的分配算法
教学要求:
熟练掌握:内存管理中基本分配和调度方法;
掌握:掌握内存管理中各种分区、分页和分段方法的特点;
了解:内存空间的有效利用
第五章 输入输出设备管理
教学内容:
输入输出设备功能与分类;独享、共享、虚拟设备的管理特点;输入输出设备处理程序;输入输出设备的管理策略;
教学要求:
熟练掌握:掌握输入输出设备的管理特点;
掌握:掌握输入输出设备的分类设计方法;
了解:输入输出设备处理程序的编程要点
第六章 低级处理机管理
教学内容:
操作系统核心功能;“进程”概念;进程的并发与并行;进程的基本状态与转换;进程调度算法;进程的同步与互斥;进程的P—V操作;“死锁”概念;
教学要求:
熟练掌握:操作系统核心运行与“进程”的基本概念;
掌握:“进程”的基本转换状态与应用特点;
了解:进程调度算法的程序编制
第七章 操作系统程序结构
教学内容:
操作系统的层次、模块结构;操作系统的设计与检测;
教学要求:
本章教学基本要求:了解现代计算机操作系统的基本设计思想与方法
三、课程教学媒体说明
本课程使用的教学媒体主要有:文字教材、录像教材和网上教学辅导。
1. 文字教材
《计算机操作系统》(第2版)吴企渊着清华大学出版社
注:课程实验含在主教材中。
文字教材为该课程的主媒体。文字教材的编写既保持了学科体系的先进性、科学性,又兼顾操作系统的理论、技术、实现三方面的融合,并强调能力的培养。
2. 录像教材
该课程已经制作16讲课程录像,每讲50分钟,讲授课程的重点、难点、课程总结。帮助学生理解,建立操作系统的整体概念和思想,由吴企渊教授主讲。
课程录像与文字教材相对应,注意发挥录像教材艺术表现力、形象化教学的作用。
3.网上教学辅导
网上教学辅导与上述媒体有机配合,有几方面作用:(1)发布教学指导性文件、课程公告、问题咨询、参考资料;(2)按照教学进度,发布辅导文章,刊登练习自测题;(3)在课程论坛上进行实时答疑和日常答疑;(4)开展网上的教师培训和教学研讨等工作。
文字教材是学生学习的基本依据,录像教材是文字教材的补充,网上辅导则是教与学交互的便捷方式。总之,多种媒体的分工和搭配为学生提供较大的自学空间,便于学生自由选择、自主学习,提高学生的自学能力。
四、教学安排建议
1. 课程主教材及课程实验教学安排建议
教学点请根据中央电大的统一要求安排课程的面授辅导,见表1。
表1 课程主教材及课程实验教学安排建议
周次 教学内容 建议学时 实验内容 建议学时
一 操作系统课程教学安排概况介绍 2
二 操作系统定义、五大类型和五大功能 4
三 人机交互界面管理 2 Linux实践准备 1
四 作业管理任务调度 4
五 文件管理的任务和功能 2 Linux操作命令使用 1
六 文件的逻辑结构和物理结构 4
七 存储管理的任务和功能 2 命令解释程序编制 2
八 分区式分配存储管理 4
九 页式、段式分配存储管理 6 作业调度模拟编程 4
十 设备管理的任务和功能 2
十一 设备分配技术和管理 4 存储管理设计 4
十二 进程的定义和特征 4
十三 进程调度与通信 6 进程调度模拟编程 4
十四 死锁的产生和处理 2
十五 操作系统的层次模块结构 4
十六 (总复习) 4
总计 56 16
课程录像内容,见表2。
表2 录像教材内容
章 教学内容 课内学时 录像学时分配
一 操作系统概述 8学时 4
二 作业管理 8学时 2
三 文件管理 8学时 2
四 存储管理 8学时 2
五 设备管理 8学时 2
六 进程管理 10学时 4
七 操作系统程序结构 6学时 0
总计 56学时 16
2、网上辅导
网上辅导内容包括课程的教学文件、课程辅导、网络课堂。充分利用网络资源,定期与不定期的在网上提供有关的课程辅导材料,根据教学需要,适当安排网上辅导和考前答疑活动。具体安排如下:
• 教学文件
包括课程说明、教师介绍、教学大纲、教学设计方案。
• 课程辅导
包括课程作业及解答、专题辅导、练习和解答、期末自测、考核说明等;网上还提供了教师讲课教案,供各教学点教学使用。
• 网络课堂
包括直播课堂和IP课件。
网上教学活动:中央电大一般将每学期集中安排1次对学生的实时在线辅导,和1次对教师的教研活动。具体的时间安排每学期在电大在线主页上公布。
• 论坛:进行课程的日常答疑。
3、直播课堂
课程首开学期,通过教育电视台直播方式,安排4次直播课堂,每次50分。前3讲为对教学重点、难点,对教学过程中反映的共性问题和有代表性的问题进行辅导,后1讲为复习辅导和有关考试说明。直播课堂的内容挂在课程网页内。
4、作业
该课程有一份形成性考核册,即课程作业册。作业成绩计入课程总成绩。中央电大将不定期地抽查作业,检查作业的评审及完成情况。
关于课程考核的具体内容,请参考中央电大“计算机操作系统课程考核说明”。
五、教学方法的建议
• 教学建议
(1)计算机操作系统是实践性较强的课程。其特点是概念多、涉及面广。要求教学辅导要由浅入深对易混淆的概念加以详细说明,对每章的重点,管理和控制的调度算法技巧作详细介绍。
(2)在实验中着重培养学员熟练使用操作系统,以及在维护操作系统工作中的分析问题和解决问题能力。
• 学习建议
(1)学习操作系统要从宏观和微观两方面把握。在宏观上要认识操作系统在计算机系统中的地位,清楚操作系统的整体结构;微观方面应掌握操作系统是如何管理计算机的各种资源的(进程、处理机、存储器、文件、设备),理解有关概念、原理及技术。
(2)操作系统是计算机技术与管理技术的结合,学习时可以联想日常生活中熟悉的管理示例反复体会操作系统的管理方法,以加深对问题的理解。
(3)注意加强对自主学习能力和动手能力的培养,努力实现“学以致用”的目标。
⑸ 内存为程序分配空间的四种分配方式
存储器是个宝贵但却有限的资源。一流的操作系统,需要能够有效地管理及利用存储器。
内存为程序分配空间有四种分配方式:
1、连续分配方式
2、基本分页存储管理方式
3、基本分段存储管理方式
4、段页式存储管理方式
首先讲连续分配方式。 连续分配方式 出现的时间比较早,曾广泛应用于20世纪60~70年代的OS中,但是它至今仍然在内存管理方式中占有一席之地,原因在于它 实现起来比较方便,所需的硬件支持最少 。连续分配方式又可细分为四种: 单一连续分配、固定分区分配、动态分区分配和动态重定位分区分配 。
其中固定分区的分配方式,因为分区固定,所以缺乏灵活性,即 当程序太小时,会造成内存空间的浪费( 内部碎片 ) ; 程序太大时,一个分区又不足以容纳,致使程序无法运行( 外部碎片 ) 。但尽管如此,当一台计算机去控制多个相同对象的时候,由于这些对象内存大小相同,所以完全可以采用这种内存管理方式,而且是最高效的。这里我们可以看出存储器管理机制的多面性:没有那种存储器管理机制是完全没有用的,在适合的场合下,一种被认为最不合理的分配方案却可能称为最高效的分配方案。 一切都要从实际问题出发,进行设计。
为了解决固定分区分配方式的缺乏灵活性,出现了 动态分配方式 。动态分配方式采用一些 寻表(Eg: 空闲链表 ) 的方式,查找能符合程序需要的空闲内存分区。但代价是增加了系统运行的开销,而且内存空闲表本身是一个文件,必然会占用一部分宝贵的内存资源,而且有些算法还会增加内存碎片。
可重定位分区分配通过对程序实现成定位,从而可以将内存块进行搬移,将小块拼成大块,将小空闲“紧凑”成大空闲,腾出较大的内存以容纳新的程序进程。
连续分配方式 会形成许多“碎片”,虽然可以通过“紧凑”方式将许多碎片拼接成可用的大块空间,但须为之付出很大开销。所以提出了“ 离散分配方式 ”的想法。如果 离散分配的基本单位是页 ,则称为 分页管理方式 ;如果离散分配的基本单位是段,则称为 分段管理方式 。
分页存储管理是将一个进程的逻辑地址空间分成若干个大小相等的片,称为页面或页,并为各页加以编号,从0开始,如第0页、第1页等。相应地,也把内存空间分成与页面相同大小的若干个存储块,称为(物理)块或页框(frame),也同样为它们加以编号,如0#块、1#块等等。在为进程分配内存时,以块为单位将进程中的若干个页分别装入到多个可以不相邻接的物理块中。由于进程的最后一页经常装不满一块而形成了不可利用的碎片,称之为“ 页内碎片 ”。
在分页系统中,允许将进程的各个页离散地存储在内存不同的物理块中(所以能实现离散分配方式) ,但系统应能保证进程的正确运行,即能在内存中找到每个页面所对应的物理块。为此,系统又为每个进程建立了一张页面映像表,简称 页表 。在进程地址空间内的所有页,依次在页表中有一页表项,其中记录了相应页在内存中对应的物理块号。在配置了页表后,进程执行时,通过查找该表,即可找到每页在内存中的物理块号。可见, 页表的作用是实现从页号到物理块号的地址映射 。
为了能够将用户地址空间中的 逻辑地址,变换为内存空间中的物理地址 ,在系统中必须设置 地址变换机构 。地址变换任务是借助于页表来完成的。
页表 的功能可由一组专门的寄存器来实现。由于寄存器成本较高,且大多数现代计算机的页表又很大,使页表项总数可达几千甚至几十万个,显然这些页表项不可能都用寄存器来实现,因此,页表大多驻留在内存中。因为一个进程可以通过它的PCB来时时保存自己的状态,等到CPU要处理它的时候才将PCB交给寄存器,所以,系统中虽然可以运行多个进程,但也只需要一个页表寄存器就可以了。
由于 页表是存放在内存中 的,这使得 CPU在每存取一个数据时,都要两次访问内存 。为了提高地址变换速度,在地址变化机构中增设了一个 具有并行查询能力的高速缓冲寄存器 ,又称为“联想寄存器”(Associative Lookaside Buffer)。
在单级页表的基础上,为了适应非常大的逻辑空间,出现了两级和多级页表,但是,他们的原理和单级页表是一样的,只不过为了适应地址变换层次的增加,需要在地址变换机构中增设外层的页表寄存器。
分段存储管理方式 的目的,主要是为了满足用户(程序员)在编程和使用上多方面的要求,其中有些要求是其他几种存储管理方式所难以满足的。因此,这种存储管理方式已成为当今所有存储管理方式的基础。
分段管理方式和分页管理方式在实现思路上是很相似的,只不过他们的基本单位不同。分段有 段表 ,也有 地址变换机构 ,为了提高检索速度,同样增设 联想寄存器(具有并行查询能力的高速缓冲寄存器) 。所以有些具体细节在这个不再赘述。
分页和分段的主要区别:
1、两者相似之处:两者 都采用离散分配方式,且都要通过地址映射机构来实现地址变换 。
2、两者的不同之处:
(1)页是信息的 物理单位 ,分页是为实现离散分配方式,以消减内存的外零头,提高内存的利用率。或者说,分页仅仅是由于 系统管理的需要 而不是用户的需要。段则是信息的 逻辑单位 ,它含有一组其意义相对完整的信息。 分段的目的是为了能更好地满足用户的需要 。
(2) 页的大小固定 且由系统决定,而 段的长度却不固定 。
(3)分页的作业地址空间是 一维 的,即单一的线性地址空间;而分段的作业地址空间则是 二维 的。
前面所介绍的分页和分段存储管理方式都各有优缺点。 分页系统能有效地 提高内存利用率 ,而分段系统则能很好地 满足用户需求 。 我们希望能够把两者的优点结合,于是出现了段页式存储管理方式。
段页式系统的基本原理,是分段和分页原理的结合,即 先将用户程序分成若干个段,再把每个段分成若干个页 ,并为每一个段赋予一个段名。在段页式系统中,地址结构由段号、段内页号和页内地址三部分组成。
和前两种存储管理方式相同,段页式存储管理方式同样需要增设联想寄存器。
离散分配方式 基于将一个进程直接分散地分配到许多不相邻的分区中的思想,分为分页式存储管理,分段式存储管理和段页式存储管理. 分页式存储管理旨在提高内存利用率,满足系统管理的需要,分段式存储管理则旨在满足用户(程序员)的需要,在实现共享和保护方面优于分页式存储管理,而段页式存储管理则是将两者结合起来,取长补短,即具有分段系统便于实现,可共享,易于保护,可动态链接等优点,又能像分页系统那样很好的解决外部碎片的问题,以及为各个分段可离散分配内存等问题,显然是一种比较有效的存储管理方式。
更多Linux内核视频教程文档资料免费领取【 内核 】自行获取。
内核学习网站:
Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈-学习视频教程-腾讯课堂
⑹ 存储器管理的连续分配存储管理方式有哪些
连续分配方式.它是指为了一个用户程序分配一个连续的内存空间.可以分为单一连续分配、固定分区分配、动态分区分配以及动态重定位分区分配四种方式。不过今天我们讲的是固定分区分配和动态分区分配。
固定分区分配是最简单的一种可运行多道程序的存储管理方式。 一、基本思想:在系统中把用户区预先划分成若干个固定分区(每个分区首地址固定,每个分区长度是固定),每个分区可供一个用户程序独占使用。注意:每个分区大小可以相同,也可以不相同。 二、主存分配与回收:借助主存分配表。 三、地址转换(静态重定位):物理地址=分区起始地址+逻辑地址。其中划分分区方法包括分区大小相等和分区大小不等。
动态分区分配是根据进程的实际需要,动态地为之分配内存空间。一、基本思想:按用户程序需求动态划分主存供用户程序使用。(每个分区首地址是动态的,每个分区的长度也是动态的) 二、主存分配与回收-->(1)未分配表(登记未分配出去的分区情况);(2)已分配表(登记已经分配出去的分区情况)。 三、地址转换:物理地址=分区起始地址+逻辑地址。 四、分区分配算法:从空闲分区中选择分区分www.hbbz08.com 配给用户程序的策略。 (1)首次适应算法(最先适应)顺序查询为分配表,从表中找出第一个可以满足作业申请的分区划分部分分配给用户作业。 (2)循环首次适应算法 (3)最佳适应算法:从空闲分区中找出一个能满足用户作业申请的最小空闲分区划分给用户作业使用(有利于大作业执行) (4)最坏适应算法:从空闲分区中挑最大的分区划分给用户程序使用(有利于中、小作业执行)
⑺ 内存的连续分配有哪些方式,各有什么特点
内存的连续分配方式有:单一连续分配、固定分区分配、动态分区分配以及动态重定位分区分配四种方式。
单一连续分配:只能用于单用户、单任务的操作系统中。
固定分区分配:可运行多道程序的存储管理方式。
动态分区分配:根据进程的实际需要,动态地为之分配内存空间。
可重定位分区分配:必须把一个系统或用户程序装入一连续的内存空间。
⑻ 存储管理的对象和任务是什么
存储管理是指主存管理,包括给进程分配主存片段,收回进程释放的主存片段,为分配出去的主存片段提供保护与共享,以及为作业提供一个虚拟的存储空间。存储管理的功能主要分为内存分配、地址转换、存储保护和内存扩充四部分。与“实存”相对应的另一类存储管理技术称为“虚拟存储”管理技术,简称“虚存”。虚拟存储管理技术是用软件方法来扩充存储器。虚拟存储器的概念是指一种实际上并不存在的虚假存储器,它能提供给用户一个比实际内存大得多的存储空间,使用户在编制程序时可以不必考虑存储空间的限制。虚存的容量与主存大小无关,它是由计算机系统的地址结构和寻址方式确定的。例如,Windows 95提供了4GB的虚存(比8MB的物理主存大得多)。