当前位置:首页 » 服务存储 » 稀疏矩阵的压缩存储优点
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

稀疏矩阵的压缩存储优点

发布时间: 2023-01-12 11:15:29

‘壹’ 稀疏矩阵的优点

稀疏矩阵的计算速度更快,因为M AT L A B只对非零元素进行操作,这是稀疏矩阵的一个突出的优点.
假设矩阵A,B中的矩阵一样.计算2*A需要一百万次的浮点运算,而计算2*B只需要2 0 0 0次浮点运算.
因为M AT L A B不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵.
前面章节中的算术和逻辑运算都适用于稀疏矩阵.
对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节.但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费.为了节省存储空间,可以只存储其中的非0元素.
对于矩阵Amn的每个元素aij,知道其行号i和列号j就可以确定其位置.因此对于稀疏矩阵可以用一个结点来存储一个非0元素.该结点可以定义如下:
[i,j,aij]
该结点由3个域组成,i:行号,j:列号;aij元素值.这样的结点被称为三元组结点.矩阵的每一个元素Qij,由一个三元组结点(i,j,aij)唯一确定.
例如稀疏矩阵A:
50 0 0 0
10 0 20 0
0 0 0 0
-30 0 -60 5
其对应的三元组表为:
1 1 50
2 1 10
2 3 20
4 1 -30
4 3 -60
4 4 5

‘贰’ 矩阵的压缩存储例子

稀疏矩阵压缩存储

一般来讲,零元素多到了一定程度并且没有规律分布的矩阵叫做稀疏矩阵。对稀疏矩阵的压缩存储必须充分考虑以下三个问题:
① 尽可能减少或者不存储零元素以节省空间,降低空间复杂度。
② 尽可能快地实现数据元素的存储位置与原有位置之间的转换。
③ 尽可能不与零元素进行运算,以降低时间复杂度。
稀疏矩阵的压缩存储有三种最常见的方法,分别是三元组顺序表、行逻辑链接顺序表和十字链表。

‘叁’ 对稀疏矩阵压缩存储的目的是什么 A 便于进行矩阵预算 B 便于输入和输出C节省存储空间 D降低运算世间复杂度

对稀疏矩阵压缩存储的目的是:C节省存储空间和D降低预算时间复杂度,如果是单选题,那么应该选C节省存储空间。

矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素的分布没有规律,则称该矩阵为稀疏矩阵(sparse matrix);与之相区别的是,如果非零元素的分布存在规律(如上三角矩阵、下三角矩阵、对角矩阵),则称该矩阵为特殊矩阵。
稀疏矩阵的计算速度更快,因为M AT L A B只对非零元素进行操作,这是稀疏矩阵的一个突出的优点.假设矩阵A,B中的矩阵一样.计算2*A需要一百万次的浮点运算,而计算2*B只需要2 0 0 0次浮点运算.因为M AT L A B不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵.
对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节.但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费.为了节省存储空间,可以只存储其中的非0元素.

‘肆’ 稀疏矩阵的压缩存储只需要存储什么

非零元素。

对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费。为了节省存储空间,可以只存储其中的非0元素。

(4)稀疏矩阵的压缩存储优点扩展阅读

稀疏矩阵算法的最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构。稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关。

‘伍’ 稀疏矩阵的压缩存储思想

为了节省存储空间并且加快处理速度,需要对这类矩阵进行压缩存储,压缩存储的原则是:不重复存储相同元素;不存储零值元素。稀疏矩阵,有三元组表示法、带辅助行向量的二元组表示法(也即行逻辑链表的顺序表),十字链表表示法等。算法基本思想:num[col]:第col列的非零元素个数;cpot[col]:第col列第一个非零元在b.data中的恰当位置;在转置过程中,指示该列下一个非零元在b.data中的位置。

‘陆’ 特殊矩阵和稀疏矩阵哪一种采用压缩存储会失去随机存取的功能为什么

稀疏矩阵压缩存储后,必会失去随机存取功能。
稀疏矩阵在采用压缩存储后将会失去随机存储的功能。因为在这种矩阵中,非零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所在的行、列号做为一个结点存放在一起,这样的结点组成的线性表中叫三元组表,它已不是简单的向量,所以无法用下标直接存取矩阵中的元素。