‘壹’ 有关图的存储结构
(1)顺序存储方法
该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
由此得到的存储表示称为顺序存储结构 (Sequential Storage Structure),通常借助程序语言的数组描述。
该方法主要应用于线性的数据结构。非线性的数据结构也可通过某种线性化的方法实现顺序存储。 (2)链接存储方法
该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。由此得到的存储表示称为链式存储结构(Linked Storage Structure),通常借助于程序语言的指针类型描述。
‘贰’ 关于数据结构中图的储存方式的选择
首先你要明白,邻接链表存图的空间复杂度与图中边的数量有关(O(N+E) E表示图中边的数目),而数组存图空间复杂度与点数有关(O(N^2)N表示点数)
看点的数量,如果点的数量不是很大(比如几百个左右或者更小)那么二者都可以选择。
如果点的数量过大的话,用数组存储稀疏图会造成大量的空间浪费,此时选择使用邻接表更好。
‘叁’ 图的五种存储结构
图的邻接矩阵(Adjacency Matrix): 图的邻接矩阵用两个数组来表示图。一个一维数组存储图中顶点信息,另一个二维数组(一般称之为邻接矩阵)来存储图中的边或者弧的信息。从邻接矩阵中我们自然知道一个顶点的度(对于无向图)或者有向图中一个顶点的入度出度信息。
假设图G有n个顶点,则邻接矩阵是一个n*n的方阵。
1.对于如果图上的每条边不带权值来说,那么我们就用真(一般为1)和假(一般为0)来表示一个顶点到另一个顶点存不存在边。下面是一个图的邻接矩阵的定义:
邻接矩阵法实现带权值的无向图的创建如下:
按照如图输入各边(不重复)
测试程序如下:
结果可得该矩阵,证明创建树成功。 假设n个顶点e条边的创建,createGraph算法的时间复杂度为O(n+n*n+e)。如果需要创建一个有向图,那么和上面一样一个一个录入边下标和权值。
邻接矩阵这种存储结构的优缺点: 缺点是对于边数相对顶点较少的稀疏图来说会存在极大的空间浪费。假设有n个顶点,优点是对于有向完全图和无向完全图来说邻接矩阵是一种不错的存储结构,浪费的话也只浪费了n个顶点的容量。
在树的存储结构一节中我们提到对于孩子表示法的第三种:用一段连续的存储单元(数组)存储树中的所有结点,利用一个单链表来存储数组中每个结点的孩子的信息。对于图的存储结构来说,我们也可以利用这种方法实现图的存储
邻接表(Adjacency List): 这种数组与链表相结合的存储方法叫做邻接表。1.为什么不也用单链表存储图的结点信息呢?原因就是数组这种顺序存储结构读取结点信息速率快。对于顶点数组中,每个数据元素还需要存储一个指向第一个邻接顶点的指针,这样才可以查找边的信息2.图中每个顶点Vi(i > 0)的所有邻接点构成一个线性表 (在无向图中这个线性表称为Vi的边表,有向图中称为顶点作为弧尾的出边表) ,由于邻接点的不确定性,所以用链表存储,有多少个邻接点就malloc一个空间存储邻接点,这样更不会造成空间的浪费(与邻接矩阵相比来说)。3.对于邻接表中的某个顶点来说,用户关心的是这个顶点的邻接点,完全可以遍历用单链表设计成的边表或者出边表得到,所以没必要设计成双链表。
邻接表的存储结构:
假设现在有一无向图G,如下图:
从邻接表结构中,知道一个顶点的度或者判断两个顶点之间是否存在边或者求一个顶点的所有邻接顶点是很容易的。
假设现在有一有向图G,如下图:
无向图的邻接表创建示例如下:
假设在上图(无向图)中的V0V1V2V3顶点值为ABCD,则依据下面测试程序可得结果:
邻接表的优缺点: 优点是:邻接表存储图,既能够知道一个顶点的度和顶点的邻接结点的信息,并且更不会造成空间的浪费。缺点是邻接表存储有向图时,如果关心的是顶点的出度问题自然用邻接表结构,但是想了解入度需要遍历图才知道(需要考虑逆邻接表)。
十字链表(Orthogonal List) :有向图的一种存储方法,它把邻接表和逆邻接表结合起来,因此在十字链表结构中可以知道一个顶点的入度和出度情况。
重新定义顶点表的结点如下图:
现在有一有向图如下图:
则它的存储结构示意图为:
其定义如下:
十字链表是用来存储有向图的,这样可以看出一个顶点的出入度信息。对于无向图来说完全没必要用十字链表来存储。
在无向图中,因为我们关注的是顶点的信息,在考虑节约空间的情况下我们利用邻接表来存储无向图。但是如果我们关注的是边的信息,例如需要删除某条边对于邻接表来说是挺繁琐的。它需要操作两个单链表删除两个结点。因此我们仿照十字链表的方式对边表结点结构重新定义如下图:
它的邻接多重表结构为:
多重邻接表的优点:对于边的操作相比于邻接表来说更加方便。比如说我们现在需要删除(V0,V2)这条边,只需将69步骤中的指针改为nullptr即可。
边集数组(edgeset array): 边集数组是由两个数组组成,一个存储顶点信息,另一个存储边的信息,这个边数组中的每个数据元素由起点下标,终点下标,和权组成(如果边上含有权值的话)。
边数组结构如下图:
边集数组实现图的存储的优缺点:优点是对于边的操作方便快捷,操作的只是数组元素。比如说删除某条边,只需要删除一个数组元素。缺点是:对于图的顶点信息,我们只有遍历整个边数组才知道,这个费时。因此对于关注边的操作来说,边集数组更加方便。
‘肆’ 图的存储结构有哪些
最常见的:
顺序查找:适合顺序结构和链式结构
二分查找:适合顺序结构
其他的二叉查找树、B-树之类有自己的数据结构
‘伍’ 《数据结构》 常见的图的存储结构包括了哪些
矩阵,链表
‘陆’ 图的三种存储结构
设图G有n (n 1) 个顶点,则邻接矩阵是一个n阶方阵。
当矩阵中的 [i,j] !=0(下标从1开始) ,代表其对应的第i个顶点与第j个顶点是连接的。
为图G中的每一个顶点建立一个单链表,每条链表的结点元素为与该顶点连接的顶点。
可以看成是有向图的邻接表和逆邻接表结合起来的一种链表。
‘柒’ 存储结构有哪些
存储结构有顺序存储和链接存储。顺序存储和链接存储是数据的两种最基本的存储结构。
1、顺序存储
顺序存储方法是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
2、链接存储
链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。
(7)常见图的存储结构哪三种扩展阅读:
数据的存储结构是指数据的逻辑结构在计算机中的表示。数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。
储存系统的层次结构为了解决存储器速度与价格之间的矛盾,出现了存储器的层次结构。
‘捌’ 数据结构图的存储
图的存储有两种方式:邻接矩阵,邻接表。
图的深度优先和广度优先遍历的复杂度:
1、邻接矩阵:矩阵包含n n个元素,在算法中,共n个顶点,对每个顶点都要遍历n次,所以时间复杂度为 O(n n)
2、邻接表:包含n个头节点和e个表节点,算法中对所有节点都要遍历一次,所以时间复杂度为O(n+e)
‘玖’ 图的存储结构是什么
由于图的结构比较复杂,任意两个顶点之间都可能存在关系(边),无法通过存储位置表示这种任意的逻辑关系,所以,图无法采用顺序存储结构。这一点同其他数据结构(如线性表、树)不同。考虑图的定义,图是由顶点和边组成的,所以,分别考虑如何存储顶点和边。图常用的存储结构有邻接矩阵、邻接表、十字链表和邻接多重表。
‘拾’ 数据结构 - 图
前面我们学习了线性表,栈、队列和树。前面三者都属于线性表范畴,它的的数据元素是被串起来的,仅有线性关系,每个元素仅有一个直接前驱和一个直接后继,是属于一对一关系。在树里面,每个元素之间存在着明显的层次关系,每一层的元素可能和下一层的多个元素相关,但只能和上一层的一个元素相关,属于一对多的关系。而图是一种较线性表和树更为复杂的数据结构,在图的结构中,节点和节点的关系是任意的,图中任意两个数据元素都可能相关。
定义 :图( Graph )是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
在图中需要注意的是:
(1)线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中数据元素,我们则称之为顶点(Vertex)。
(2)线性表可以没有元素,称为空表;树中可以没有节点,称为空树;但是,在图中不允许没有顶点(有穷非空性)。
(3)线性表中的各元素是线性关系,树中的各元素是层次关系,而图中各顶点的关系是用边来表示(边集可以为空)。
顶点Vi的度(Degree)是指在图中与Vi相关联的边的条数。对于有向图来说,有入度(In-degree)和出度(Out-degree)之分,有向图顶点的度等于该顶点的入度和出度之和。
①若无向图中的两个顶点V1和V2存在一条边(V1,V2),则称顶点V1和V2邻接(Adjacent);
②若有向图中存在一条边<V3,V2>,则称顶点V3与顶点V2邻接,且是V3邻接到V2或V2邻接直V3;
注意:无向图中的边使用小括号“()”表示,而有向图中的边使用尖括号“<>”表示。
在无向图中,若从顶点Vi出发有一组边可到达顶点Vj,则称顶点Vi到顶点Vj的顶点序列为从顶点Vi到顶点Vj的路径(Path)。
若从Vi到Vj有路径可通,则称顶点Vi和顶点Vj是连通(Connected)的。
图的存储结构除了要存储图中的各个顶点本身的信息之外,还要存储顶点与顶点之间的关系,因此,图的结构也比较复杂。常用的图的存储结构有邻接矩阵和邻接表等。
我们再来看一个有向图样例,如下图所示的左边。顶点数组为vertex[4]={v0,v1,v2,v3},弧数组arc[4][4]为下图右边这样的一个矩阵。主对角线上数值依然为0。但因为是有向图,所以此矩阵并不对称,比如由v1到v0有弧,得到arc[1][0]=1,而v到v没有弧,因此arc[0][1]=0。
注:由于存在n个顶点的图需要n*n个数组元素进行存储,当图为稀疏图时,使用邻接矩阵存储方法将会出现大量0元素,这会造成极大的空间浪费。这时,可以考虑使用邻接表表示法来存储图中的数据。
首先,回忆我们在线性表时谈到, 顺序存储结构 就存在预先分配内存可能造成存储空间浪费的问题,于是引出了 链式存储 的结构。同样的,我们也可以考虑对边或弧使用链式存储的方式来避免空间浪费的问题。
邻接表 由表头节点和表节点两部分组成,图中每个顶点均对应一个存储在数组中的表头节点。如果这个表头节点所对应的顶点存在邻接节点,则把邻接节点依次存放于表头节点所指向的单向链表中。
上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。
上图右边的矩阵是G1在内存中的邻接表示意图。每一个顶点都包含一条链表,该链表记录了"该顶点的邻接点的序号"。例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是"0,1,3";而这"0,1,3"分别对应"A,B,D"的序号,"A,B,D"都是C的邻接点。就是通过这种方式记录图的信息的。
邻接表有向图是指通过邻接表表示的有向图。
上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<B,F>,<C,E>,<D,C>,<E,B>,<E,D>,<F,G>"共9条边。
上图右边的矩阵是G2在内存中的邻接表示意图。每一个顶点都包含一条链表,该链表记录了"该顶点所对应的出边的另一个顶点的序号"。例如,第1个顶点(顶点B)包含的链表所包含的节点的数据分别是"2,4,5";而这"2,4,5"分别对应"C,E,F"的序号,"C,E,F"都属于B的出边的另一个顶点。