当前位置:首页 » 服务存储 » 以下虚拟存储器的管理方式中
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

以下虚拟存储器的管理方式中

发布时间: 2023-01-14 01:09:46

Ⅰ 怎样使用“虚拟存储器”

不管你用的是MS WINDOWS系列操作系统,或者是LINUX或者UNIX,加上我用过的IRIX(一种64位的UNIX,专用于SGI图形工作站),虚拟内存或者是交换文件(实际上英文名解释来说都是Swap file)都是由操作系统本身提供的驱动程序,无需使用者额外安装驱动或第三方驱动程序。

在微软的WINDOWS 2000以上操作系统中,微软的虚拟机管理器程序VMM(Virtual Machine Manager) 是位于最底层的操作系统部件(VMM 包含了所有基本的系统功能,如任务调度、虚拟内存操作、程序装入及终止、任务间通讯等,此外,还负责处理主要的中断及例外情况)。目前,个人电脑上安装最多的Windows XP也使用操作系统自带的虚拟内存管理器(VMM)技术和驱动程序来管理虚拟内存(4GB以下的系统都需要设置虚拟内存),无需用户再安装额外的虚拟内存驱动程序了,呵呵~~~

附:上面提到的“4GB以下的系统都需要设置虚拟内存”的更多说明

系统虚拟内存简而言之就是为了避免物理内存容量不足,系统在硬盘中设置的名为PageFile.Sys的可作为内存使用的大容量文件,通常也叫做页面文件。合理的分配虚拟内存,可以让它辅助物理内存更好的改善系统性能。反之,系统性能降低。

Windows XP个人版使用了32位的内存模型,这样可以允许内存存的地址空间达到4GB.也就是说Windows XP最大支持4GB的物理内存。前端的2GB空间只能被操作系统使用,底端的2GB内存则由操作系统和应用程序共同使用。当内存不够时,Windows XP使用虚拟内存管理器(VMM)技术来管理虚拟内存,也就是说4GB以下的系统都需要设置虚拟内存。

正确设置虚批内存的方法是:右击“我的电脑→属性→高级”,在“性能”区域选择“设置”,弹出“性能选项”窗口,在“高级”选项卡点击“虚拟内存”区域的“更改”按钮,在“虚拟内存”对话框中我们可以设置硬盘的页面文件的“初始大小”和“最大值”。根据你的磁盘剩余空间和速度来设置不同分区的虚拟内存,建议只对系统盘和邻近分区设置页面文件。填完后记住点击“设置”完成。

对于虚拟内存“初始大小”的大小,微软的标准是设置为物理内存的1.5倍;对于最佳的“最大值”大小,我们只需观察到系统运行大型应用程序时的虚拟内存使用峰值即可。观察的方法是:打开“Windows任务管理器”,在“性能”选项卡界面左下角的“认可用量”部分中,可以看到当前峰值的数字是多少。如果多次观察这个数字均为最大值,那么就把这个值(单位KB)设为最大值即可,记住将此值除以1024转换为MB后再填入。

Ⅱ 操作系统(三)内存管理 3.2 虚拟内存管理

传统存储管理很多暂时用不到的数据也会长期占用内存,导致内存利用率不高,他们具有以下两个特征

高速缓冲技术的思想:将近期会频繁访问到的数据放到更高速的存储器中,暂时用不到的数据放在更低速存储器中。快表机构就是将近期常访问的页表项副本放到更高速的联想寄存器中,其依赖的就是局部性原理

时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)

空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的,并且程序的指令也是顺序地在内存中存放的)

基于局部性原理,在程序装入时,可以将程序中很快会用到的部分装入内存,暂时用不到的部分留在外存,就可以让程序开始执行。在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。在操作系统的管理下,在用户看来似乎有一个比实际内存大得多的内存,这就是 虚拟内存 。虚拟内存是操作系统虚拟性的一个体现,实际的物理内存大小没有变,只是在逻辑上进行了扩充。

虚拟内存有以下三个主要特征:

虚拟内存技术,允许一个作业分多次调入内存。如果采用连续分配方式,会不方便实现。因此,虚拟内存的实现需要建立在离散分配的内存管理方式基础上。

虚拟内存的实现有以下三种方式

在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。 [1] 若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。 [2]

请求分页系统建立在基本分页系统之上,为了支持虚拟存储器功能而增加了请求调页和页面置换功能

与基本分页管理相比,请求分页管理中,为了实现“请求调页”,操作系统需要知道每个页面是否已经调入内存;如果还没调入,那么也需要知道该页面在外存中存放的位置。当内存空间不够时,要实现“页面置换”,操作系统需要通过某些指标来决定到底换出哪个页面;有的页面没有被修改过,就不用再浪费时间写回外存。有的页面修改过,就需要将外存中的旧数据覆盖,因此,操作系统也需要记录各个页面是否被修改的信息。因此,请求页表项增加了四个字段

在请求分页系统中,每当要访问的页面不在内存时,便产生一个缺页中断,然后由操作系统的缺页中断处理程序处理中断。此时缺页的进程阻塞,放入阻塞队列,调页完成后再将其唤醒,放回就绪队列。如果内存中有空闲块,则为进程分配一个空闲块,将所缺页面装入该块,并修改页表中相应的页表项。

找到对应页表项后,若对应页面未调入内存,则产生缺页中断,之后由操作系统的缺页中断处理程序进行处理

快表中有的页面一定是在内存中的。若某个页面被换出外存,则快表中的相应表项也要删除,否则可能访问错误的页面

页面的换入、换出需要磁盘I/O,会有较大的开销,因此好的页面置换算法应该追求更少的缺页率

最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被访问的页面,这样可以保证最低的缺页率。

最佳置换算法可以保证最低的缺页率,但实际上,只有在进程执行的过程中才能知道接下来会访问到的是哪个页面。操作系统无法提前预判页面访问序列。因此,最佳置换算法是无法实现的。

先进先出置换算法(FIFO):每次选择淘汰的页面是最早进入内存的页面。把调入内存的页面根据调入的先后顺序排成一个队列,需要换出页面时选择队头页面即可。队列的最大长度取决于系统为进程分配了多少个内存块。

只有FIFO算法会产生Belady异常 [3] 。另外,FIFO算法虽然实现简单,但是该算法与进程实际运行时的规律不适应,因为先进入的页面也有可能最经常被访问。因此,算法性能差

最近最久未使用置换算法(LRU,least recently used):每次淘汰的页面是最近最久未使用的页面。赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来所经历的时间t。当需要淘汰一个页面时,选择现有页面中t值最大的,即最近最久未使用的页面。

该算法的实现需要专门的硬件支持,虽然算法性能好,但是实现困难,开销大

时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU,NotRecently Used)简单的CLOCK算法实现方法:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成一个循环队列。当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描中一定会有访问位为0的页面,因此简单的CLOCK算法选择一个淘汰页面最多会经过两轮扫描)

改进型的时钟置换算法:

简单的时钟置换算法仅考虑到一个页面最近是否被访问过。事实上,如果被淘汰的页面没有被修改过,就不需要执行I/O操作写回外存。只有被淘汰的页面被修改过时,才需要写回外存。因此,除了考虑一个页面最近有没有被访问过之外,操作系统还应考虑页面有没有被修改过。在其他条件都相同时,应优先淘汰没有修改过的页面,避免I/O操作。这就是改进型的时钟置换算法的思想。修改位=0,表示页面没有被修改过;修改位=1,表示页面被修改过。为方便讨论,用(访问位,修改位)的形式表示各页面状态。如(1,1)表示一个页面近期被访问过,且被修改过。

算法规则:将所有可能被置换的页面排成一个循环队列

由于第二轮已将所有帧的访问位设为0,因此经过第三轮、第四轮扫描一定会有一个帧被选中,因此改进型CLOCK置换算法选择一个淘汰页面最多会进行四轮扫描

对于分页式的虚拟内存,在进程准备执行时,不需要也不可能把-一个进程的所有页都读入主存。因此,操作系统必须决定读取多少页,即决定给特定的进程分配几个页框。

分配方式有

置换方式有

根据以上,现代操作系统通常采用三种策略:

预调页策略:根据局部性原理,一次调入若干个相邻的页面可能比一次调入一个页面更高效。但如果提前调入的页面中大多数都没被访问过,则又是低效的。因此可以预测不久之后可能访问到的页面,将它们预先调入内存,但目前预测成功率只有50%左右。故这种策略 主要用于进程的首次调入 ,由程序员指出应该先调入哪些部分。

请求调页策略:进程 在运行期间发现缺页时才将所缺页面调入内存 。由这种策略调入的页面一定会被访问到,但由于每次只能调入一页,而每次调页都要磁盘l/O操作,因此I/O开销较大。

请求分页系统中的外存分为两部分:用于存放文件的文件区和用于存放对换页面的对换区。对换区通常采用连续分配方式,而文件区采用离散分配方式,因此对换区的磁盘I/O速度比文件去的更快

刚刚换出的页面马上又要换入内存,刚刚换入的页面马上又要换出外存,这种频繁的页面调度行为称为抖动,或颠簸。产生抖动的主要原因是进程频繁访问的页面数目高于可用的物理块数(分配给进程的物理块不够)

工作集:指在某段时间间隔里,进程实际访问页面的集合。

操作系统会根据“窗口尺寸”来算出工作集。

工作集大小可能小于窗口尺寸,实际应用中,操作系统可以统计进程的工作集大小,根据工作集大小给进程分配若干内存块。 [4]
一般来说,驻留集大小不能小于工作集大小,否则进程运行过程中将频繁缺页。

Ⅲ 虚拟存储器的管理方式有_____,_____,_____三种。

调度方式有分页式、段式、段页式3种。页式调度是将逻辑和物理地址空间都分成固定大小的页。主存按页顺序编号,而每个独立编址的程序空间有自己的页号顺序,通过调度辅存中程序的各页可以离散装入主存中不同的页面位置,并可据表一一对应检索。页式调度的优点是页内零头小,页表对程序员来说是透明的,地址变换快,调入操作简单;缺点是各页不是程序的独立模块,不便于实现程序和数据的保护。段式调度是按程序的逻辑结构划分地址空间,段的长度是随意的,并且允许伸长,它的优点是消除了内存零头,易于实现存储保护,便于程序动态装配;缺点是调入操作复杂。将这两种方法结合起来便构成段页式调度。在段页式调度中把物理空间分成页,程序按模块分段,每个段再分成与物理空间页同样小的页面。段页式调度综合了段式和页式的优点。其缺点是增加了硬件成本,软件也较复杂。大型通用计算机系统多数采用段页式调度。