‘壹’ 人类是怎么发现有电磁波存在的
摩擦能产生电,天然磁石能吸铁,这些原始的电磁现象早已为人类所发现。可是,一直到19世20年代,人们才开始逐步找到电与磁之间的关系。1820年,丹麦物理学家奥斯特发现,当导线中有电流过时,放在它附近的磁针会发生偏转;学徒出身的英国物理学家法拉第(1791-1867)明确指出,奥斯特的实验说明了电能生磁。他还通过艰苦的实验,发现了导线在磁场中运动时会产生电流,这就是所谓的“电磁感应”现象。 着名的科学家麦克斯韦用数学公式表达了法拉第等人的成果,而且把法拉第的电磁感应理论推广到了空间,认为在变化磁场的周围,能产生变化的电场,如此推演下去,交替变化的电磁场就会像水波一样向远处传播。于是,麦克斯韦在人类历史上首先预言了电磁波的存在。 那么,又是谁证实了电磁波的存在呢?这个人就德国青年物理学家赫兹(1857-1894)。 1887年的一天,赫兹在一间暗室里做实验。他从两个相距很近的金属小球接上交流高压电,他身后有一个没封口的圆环。随着一阵阵劈劈啪啪的电火花声,他发现,当他把圆环的开口调得越来越小时,便有火花越过缝隙。这便提供了能量能越过空间进行传播的有力证据。一次看来十分平常实验,却揭示了电磁波存在的伟大真理,为人类利用无线电波开辟了无限广阔的前景。
‘贰’ (1)历史上,物理学家先预言了电磁波的存在,然后通过实验对此进行了证实.最早用实验证实电磁波存在的
(1)历史上,物理学家先预言了电磁波的存在,然后通过实验对此进行了证实.
预言电磁波存在的物理学家是麦克斯韦.赫兹通过实验对此进行了证实.
(2)根据传播速度表可知电磁波在真空中的传播速度是3×108m/s,电磁波在真空中传播的速度最快,所以在其他介质中,电磁波传播的速度小于光在真空中的传播速度.
故答案为:赫兹,等于.
‘叁’ 谁知道电磁波的发展史和它的应用及未来的发展方向啊谢谢了
电磁学的发展史
电磁学的历史背景
静电和静磁现象很早就被人类发现,由于摩擦起电现象,英文中“电”的语源来自希腊文“琥珀”一词。然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明·富兰克林[26],人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。
静电学和库仑定律
库仑定律是静电学中的基本定律,其主要描述了静电力与电荷电量成正比,与距离的平方反比关系。人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体不会带电,这和有质量的球壳内部物体不会受到引力作用(由牛顿在理论上证明,是平方反比力的一个特征)的情形类似。其间苏格兰物理学家约翰·罗比逊(1759年)
[27]
和英国物理学家亨利·卡文迪什(1773年)等人都进行过实验验证了静电力的平
方反比律,然而他们的实验却迟迟不为人知。法国物理学家夏尔·奥古斯丁·库仑于1784年至1785年间进行了他着名的扭秤实验[28],其实验的主要目的就是为了证实静电力的平方反比律,因为他认为“假说的前一部分无需证明”,也就是说他已经先验性地认为静电力必然和万有引力类似,和电荷电量成正比。扭秤的基本构造为:一根水平悬于细金属丝的轻导线两端分别置有一个带电小球A和一个与之平衡的物体P,而在实验中在小球A的附近放置同样大小的带电小球B,两者的静电力会在轻导线上产生扭矩,从而使轻杆转动。通过校正悬丝上的旋钮可以将小球调回原先位置,则此时悬丝上的扭矩等于静电力产生的力矩。如此,两者之间的静电力可以通过测量这个扭矩、偏转角度和导线长度来求得。库仑的结论为:
“
……对同样材料的金属导线而言,扭矩的大小正比于偏转角度,导线横
截面直径的四次方,且反比于导线的长度…… ”
—夏尔·奥古斯丁·库仑, 《金属导线扭矩和弹性的理论和实验研究》
库仑在其后的几年间也研究了磁偶极子之间的作用力,他也得出了磁力也具有平方反比律的结论。不过,他并未认识到静电力和静磁力之间有何内在联系,而且他一直将电力和磁力吸引和排斥的原因归结于假想的电流体和磁流体——具有正和负区别的,类似于“热质”一般的无质量物质。
静电力的平方反比律确定后,很多后续工作都是同万有引力做类比从而顺理成章的结果。1813年法国数学家、物理学家西莫恩·德尼·泊松指出拉普拉斯方程也适用于静电场,从而提出泊松方程;其他例子还包括静电场的格林函数(乔治·格林,1828年)和高斯定理(卡尔·高斯,1839年)。
对稳恒电流的研究
十八世纪末,意大利生理学家路易吉·伽伐尼发现蛙腿肌肉接触金属刀片时会发生痉挛,他其后在论文中认为生物中存在着一种所谓“神经电流”。意大利物理学家亚历山德罗·伏打对这种观点并不赞同,他对这种现象进行研究后认为这不过是外部电流的作用,而蛙腿肌肉只是起到了导体的连接作用。1800年,伏打将锌片和铜片夹在用盐水浸湿的纸片中,得到了很强的电流,这称作伏打电堆;而将锌片和铜片浸入盐水或酸溶液中也能得到相同的效果,这称作伏打电池。伏打电堆和电池的发明为研究稳恒电流创造了条件。
1826年,德国物理学家格奥尔格·欧姆从傅立叶对热传导规律的研究中受到启发,在傅立叶的热传导理论中,导热杆中两点的热流量正比于这两点之间的温度差[29]。因而欧姆猜想电传导与热传导相似,导线中两点之间的电流也正比于这两点间的某种驱动力(欧姆称之为电张力,即现在所称的电动势)。欧姆首先尝试用电流的热效应来测量电流强度,但效果不甚精确,后来欧姆利用了丹麦物理学家汉斯·奥斯特发现的电流的磁效应,结合库仑扭秤构造了一种新型的电流扭秤,让导线和连接的磁针平行放置,当导线中通过电流时,磁针的偏转角与导线中的电流成正比,即代表了电流的大小。欧姆测量得到的偏转角度(相当于电流强度)与电路中的两个物理量分别成正比和反比关系,这两个量实际相当于电动势和电阻。欧姆于1827年发表了他的着作《直流电路的数学研究》,明确了电路分析中电压、电流和电阻之间的关系,极大地影响了电流理论和应用的发展,在这本书中首次提出的电学定律也因此被命名为欧姆定律。
库仑发现了磁力和电力一样遵守平方反比律,但他没有进一步推测两者的内在联系,然而人们在自然界中观察到的电流的磁现象(如富兰克林在1751年发现放电能将钢针磁化)促使着人们不断地探索这种联系。首先发现这种联系的人是丹麦物理学家奥斯特[30][31],他本着这种信念进行了一系列有关的实验,最终于1820年发现接通电流的导线能对附近的磁针产生作用力,这种磁效应是沿着围绕导线的螺旋方向分布的。
安培的电磁学定理
在奥斯特发现电流的磁效应之后,法国物理学家让-巴蒂斯特·毕奥和费利克斯·萨伐尔进一步详细研究了载流直导线对周围磁针的作用力,并确定其磁力大小正比于电流强度,反比于距离,方向垂直于距离连线,这一规律被归纳为着名的毕奥-萨伐尔定律。而法国物理学家安德烈-玛丽·安培在奥斯特的发现仅一周之后(1820年9月)
就向法国科学院提交了一份更详细的论证报告[32][33],同时还论述了两根平行载流直导线之间磁效应产生的吸引力和排斥力。在这期间安培进行了四个实验,分别验证了两根平行载流直导线之间作用力方向与电流方向的关系、磁力的矢量性、确定了磁力的方向垂直于载流导体以及作用力大小与电流强度和距离的关系。安培并且在数学上对作用力进行了推导,得到了普遍的安培力公式,这一公式在形式上类似于万有引力定律和库仑定律。1821年,安培从电流的磁效应出发,设想了磁效应的本质正是电流产生的,从而提出了分子环流假说,认为磁体内部分子形成的环形电流就相当于一根根磁针。1826年,安培从斯托克斯定理推导得到了着名的安培环路定理,证明了磁场沿包围产生其电流的闭合路径的曲线积分等于其电流密度,这一定理成为了麦克斯韦方程组的基本方程之一。安培的工作揭示了电磁现象的内在联系,将电磁学研究真正数学化,成为物理学中又一大理论体系——电动力学的基础[34]。麦克斯韦称安培的工作是“科学史上最辉煌的成就之一”,后人称安培为“电学中的牛顿”。
电磁感应现象
英国物理学家迈克尔·法拉第早年跟随化学家汉弗里·戴维从事化学研究,他对电磁学的贡献还包括抗磁性的发现、电解定律和磁场的旋光性(法拉第效应)[35]。 在奥斯特发现电流的磁效应之后的1821年,英国《哲学学报》邀请当时担任英国皇家研究所实验室主任的法拉第撰写一篇电磁学的综述,这也导致了法拉第转向电磁领域的研究工作。法拉第考虑了奥斯特的发现,也出于他同样认为自然界的各种力能够相互转化的信念,他猜想电流应当也如磁体一般,能够在周围感应出电流。从1824年起,法拉第进行了一系列相关实验试图寻找导体中的感应电流,然而始终未获成功。直到1831年8月29日,他在实验中发现对于两个相邻的线圈A和B,只有当接通或断开线圈回路A时,线圈B附近的磁针才会产生反应,也就是此时线圈B中产生了电流。如果维持线圈A的接通状态,则线圈B中不会产生电流,法拉第意识到这是一种瞬态效应。一个月后,法拉第向英国皇家学会总结了他的实验结果,他发现产生感应电流的情况包括五类:变化中的电流、变化中的磁场、运动的稳恒电流、运动的磁体和运动的导线。法拉第电磁感应定律从而表述为:任何封闭电路中感应电动势的大小,等于穿过这一电路磁通量的变化率。不过此时的法拉第电磁感应定律仍然是一条观察性的实验定律,确定感应电动势和感应电流方向的是俄国物理学家海因里希·楞次,他于1833年总结出了着名的楞次定律[36]。法拉第定律后来被纳入麦克斯韦的电磁场理论,从而具有了更简洁更深刻的意义。 法拉第另一个重要的贡献是创立了力线和场的概念,力线实际是否认了超距作用的存在,这些思想成为了麦克斯韦电磁场理论的基础。爱因斯坦称其为“物理学中引入了新的、革命性的观念,它们打开了一条通往新的哲学观点的道路”,意为场论的观念是有别于旧的机械观中以物质为主导核心的哲学观念[14]。
麦克斯韦电磁场理论
詹姆斯·克拉克·麦克斯韦对电磁理论的贡献是里程碑式的[21][37]。麦克斯韦自1855年开始研究电磁学,1856年他发表了首篇专论《论法拉第力线》[38],其中描述了如何类比流体力学中的流线和法拉第的力线,并用自己强大的数学功底重新描述了法拉第的实验观测结果,这部分内容被麦克斯韦用六条数学定律概括。1861年至1862年间,麦克斯韦发表了第二篇电磁学论文《论物理力线》[38],在这篇论文中麦克斯韦尝试了所谓“分子涡流”模型,他假设在磁场作用下的介质中存在大量排列的分子涡流,这些涡流沿磁力线旋转,且角速度正比于磁场强度,分子涡流密度正比于介质磁导率。这一模型能很好地通过近距作用之说来解释静电和静磁作用,以及变化的电场与磁场的关系。更重要的是,它预言了在电场作用下的分子涡流会产生位移,从而以势能的形式储存在介质中,这相当于在介质中产生了电动势,这成为了麦克斯韦预言位移电流存在的理论基础。此外,将这种介质理论应用到弹性波上,可以计算求得在真空或以太中横波的传播速度恰好和当时已知的光速(斐索,1849年)非常接近,麦克斯韦由此大胆预言:
“
我们难以排除如下的推论:光是由引起电现象和磁现象的同一介质中的
横波组成的。 ”
—詹姆斯·克拉克·麦克斯韦, 《论物理力线》
1865年麦克斯韦发表了他的第三篇论文《电磁场的动力学理论》[38],在论文中他坚持了电磁场是一种近距作用的观点,指出“电磁场是包含和围绕着处于电或磁状态的物体的那部分空间,它可能充有任何一种物质”。在此麦克斯韦提出了电磁场的方程组,一共包含有20个方程(电位移、磁场力、电流、电动势、电弹性、电阻、自由电荷和连续性方程)和20个变量(电磁动量、磁场强度、电动热、传导电流、电位移、全电流、自由电荷电量、电势)。这实际是8个方程,但到1890年才由海因里希·鲁道夫·赫兹给出了现代通用的形式[39],这是赫兹在考虑了阿尔伯特·迈克耳孙在1881年的实验(也是迈克耳孙-莫雷实验的先行实验)中得到了以太漂移的零结果后对麦克斯韦的方程组进行的修改。1887年至1888年间,赫兹通过他制作的半波长偶极子天线成功接收到了麦克斯韦预言的电磁波,电磁波是相互垂直的电场和磁场在垂直于传播方向的平面上的振动,同时赫兹还测定了电磁波的速度等于光速。赫兹实验证实电磁波的存在是物理学理论的一个重要胜利,同时也标志着一种基于场论的更基础的物理学即将诞生。爱因斯坦盛赞法拉第、麦克斯韦和赫兹的工作是“牛顿力学以来物理学中最伟大的变革”,而“这次革命的最大部分出自麦克斯韦”。
‘肆’ 电的发展历史是怎样
一、古代发现
早在对于电有任何具体认知之前,人们就已经知道发电鱼(electric fish)会发出电击。早在4750年前撰写的古埃及书籍记载,这些鱼被称为“尼罗河的雷使者”,是所有其它鱼的保护者。大约两千五百年之后,希腊人、罗马人,阿拉伯自然学者和阿拉伯医学者,才又出现关于发电鱼的记载。
古罗马医生 Scribonius Largus 也在他的大作《Compositiones Medicae》中,建议患有像痛风或头疼一类病痛的病人,去触摸电鳐,也许强力的电击会治愈他们的疾病。
阿拉伯古人可能是最先了解闪电本质的族群。早于15世纪以前,阿拉伯人就创建了“闪电”的阿拉伯字 “raad”,并将这字用来称呼电鳐。
在地中海区域的古老文化里,很早就有文字记载,将琥珀棒与猫毛摩擦后,会吸引羽毛一类的物。2600年前左右,古希腊的哲学家泰勒斯(Thales, 640-546B.C.)就做了一系列关于静电的观察。从这些观察中,他认为摩擦使琥珀变得磁性化。
这与矿石像磁铁矿的性质迥然不同;磁铁矿天然地具有磁性。泰勒斯的见解并不正确。但后来,科学证实了磁与电之间的密切关系。
二、近代研究
但是几千年来,人们只是观察了雷电等自然现象,并不了解电的本质,直到1600年,由于英国科学家威廉·吉尔伯特的严谨科学态度,才开始对于电与磁的现象出现进行了系统性研究。吉尔伯特是英国女王伊丽莎白一世的皇家医生,他对于电和磁特别有兴趣,撰写了第一本阐述电和磁的科学着作《论磁石》。
这是一本具有现代科学精神的书籍,着重于从实验结果论述。吉尔伯特指出,不只是琥珀可以经过摩擦产生静电的物质,钻石、蓝宝石、玻璃等等,也都可以表现出同样的电学性质,在这里,他成功地击破了琥珀的吸引力是其内秉性质这持续了2000年的错误观念。
吉尔伯特制成的静电验电器可以敏锐的探测静电电荷。在之后的一个世纪,这是最优良的探测静电电荷的仪器。
先前,意大利数学家和医生吉罗拉莫·卡尔达诺列出一些电现象与磁现象的不同之处。
从卡尔达诺的结果,吉尔伯特得到很多启发,他提出更多分歧之处:带电物质会吸引所有其它物质,而磁石只会吸引铁器;琥珀需要磨擦才能产生电性,而磁石不需要任何动作;磁石会将物体按照某定向排列,而带电物质则只会吸引其它物质。
吉尔伯特创建了新拉丁术语“electrica”(类似琥珀,从“ήλεκτρον”,“elektron”,希腊文的“琥珀”),意思为像琥珀的吸引方式一般的那些物质。
由于他在电学的众多贡献,吉尔伯特被后人尊称为“电学之父”。
后来,从“electricus”又衍生了英文词语“electric”和“electricity”,这两个英文字最先出现于托马斯·布朗的1646年着作《世俗谬论》(Pseudodoxia Epidemica,英文书名《Vulgar Errors》)。
之后,科学家奥托·冯·格里克、罗伯特·波义耳、史蒂芬·葛雷(Stephen Gray) 、查理·杜费(Charles Fay) 等等,都做了更进一步的研究。
三、十八世纪
1767年,约瑟夫·普利斯特里做实验发现,在带电金属容器的内部,电作用力为零。从这实验结果,他准确猜测,带电物体作用于彼此之间的吸引力与万有引力都遵守同样的定律。
1785年,查尔斯·库仑用扭秤(torsion balance)做实验证实了普利斯特里的猜测,两个带电物体施加于彼此之间的作用力与距离成平方反比。他奠定了静电的基本定律,即库仑定律。于此,电的研究已提升成为一种精密科学。
1791年,路易吉·伽伐尼发现,假设将青蛙与静电发电机连结成闭合电路,然后开启静电发电机,则青蛙肌肉会颤动。这实验演示出,神经细胞倚赖电的媒介将信号传达到肌肉。他因此创建了生物电学术领域。
1800年,亚历山大·伏打伯爵将铜片和锌片浸于食盐水中,并接上导线,制成了第一个电池:伏打电堆,堪称是现代电池的元祖。伏打电堆给予科学家一种比静电发电机更稳定的电源,能够连续不断的供给电流。
四、十九世纪
1820年,汉斯·奥斯特在课堂做实验时意外发现,电流能够偏转指南针的方向,演示出电流周围会生成磁场,即电流的磁效应。
随后,安德烈·玛丽·安培对于这现象做定量描述,给出安培力定律与安培定律。他们两个人的研究成果成功地将电与磁现象连结在一起,共称为“电磁现象”。应用这理论,可以制作出来磁性超强劲于天然磁石的电磁铁。1827年,格奥尔格·欧姆发展出一套精致的数学理论来分析电路。
1831年,麦可·法拉第与约瑟·亨利分别独立地发现了电磁感应──磁场的变化可以生成电场。1865年,詹姆斯·麦克斯韦将电磁学加以整合,提出麦克斯韦方程组,并且推导出电磁波方程。由于他计算出来的电磁波速度与测量到的光速相等,他大胆预测光波就是电磁波。
1887年,海因里希·赫兹成功制成并接收到麦克斯韦所描述的电磁波。麦克斯韦将电学、磁学与光学统合成一种理论。
1859年,德国物理学家尤利乌斯·普吕克将真空管两端的电极之间通上高压电,产生阴极射线。物理学者发现,阴极射线是以直线传播,但其传播方向会被磁场偏转。阴极射线具有可测量的动量与能量。1897年,约瑟夫·汤姆孙做实验证实,阴极射线是由带负电的粒子组成,称为电子,因此他发现了电子。
十九世纪早期见证了电磁学快速蓬勃,如火如荼的演进。到了后期,应用电磁学的先进知识,电机工程学开始了一段突破性的发展。
例如,亚历山大·贝尔发明了电话、汤玛斯·爱迪生设计出优良的白炽灯和直流电力系统、尼古拉·特斯拉发展完成感应电动机和发现交流电、卡尔·布劳恩改良成功装置在显示器或电视机里的阴极射线管。
由于这些与其他众多发明家所做出的贡献,电已经成为现代生活的必需工具,更是第二次工业革命的主要动力。
五、二十世纪
德国物理学者海因里希·赫兹于1887年发现,照射紫外线于电极可以帮助产生更多电花。这就是光电效应所产生的现象。包括约瑟夫·汤姆孙、菲利普·莱纳德在内的物理学者们,对于光电效应的做了很多理论研究与实验研究。
1905年,阿尔伯特·爱因斯坦发表论文对于光电效应的众多实验数据给出解释。爱因斯坦主张,光束是由一群离散的量子(现称为光子)组成,而不是连续性波动。
假若光子的频率大于某极限频率,则该光子拥有足够能量来使得金属表面的电子逃逸,产生光电效应。这个重要发现展开了量子物理的大门。
1901年,古列尔莫·马可尼从英国发射无线电讯号,越过大西洋,传送至加拿大。5年后,“无线电之父”李·德富雷斯特研究出真空三极管。这重大发明推动电子时代急速向前推进,使得无线电与长途电话科技不再是遥不可及的梦想。
到了1940、1950年代,固态原件开始出现在越来越多个场合,这标记着真空管科技的快速没落与半导体科技的崛起。1947年,贝尔实验室的威廉·肖克利、约翰·巴丁和沃尔特·布喇顿工作团队发明了晶体管。
这是二十世纪最重要的发明之一,凡是电子器具大多都须要用到晶体管。杰克·基尔比于1958年和罗伯特·诺伊斯于1959年分别独立发明集成电路。
现今,大量晶体管、二极管、电阻器、电容器等电子原件都可以被装配在单独的集成电路里。
生产与应用
1、发电和传输
公元前 6 世纪,希腊哲学家米利都的泰勒斯用琥珀棒进行了实验,这些实验是对电能生产的第一次研究。虽然这种方法,现在称为摩擦电效应,可以提升轻物体并产生火花,但效率极低。
直到十八世纪伏打电堆的发明,才出现了可行的电力来源。伏打电堆及其现代派生电池,以化学方式储存能量,并以电能的形式按需提供。
电池是一种通用且非常常见的电源,非常适合许多应用,但其能量存储是有限的,一旦放电就必须处理掉或重新充电。对于大的电力需求,必须通过导电传输线连续产生和传输电能。
电力通常由机电发电机产生,由化石燃料燃烧产生的蒸汽或核反应释放的热量驱动;或其他来源,例如从风或流水中提取的动能。查尔斯·帕森斯爵士于 1884 年发明的现代蒸汽轮机今天使用各种热源产生了世界上大约 80% 的电力。
这种发电机与法拉第 1831 年的单极盘发电机没有相似之处,但它们仍然依赖于他的电磁原理,即连接不断变化的磁场的导体会在其两端感应出电势差。
19世纪后期变压器的发明意味着电力可以在更高的电压和更低的电流下更有效地传输。高效的电力传输反过来意味着电力可以在集中发电站产生,在那里它受益于规模经济,然后被输送到相对较远的地方需要它的地方。
由于电能的储存量不足以满足全国范围的需求,因此在任何时候都必须准确地生产所需的电能。这要求电力公司对其电力负荷进行仔细预测,并与其发电站保持持续协调。必须始终保留一定数量的发电量,以缓冲电网免受不可避免的干扰和损失。
随着国家现代化和经济发展,对电力的需求以极快的速度增长。美国在 20 世纪前三个十年的每年需求增长 12%,印度或中国等新兴经济体现在正在经历这种增长率。从历史上看,电力需求的增长率已经超过了其他形式的能源。
与发电有关的环境问题导致人们越来越关注可再生能源,特别是风能和太阳能发电。虽然关于不同发电方式对环境的影响的争论有望继续,但其最终形式相对清洁。
2、应用
电力是一种非常方便的能量传输方式,它已经适应了大量且不断增长的用途。1870 年代实用的白炽灯泡的发明使照明成为首批公开可用的电力应用之一。尽管电气化带来了自身的危险,但取代燃气照明的明火极大地减少了家庭和工厂内的火灾隐患。
许多城市都设立了公共事业,瞄准新兴的电气照明市场。在 20 世纪后期和现代,这一趋势开始朝着电力部门放松管制的方向发展。
灯丝灯泡中采用的电阻焦耳热效应也更直接地用于电加热。虽然这是通用且可控的,但它可以被视为浪费,因为大多数发电已经需要在发电站产生热量。
一些国家,例如丹麦,已颁布立法限制或禁止在新建筑中使用电阻式电加热。然而,电力仍然是一种非常实用的供暖和制冷能源,带有空调/热泵代表了一个不断增长的供暖和制冷电力需求部门,电力公司越来越需要适应其影响。
电用于电信,事实上,1837 年库克和惠斯通在商业上展示的电报是其最早的应用之一。随着1860 年代第一个横贯大陆,然后是横贯大西洋的电报系统的建设,电力在几分钟内实现了全球范围内的通信。光纤和卫星通信已经占据了通信系统市场的份额,但预计电力仍将是这一过程的重要组成部分。
电磁学的影响在最明显采用电动马达,其提供动力的清洁和有效的手段。像绞盘这样的固定电机很容易提供电源,但是随着它的应用而移动的电机,例如电动汽车,则必须携带电池等电源,或者从滑动触点,例如受电弓。
电动汽车用于公共交通,例如电动公交车和火车,以及越来越多的私人拥有的电池供电的电动汽车。
电子设备使用晶体管,这可能是 20 世纪最重要的发明之一,和所有现代电路的基本构建块。现代集成电路可能在仅几平方厘米的区域内包含数十亿个小型化晶体管。
‘伍’ 电波的发现历史
1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。
‘陆’ 电磁发展历史
电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。
早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。
电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。
根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。
麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。
电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。
和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。
电磁能量的工作方式
在稳定状态下,电流的波形如图所示的情况,此时它们的磁通增量△Φ在开关管导通ton时间内的变化,必须等于在反激时间内的变化。
公式
因此由上式可知,如果磁通增量相等的工作点稳定建立时,变压器初级绕组每匝的伏一秒值必然等于次级绕组每匝的伏一秒值。
通过控制开关管的导通占空比,来调定初级峰值电流,然而在开关管关断时,输出电压和次级匝数是恒定的,反激工作时间须自我调节。
图 在稳定状态下的电流波形
在临界状态,如图(a)中的Is(2)所示,反激电流在下一个导通时间之前正好达到零,进一步增加占空比将会引起转换器从完全到不完全能量传递方式时,传递函数将变成带有低输出阻抗的两个极点系统,此时如果需要更多的电能时,脉冲宽度仅需轻微的增加即可。另外,在传递函数中有一个“右半平面零点”,这将在高频段引人180°的相位改变,这也会引起不稳定。
‘柒’ 电磁发展历史
1820年,丹麦的物理学家奥斯特发现了电流的磁效应,将电和磁联系在了一起。
1822年,法国科学家安培提出了安培环路定律,将奥斯特的发现上升为理论。1827年,他将电磁现象的研究成果综合在《电动力学的数学理论》一书中,这是电磁学史上一部重要的经典论着,推动电磁学迅速发展。
1825年,德国科学家欧姆得出了第一个电路定律:欧姆定律。U=IR
1831年,法拉第发现了电磁感应定律。提出了“场”和“力线”的概念。
1840年,英国科学家焦耳提出了焦耳定律,揭示了电磁现象的能量特性。Q=I²Rt。1842年,俄国物理学家楞次也独立的发现了这一特性,因此也称为“焦耳—楞次定律”。
1845年,德国科学家基尔霍夫提出了基尔霍夫定律,使电路理论趋于完善。
下面就是电磁理论的完成者:詹姆斯·克拉克·麦克斯韦。他在1856~1865十年间,发展了法拉第“场”和“力线”理论,建立了电磁学的系统理论。并由理论推论出,空间存在有限速度传播的电磁波,其波速就是光速。物理学历史上认为牛顿的经典力学打开了机械时代的大门,而麦克斯韦电磁学理论则为电气时代奠定了基石。
‘捌’ 电磁波的发展史是什么
人类应用电磁波传播信息的历史经历了以下变化:①传播的信息形式从文字→声音→图像;②传播的信息量由小到大;③传播的距离由近到远④传播的速度由慢到快。