① 什么是电势阱
势阱,是电子的势能图像一个波的形状,当电子处于波谷,比较稳定,很难跑出来,称为势井或势阱,势阱深度是以电荷作为信号。
② CCD工作原理的图IV势阱
当反型层电荷足够多时,使势阱被填满时,ΦS 降到2ΦF,此时,表面势不再束缚多余的电子,电子将产生“溢出”现象,这样,表面势可作为势阱深度的量度,而表面势又与栅极电压UG 氧化层的厚度dox 有关,即与MOS电容容量cox 与UG的乘积有关,势阱的横截面积取决于栅极电极的面积A。MOS电容存储信号电荷的容量。
Q=Cox UG*A
③ 电荷藕合器件的CCD的基本工作原理
CCD是由一系列排得很紧密的MOS电容器组成。它的突出特点是以电荷作为信号,实现电荷的存储和电荷的转移。因此,CCD工作过程的主要问题是信号电荷的产生、存储、传输和检测。以下将分别从这几个方面讨论CCD器件的基本工作原理。
(1)MOS电容器
CCD是一种固态检测器,由多个光敏像元组成,其中每一个光敏像元就是一个MOS(金属—氧化物—半导体)电容器。但工作原理与MOS晶体管不同。
CCD中的MOS电容器的形成方法是这样的:在P型或N型单晶硅的衬底上用氧化的办法生成一层厚度约为100~150NM的SIO2绝缘层,再在SIO2表面按一定层次蒸镀一金属电极或多晶硅电极,在衬底和电极间加上一个偏置电压(栅极电压),即形成了一个MOS电容器(如图4所示)。
电荷藕合器件
CCD一般是以P型硅为衬底,在这种P型硅衬底中,多数载流子是空穴,少数载流子是电子。在电极施加栅极电压VG之前,空穴的分布是均匀的,当电极相对于衬底施加正栅压VG时,在电极下的空穴被排斥,产生耗尽层,当栅压继续增加,耗尽层将进一步向半导体内延伸,这一耗尽层对于带负电荷的电子而言是一个势能特别低的区域,因此也叫做“势阱”。
在耗尽状态时,耗尽区电子和空穴浓度与受主浓度相比是可以忽略不计的,但如正栅压VG进一步增加,接口上的电子浓度将随着表面势成指数地增长,而表面势又是随耗尽层宽度成平方率增加的。这样随着表面电势的进一步增加,在接口上的电子层形成反型层。而一旦出现反型层,MOS就认为处于反型状态(如图4所示)。显然,反型层中电子的增加和因栅压的增加的正电荷相平衡,因此耗尽层的宽度几乎不变。反型层的电子来自耗尽层的电子—空穴对的热产生过程。对于经过很好处理的半导体材料,这种产生过程是非常缓慢的。因此在加有直流电压的金属板上迭加小的交流信号时,反型层中电子数目不会因迭有交流信号而变化。
(2)电荷存储
当一束光投射到MOS电容器上时,光子透过金属电极和氧化层,进入SI衬底,衬底每吸收一个光子,就会产生一个电子—空穴对,其中的电子被吸引到电荷反型区存储。从而表明了CCD存储电荷的功能。一个CCD检测像元的电荷存储容量决定于反型区的大小,而反型区的大小又取决于电极的大小、栅极电压、绝缘层的材料和厚度、半导体材料的导电性和厚度等一些因素。
图5表示了SI-SIO2的表面电势VS与存储电荷QS的关系。曲线的直线性好,说明两者之间有良好的反比例线性关系,这种线性关系很容易用半导体物理中“势阱”的概念来描述。电子所以被加有栅极电压VG的MOS结构吸引到SI-SIO2的交接面处,是因为那里的势能最低。在没有反型层电荷时,势阱的“深度”与电极电压的关系恰如表面势VS与电荷QS的线性关系,如图6(A)所示。图6(B)为反型层电荷填充势阱时,表面势收缩。当反型层电荷足够多,使势阱被填满时,如图6(C)所示,此时表面势下降到不再束缚多余的电子,电子将产生“溢出”现象。
(3)电荷转移
为了便于理解在CCD中势阱电荷如何从一个位置移到另一个位置,取CCD中四个彼此靠得很近的电极来观察,见图7。
假定开始时有一些电荷存储在偏压为10V的第二个电极下面的深势阱里,其它电极上均加有大于域值电压的较低电压(例如2V)。设图7(A)为零时刻(初始时刻),过T1时刻后,各电极上的电压变为如图7(B)所示,第二个电极仍保持为10V,第三个电极上的电压由2V变到10V,因这两个电极靠得很紧(间隔只有几微米),他们各自的对应势阱将合并在一起。原来在第二个电极下的电荷变为这两个电极下的势阱所共有,如图7(B)和7(C)所示。若此后电极上的电压变为图7(D)所示,第二个电极电压由10V变为2V,第三个电极电压仍为10V,则共有的电荷转移到第三个电极下面的势阱中,如图7(E)。由此可见,深势阱及电荷包向右移动了一个位置。
通过将一定规则变化的电压加到CCD各电极上,电极下的电荷包就能沿半导体表面按一定方向移动。通常把CCD电极分为几组,每一组称为一相,并施加同样的时钟脉冲。CCD的内部结构决定了使其正常工作所需的相数。图7所示的结构需要三相时钟脉冲,其波形图如图7(F)所示,这样的CCD称为三相CCD。三相CCD的电荷耦合(传输)方式必须在三相交迭脉冲的作用下才能以一定的方向,逐个单元的转移。另外必须强调指出的是,CCD电极间隙必须很小,电荷才能不受阻碍地自一个电极下转移到相邻电极下。这对于图7所示的电极结构是一个关键问题。如果电极间隙比较大,两相邻电极间的势阱将被势垒隔开,不能合并,电荷也不能从一个电极向另一个电极转移。CCD便不能在外部时钟脉冲的作用下正常工作。
(4) 电荷的注入和检测
CCD中的信号电荷可以通过光注入和电注入两种方式得到。光注入就是当光照射CCD硅片时,在栅极附近的半导体体内产生电子—空穴对,其多数载流子被栅极电压排开,少数载流子则被收集在势阱中形成信号电荷。而所谓电注入,就是CCD通过输入结构对信号电压或电流进行采样,将信号电压或电流转换为信号电荷。在此仅讨论与本课题有关的光注入法。
CCD利用光电转换功能将投射到CCD上面的光学图像转换为电信号“图像”,即电荷量与当地照度大致成正比的大小不等的电荷包空间分布,然后利用移位元元寄存功能将这些电荷包“自扫描”到同一个输出端,形成幅度不等的实时脉冲序列。其中光电转换功能的物理基础是半导体的光吸收。当电磁辐射投射到半导体上面时,电磁辐射一部分被反射,另一部分透射,其余部分被半导体吸收。所谓半导体光吸收,就是电子吸收光子并从一个能态跃迁到另一个较高能级的过程。我们这里将要涉及到的是价带电子越过禁带到导带的跃迁,和局域杂质或缺陷周围的束缚电子(或空穴)到导带(获价带)的跃迁。他们分别称为本征吸收和非本征吸收。CCD利用处于表面深耗尽状态的一系列MOS电容器(称为感光单元或光敏单元)收集光产生的少数载流子。这些收集势阱是相互隔离的。由此可见,光转换成电的过程实际上还包括对空间连续的光强分布进行空间上分离的采样过程。
另外,衬底每吸收一个光子,反型区中就多一个电子,这种光子数目与存储电荷的定量关系正是CCD检测器用于对光信号作定量分析的依据。
检测电路
转移到CCD输出端的信号电荷在输出电路上实现电荷/电压(电流)的线性变换,称之为电荷检测。从应用角度对电荷检测提出的要求是检测的线性、检测的增益和检测引起的噪声。针对不同的使用要求,有几种常用的检测电路,如栅电容电荷积分器、差动电路积分器以及带浮置栅和分布浮置栅放大器的输出电路。这里就不一一叙述了。
④ 为什么在栅极电压相同的情况下不同氧化层厚度的MOS结构所形成的势阱存储电荷的容
氧化层相当于结电容的介质,根据平板电容容量的公式Cj=εS/d,d是介质的厚度,可以看出结电容容量跟介质厚度成反比,氧化层越薄电容量越大,相同栅极电压存储的电荷Qg=CV也就越多 。
⑤ 电荷耦合器件是什么意思怎原理
电荷耦合器件(charge-coupled device,CCD)是一种用于探测光的硅片,由时钟脉冲电压来产生和控制半导体势阱的变化,实现存储和传递电荷信息的固态电子器件。
电荷耦合器件由美国贝尔实验室的W.S.博伊尔和G.E.史密斯于1969年发明,它由一组规则排列的金属-氧化物-半导体( MOS)电容器阵列和输入、输出电路组成。电荷耦合器件用电荷量来表示不同状态的动态移位寄存器,比传统的底片更能敏感的探测到光的变化。
原理:
CCD的雏形是在N型或 P型硅衬底上生长一层二氧化硅薄层,再在二氧化硅层上淀积并光刻腐蚀出金属电极,这些规则排列的金属-氧化物-半导体电容器阵列和适当的输入、输出电路就构成基本的 CCD移位寄存器。对金属栅电极施加时钟脉冲,在对应栅电极下的半导体内就形成可储存少数载流子的势阱。可用光注入或电注入的方法将信号电荷输入势阱。然后周期性地改变时钟脉冲的相位和幅度,势阱深度则随时间相应地变化,从而使注入的信号电荷在半导体内作定向传输。CCD 输出是通过反相偏置PN结收集电荷,然后放大、复位,以离散信号输出。
⑥ CCD工作原理的电荷的存储
构成CCD的基本单元是MOS(金属-氧化物-半导体)结构 如图I(a)所示,在栅极G施加正偏压UO之前,P型半导体中空穴(多数载流子)分布是均匀的。当栅极施加正偏压UG(此时UG小于P型半导体的阈值电压Uth)后,空穴被排斥,产生耗尽区,如图I(b)所示。偏压继续增加,耗尽区将进一步向半导体内延伸。当UG>Uth时,半导体与绝缘体截面上的电势(常称为表面势,用ΦS 表示)变得如此之高,以至于将半导体内的电子(少数载流子)吸引到表面,形成一层极薄的(约10um )但电荷浓度很高的反型层,如图I(c).
反型层电荷的存在表明了MOS结构存储电荷的功能.然而,当栅极电压由零变到高于阈值电压时,轻掺杂半导体中的少数载流子很少,不能立即建立反型层.在不存在反型层的情况下,耗尽区将进一步向体内延伸,而且,栅极的衬底之间的绝大部分电压降落在耗尽区上,如果随后可以获得少数载流子,那么耗尽区将收缩,表面势下降,氧化层上的电压增加.当提供足够的少数载流子时,表面势可降低到半导体材料费密能级ΦP 的两倍.
例如,对于掺杂为10CM的P型半导体,费密能级为0.3V.耗尽区收缩到最小时,表面势ΦS下降到最底值0.6V,其余电压降在氧化层上。表面势ΦS随反型电荷浓度QINV,栅极电压UG的变化表示在图II和图III中。
图II中的曲线表示的是在掺杂为10CM的情况下,对于氧化层的不同厚度在不存在反型层电荷时,表面势ΦS 与栅极电压UG 的关系曲线.图III为栅极电压不变的情况下,表面势ΦS 与反型层电荷密度的关系曲线.曲线的直线性好,说明表面势ΦS与反型层电荷浓度QVIN 有着良好的反比例线性关系.这种线性关系很容易用半导体物理中的”势阱”概念描述.电子所以被加有栅极电压UG 的MOS结构吸引到氧化层与半导体的交界处,是因为那里的势能最低.在设有反型层电荷时,势阱的”深度”与栅极电压 UG的关系恰如ΦS 与UG 的线性关系,如图IV(a)空势阱的情况.图IV(b)为反型层电荷填充1/3势阱时,表面势收缩,表面势ΦS 与反型层电荷填充量QP 间的关系如图所示。
⑦ CCD工作原理,请简单直观的说,谢谢。。。
CCD工作原理
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成.CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少.取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中.移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端.将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理.由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高.
一.CCD的MOS结构及存贮电荷原理
CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示.以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2 上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引.于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。光越强,势阱中收集的电子越多,光弱则反之,这样就把光的强弱变成电荷的数量,实现了光与电的转换,而势阱中收集的电子处于存贮状态,即使停止光照一定时间内也不会损失,这就实现了对光照的记忆。
⑧ 光电发热技术原理
在电视系统中,光电转换是由发送端的摄像管来完成。其工作原理与所使用的摄像材料有关。摄像材料可分为两大类,即摄像管和ccd器件。
摄像管的光电转换原理
摄像管主要利用了光电靶的光电效应原理和束的扫描来实现光电转换。常用的摄像管有光电导摄像管,其结构如图1(a)摄像管的结构示意图所示。这是一种电真空器件,在其圆柱形玻璃外壳内主要包含了光电靶和电子枪两个部分;在玻璃外壳外部有偏转线圈、聚焦线圈和校正线圈。
减小,势阱变浅,势阱中的电子有向势阱深处移动的特点。
ccd工作原理
ccd摄像器件的工作原理可简单概括如下:在ccd摄像器件的感光面上,分布有几十万甚至几百万个独立的铝电极,各自对应一个像素和势阱。摄像时,外界的光学景物通过摄像机的光学镜头成像于ccd的感光面上,使ccd内部产生电子-空穴对。其中,少数载流子被电场吸引到势阱中,形成电荷包。电荷包中电荷的数量与该处的光照强度成正比,这样就把景物的亮暗变成了电荷包中的电荷多少,也就是将光学图像变成了由电荷包中电荷的多少来描述的电子图像,完成了光像到电像的转换。随后,在外加时钟脉冲的驱动下,各个势阱中的电荷包按一定顺序从ccd中转移出去,形成图像信号输出到外电路。