① 计算机硬件系统五大部分框图
输入设备,输出设备,运算器,控制器,存储器
1、运算器
运算器是进行算术、逻辑运算的部件。
2、控制器
控制器是实现计算机各部分联系及程序自动执行的部件,其功能是从内存中依次取出命令,产生控制信号,向其他部件发出指令,指挥整个运算过程。控制器是统一指挥、协调其他部件的中枢。
注1:人们常把运算器和控制器二者制做在一起称为中央处理器,简称CPU。
3、存储器
存储器是存储信息的部件,分为内存、外存。内存在控制器的指挥下,与运算器、输入/输出设备交换信息。外存是为了弥补内存的不足而设置的,在控制器的控制下,它与内存成批交换数据。
注2:把运算器、控制器、内存三者合称为主机。
4、输入设备
输入设备是把数据和程序转换成电信号,并把电信号送入内存的部件。如:键盘、鼠标、扫描仪、麦克、游戏操作杆等。
5、输出设备
输出设备是把计算机处理的结果送到主机外的部件。如:显示器、打印机、音箱等。
② 存储器的结构
1cpu的内部
编辑
存储器结构
存储器结构
第一层:通用寄存器堆
第二层:指令与数据缓冲栈
第三层:高速缓冲存储器
第四层:主储存器(DRAM)
第五层:联机外部储存器(硬磁盘机)
第六层:脱机外部储存器(磁带、光盘存储器等)
这就是存储器的层次结构~~~ 主要体现在访问速度~~~
2工作特点
编辑
存储器结构
存储器结构① 设置多个存储器并且使他们并行工作。本质:增添瓶颈部件数目,使它们并行工作,从而减缓固定瓶颈。
② 采用多级存储系统,特别是Cache技术,这是一种减轻存储器带宽对系统性能影响的最佳结构方案。本质:把瓶颈部件分为多个流水线部件,加大操作时间的重叠、提高速度,从而减缓固定瓶颈。
③ 在微处理机内部设置各种缓冲存储器,以减轻对存储器存取的压力。增加CPU中寄存器的数量,也可大大缓解对存储器的压力。本质:缓冲技术,用于减缓暂时性瓶颈。
一、RAM(Random Access Memory,随机存取存储器)
RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。
3具体结构分类
编辑
根据组成元件的不同,RAM内存又分为以下十八种:
01.DRAM(Dynamic RAM,动态随机存取存储器)
这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储
存储器结构
存储器结构单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。
02.SRAM(Static RAM,静态随机存取存储器)
静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。
03.VRAM(Video RAM,视频内存)
它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。
04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)
改良版的DRAM,大多数为72PIN或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期,FPM DRAM被大量使用。
05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器)
这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。
存储器结构
存储器结构06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器)
这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDODRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。
07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器)
MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。
08.WRAM(Window RAM,窗口随机存取存储器)
韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。
09.RDRAM(Rambus DRAM,高频动态随机存取存储器)
Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。
10.SDRAM(Synchronous DRAM,同步动态随机存取存储器)
这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。 所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。
11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)
SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。
12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器)
一般的SRAM是异步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。
13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器)
CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。
14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器)
作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。
15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器)
这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,
存储器结构
存储器结构投入实用的难度不小。
16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器)
这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。
17.DDRII(Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器)
DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。
18.DRDRAM (Direct Rambus DRAM)
是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。
二、ROM(READ Only Memory,只读存储器)
ROM是线路最简单半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般应用于PC系统的程序码、主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)等。它的读取速度比RAM慢很多。
4组成元件分类
编辑
ROM内存又分为以下五种:
存储器结构
存储器结构1.MASK ROM(掩模型只读存储器)
制造商为了大量生产ROM内存,需要先制作一颗有原始数据的ROM或EPROM作为样本,然后再大量复制,这一样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。它的成本比较低。
2.PROM(Programmable ROM,可编程只读存储器)
这是一种可以用刻录机将资料写入的ROM内存,但只能写入一次,所以也被称为“一次可编程只读存储器”(One Time Progarmming ROM,OTP-ROM)。PROM在出厂时,存储的内容全为1,用户可以根据需要将其中的某些单元写入数据0(部分的PROM在出厂时数据全为0,则用户可以将其中的部分单元写入1), 以实现对其“编程”的目的。
3.EPROM(Erasable Programmable,可擦可编程只读存储器)
这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上
存储器结构
存储器结构的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“石英玻璃窗”一般使用黑色不干胶纸盖住, 以防止遭到阳光直射。
4.EEPROM(Electrically Erasable Programmable,电可擦可编程只读存储器)
功能与使用方式与EPROM一样,不同之处是清除数据的方式,它是以约20V的电压来进行清除的。另外它还可以用电信号进行数据写入。这类ROM内存多应用于即插即用(PnP)接口中。
5.Flash Memory(快闪存储器)
这是一种可以直接在主机板上修改内容而不需要将IC拔下的内存,当电源关掉后储存在里面的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。
③ 存储器的基本结构原理
存储器单元实际上是时序逻辑电路的一种。按存储器的使用类型可分为只读存储器(ROM)和随机存取存储器(RAM),两者的功能有较大的区别,因此在描述上也有所不同
存储器是许多存储单元的集合,按单元号顺序排列。每个单元由若干三进制位构成,以表示存储单元中存放的数值,这种结构和数组的结构非常相似,故在VHDL语言中,通常由数组描述存储器
结构
存储器结构在MCS - 51系列单片机中,程序存储器和数据存储器互相独立,物理结构也不相同。程序存储器为只读存储器,数据存储器为随机存取存储器。从物理地址空间看,共有4个存储地址空间,即片内程序存储器、片外程序存储器、片内数据存储器和片外数据存储器,I/O接口与外部数据存储器统一编址
存储器是用来存储程序和各种数据信息的记忆部件。存储器可分为主存储器(简称主存或内存)和辅助存储器(简称辅存或外存)两大类。和CPU直接交换信息的是主存。
主存的工作方式是按存储单元的地址存放或读取各类信息,统称访问存储器。主存中汇集存储单元的载体称为存储体,存储体中每个单元能够存放一串二进制码表示的信息,该信息的总位数称为一个存储单元的字长。存储单元的地址与存储在其中的信息是一一对应的,单元地址只有一个,固定不变,而存储在其中的信息是可以更换的。
指示每个单元的二进制编码称为地址码。寻找某个单元时,先要给出它的地址码。暂存这个地址码的寄存器叫存储器地址寄存器(MAR)。为可存放从主存的存储单元内取出的信息或准备存入某存储单元的信息,还要设置一个存储器数据寄存器(MDR)
④ 什么是存储器
存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。
分为外储存器和内储存器两种。
1) 内储存器(内存)
内储存器直接与CPU相连接,储存容量较小,但速度快,用来存放当前运行程序的指令和数据,并直接与CPU交换信息。内储存器由许多储存单元组成,每个单元能存放一个二进制数或一条由二进制编码表示的指令。内储存器是由随机储存器和只读储存器构成的.
2) 外储存器(外存)
外储存器是内储存器的扩充。它储存容量大,价格低,但储存速度慢,一般用来存放大量暂时不用的程序,数据和中间结果,需要时,可成批的与内存进行信息交换。外存只能与内存交换信息,不能被计算机系统的其他部件直接访问。常用的外存有磁盘,磁带,光盘等。
⑤ 以存储器为中心的计算机结构框图各箭头分别表示什么
程序流程图中带箭头的线段表示控制流。数据流程图中带箭头的线段表示数据流。
在现代计算机结构中,是以存储器为中心的结构,数据和程序直接存储到存储器中,输出设备也可以直接从存储器直接取走计算结果。这样,运算器减轻了工作,它可以更加专注于计算,以此提高工作效率。
⑥ 画出该存储器的组成逻辑框图
按大小来看,一共需要16块DRAM芯片,将每四块分为一组,形成32位的数据宽度,根据该储存容量大小一共需要16位地址线(可以根据储存容量除以数据宽度来确定)。将地址线的低14位作为全部DRAM芯片的地址,然后将高2位作为组片选信号,即选择各组输出的32位数据。
⑦ 存储器是由哪四部分组成每部分的作用是什么
存储器是由存储体、地址寄存器、地址译码驱动电路、读/写控制逻辑、数据寄存器、读/写驱动器等六个部分组成
存储体是存储器的核心,是存储单元的集合体
地址寄存器用于存放CPU访问存储单元的地址,经译码驱动后指向相应的存储单元。
译码器将地址总线输入的地址码转换成与其对应的译码输出线上的高电平或低电平信号,以表示选中了某一单元,并由驱动器提供驱动电流去驱动相应的读/写电路,完成对被选中单元的读/写操作。
读/写驱动器用以完成对被选中单元中各位的读/写操作,包括读出放大器、写入电路和读/写控制电路。
数据寄存器用于暂时存放从存储单元读出的数据,或从CPU输出I/O端口输入的要写入存储器的数据。
读/写控制逻辑接收来自CPU的启动、片选、读/写及清除命令,经控制电路综合处理后,发出一组时序信号来控制存储器的读/写操作。
很高兴为你解答,愿能帮到你。
⑧ 存储器的结构组成
微机系统中主存储器通常由若干存储芯片及相应的存储控制组织而成,并通过存储总线(数据总线、地址总线和控制总线)与CPU及其他部件相联系,以实现数据信息、控制信息的传输。由于存储器芯片的容量有限,实际应用中对存储器的字长和位长都会有扩展的要求。