㈠ 操作系统由什么组成,工作原理是什么
操作系统的组成
系统资源包括CPU、内存、输入输出设备以及存储在外存中的信息. 因此操作系统由
(1)对CPU的使用进行管理的进程调度程序
(2)对内存分配进行管理的内存管理程序
(3)对输入输出设备进行管理的设备驱动程序
(4)对外存中信息进行管理的文件系统
BIOS
BIOS是基本输入输出系统(basic input/output system)的缩写, 称为计算机系统的固件(firmware), 存储在ROM型存储器中, 位于1M内存的顶端(0FE000~0FFFFFF), 是微机加电开始工作时最先被执行的一段指令代码. 微型计算机常用的操作系统中, 无论DOS还是Windows, 或者Windows NT, 都是由它引导启动的
分层结构和系统调用
在操作系统的分层结构中, 通常把与机器硬件直接有关的部分放在最内层(中断处理, 设备驱动程序), 把与用户关系密切的部分放在最外层(外壳程序), 把进程调度、内存管理和文件系统放在中间层. 从计算机硬件开始,在指令系统的基础上, 先实现最内层的功能, 于是得到了一个比硬件机器功能强的第一级虚拟机; 再以第一级虚拟机为基础, 实现中间层的功能, 得到第二级虚拟机. 这样逐层扩充,最后得到一个功能最强的虚拟机, 即用户眼中的虚拟机.
这种分层结构, 使得内层为外层提供服务, 外层通过调用内层提供的服务实现对计算机的控制, 越往外层与计算机硬件的关系越淡薄, 简化了用户对计算机的使用. 这种外层调用内层服务的过程就叫做系统调用. 如DOS的系统调用和Windows的API调用.
以上回答你满意么?
㈡ 如何安装操作系统到内存中
1、打开VMware Workstation,直接点击文件下面的新建虚拟机。
㈢ 操作系统是什么
操作系统是管理计算机硬件资源,控制其他程序运行并为用户提供交互操作界面的系统软件的集合。操作系统是计算机系统的关键组成部分,负责管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本任务。操作系统的种类很多,各种设备安装的操作系统可从简单到复杂,可从手机的嵌入式操作系统到超级计算机的大型操作系统。目前流行的现代操作系统主要有Android、BSD、iOS、Linux、Mac OS X、Windows、Windows Phone和z/OS等,除了Windows和z/OS等少数操作系统,大部分操作系统都为类Unix操作系统。
操作系统的主要功能是资源管理,程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如文件,程序库,知识库,系统软件和应用软件等。
操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。以现代观点而言,一个标准个人电脑的OS应该提供以下的功能:
进程管理(Processing management)
内存管理(Memory management)
文件系统(File system)
网络通讯(Networking)
安全机制(Security)
用户界面(User interface)
驱动程序(Device drivers)
资源管理
系统的设备资源和信息资源都是操作系统根据用户需求按一定的策略来进行分配和调度的。操作系统的存储管理就负责把内存单元分配给需要内存的程序以便让它执行,在程序执行结束后将它占用的内存单元收回以便再使用。对于提供虚拟存储的计算机系统,操作系统还要与硬件配合做好页面调度工作,根据执行程序的要求分配页面,在执行中将页面调入和调出内存以及回收页面等。
处理器管理或称处理器调度,是操作系统资源管理功能的另一个重要内容。在一个允许多道程序同时执行的系统里,操作系统会根据一定的策略将处理器交替地分配给系统内等待运行的程序。一道等待运行的程序只有在获得了处理器后才能运行。一道程序在运行中若遇到某个事件,例如启动外部设备而暂时不能继续运行下去,或一个外部事件的发生等等,操作系统就要来处理相应的事件,然后将处理器重新分配。
操作系统的设备管理功能主要是分配和回收外部设备以及控制外部设备按用户程序的要求进行操作等。对于非存储型外部设备,如打印机、显示器等,它们可以直接作为一个设备分配给一个用户程序,在使用完毕后回收以便给另一个需求的用户使用。对于存储型的外部设备,如磁盘、磁带等,则是提供存储空间给用户,用来存放文件和数据。存储性外部设备的管理与信息管理是密切结合的。
信息管理是操作系统的一个重要的功能,主要是向用户提供一个文件系统。一般说,一个文件系统向用户提供创建文件,撤销文件,读写文件,打开和关闭文件等功能。有了文件系统后,用户可按文件名存取数据而无需知道这些数据存放在哪里。这种做法不仅便于用户使用而且还有利于用户共享公共数据。此外,由于文件建立时允许创建者规定使用权限,这就可以保证数据的安全性。
程序控制
一个用户程序的执行自始至终是在操作系统控制下进行的。一个用户将他要解决的问题用某一种程序设计语言编写了一个程序后就将该程序连同对它执行的要求输入到计算机内,操作系统就根据要求控制这个用户程序的执行直到结束。操作系统控制用户的执行主要有以下一些内容:调入相应的编译程序,将用某种程序设计语言编写的源程序编译成计算机可执行的目标程序,分配内存储等资源将程序调入内存并启动,按用户指定的要求处理执行中出现的各种事件以及与操作员联系请示有关意外事件的处理等。
人机交互
操作系统的人机交互功能是决定计算机系统“友善性”的一个重要因素。人机交互功能主要靠可输入输出的外部设备和相应的软件来完成。可供人机交互使用的设备主要有键盘显示、鼠标、各种模式识别设备等。与这些设备相应的软件就是操作系统提供人机交互功能的部分。人机交互部分的主要作用是控制有关设备的运行和理解并执行通过人机交互设备传来的有关的各种命令和要求。
进程管理
不管是常驻程序或者应用程序,他们都以进程为标准执行单位。当年运用冯纽曼架构建造电脑时,每个中央处理器最多只能同时执行一个进程。早期的OS(例如DOS)也不允许任何程序打破这个限制,且DOS同时只有执行一个进程(虽然DOS自己宣称他们拥有终止并等待驻留(TSR)能力,可以部分且艰难地解决这问题)。现代的操作系统,即使只拥有一个CPU,也可以利用多进程(multitask)功能同时执行复数进程。进程管理指的是操作系统调整复数进程的功能。
由于大部分的电脑只包含一颗中央处理器,在单内核(Core)的情况下多进程只是简单迅速地切换各进程,让每个进程都能够执行,在多内核或多处理器的情况下,所有进程通过许多协同技术在各处理器或内核上转换。越多进程同时执行,每个进程能分配到的时间比率就越小。很多OS在遇到此问题时会出现诸如音效断续或鼠标跳格的情况(称做崩溃(Thrashing),一种OS只能不停执行自己的管理程序并耗尽系统资源的状态,其他使用者或硬件的程序皆无法执行)。进程管理通常实现了分时的概念,大部分的OS可以利用指定不同的特权等级(priority),为每个进程改变所占的分时比例。特权越高的进程,执行优先级越高,单位时间内占的比例也越高。交互式OS也提供某种程度的回馈机制,让直接与使用者交互的进程拥有较高的特权值。
内存管理
根据帕金森定律:“你给程序再多内存,程序也会想尽办法耗光”,因此程序员通常希望系统给他无限量且无限快的存储器。大部分的现代计算机存储器架构都是层次结构式的,最快且数量最少的暂存器为首,然后是高速缓存、存储器以及最慢的磁盘存储设备。而操作系统的存储器管理提供查找可用的记忆空间、配置与释放记忆空间以及交换存储器和低速存储设备的内含物……等功能。此类又被称做虚拟内存管理的功能大幅增加每个进程可获得的记忆空间(通常是4GB,既使实际上RAM的数量远少于这数目)。然而这也带来了微幅降低运行效率的缺点,严重时甚至也会导致进程崩溃。
存储器管理的另一个重点活动就是借由CPU的帮助来管理虚拟位置。如果同时有许多进程存储于记忆设备上,操作系统必须防止它们互相干扰对方的存储器内容(除非通过某些协定在可控制的范围下操作,并限制可访问的存储器范围)。分区存储器空间可以达成目标。每个进程只会看到整个存储器空间(从0到存储器空间的最大上限)被配置给它自己(当然,有些位置被操作系统保留而禁止访问)。CPU事先存了几个表以比对虚拟位置与实际存储器位置,这种方法称为标签页(paging)配置。
借由对每个进程产生分开独立的位置空间,操作系统也可以轻易地一次释放某进程所占据的所有存储器。如果这个进程不释放存储器,操作系统可以退出进程并将存储器自动释放。
虚拟内存
虚拟内存是计算机系统内存管理的一种技术。它使得应用程序认为它拥有连续的可用的内存(一个连续完整的地址空间),而实际上,它通常是被分隔成多个物理内存碎片,还有部分暂时存储在外部磁盘存储器上,在需要时进行数据交换。
在早期的单用户单任务操作系统(如DOS)中,每台计算机只有一个用户,每次运行一个程序,且次序不是很大,单个程序完全可以存放在实际内存中。这时虚拟内存并没有太大的用处。但随着程序占用存储器容量的增长和多用户多任务操作系统的出现,在程序设计时,在程序所需要的存储量与计算机系统实际配备的主存储器的容量之间往往存在着矛盾。例如,在某些低档的计算机中,物理内存的容量较小,而某些程序却需要很大的内存才能运行;而在多用户多任务系统中,多个用户或多个任务更新全部主存,要求同时执行独断程序。这些同时运行的程序到底占用实际内存中的哪一部分,在编写程序时是无法确定的,必须等到程序运行时才动态分配。[4]
为此,希望在编写程序时独立编址,既不考虑程序是否能在物理存储中存放得下,也不考虑程序应该存放在什么物理位置。而在程序运行时,则分配给每个程序一定的运行空间,由地址转换部件将编程时的地址转换成实际内存的物理地址。如果分配的内存不够,则只调入当前正在运行的或将要运行的程序块(或数据块),其余部分暂时驻留在辅存中。
㈣ 操作系统只负责管理内存储器而不管理外存储器,对吗
操作系统只负责管理内存储器而不管理外存储器,是错的。
计算机的存储器可分成内存储器和外存储器。内存储器在程序执行期间被计算机频繁地使用,并且在一个指令周期期间是可直接访问的。外存储器要求计算机从一个外贮藏装置例如磁带或磁盘中读取信息。
操作系统对内外存储器存储管理要实现的目的是为用户提供方便、安全和充分大的存储空间。方便是指将逻辑地址和物理地址分开,用户只在各自的逻辑地址空间编写程序,不必过问物理空间和物理地址的细节,地址的转换由操作系统自动完成。
安全是指同时驻留在内存的多个用户进程相互之间不会发生干扰,也不会访问操作系统所占有的空间。充分大的存储空间是指利用虚拟存储技术,从逻辑上对内存空间进行扩充,从而可以使用户在较小的内存里运行较大的程序。
(4)操作系统即驻留在内存储器中扩展阅读:
内存储器有很多类型。随机存取存储器(RAM)在计算期间被用作高速暂存记忆区。数据可以在RAM中存储、读取和用新的数据代替。当计算机在运行时RAM是可得到的。它包含了放置在计算机此刻所处理的问题处的信息。大多数RAM是“不稳定的”,这意味着当关闭计算机时信息将会丢失。
只读存储器(ROM)是稳定的。它被用于存储计算机在必要时需要的指令集。存储在ROM内的信息是硬接线的”,且不能被计算机改变。可变的ROM,称为可编程只读存储器(PROM),可以将其暴露在一个外部电器设备或光学器件(如激光)中来改变,PROM的重新编程是可能的,但不是常规。
㈤ 安卓手机,我们安装应用程序到内存中,这指什么存储器,操作系统在什么存储器
安卓手机的存储器有
RAM,ROM,SD卡
三种
一、RAM
就是内存,失电内容即消失,是CPU的工作存储器;
二、ROM
也是可以反复擦写的内存芯片,但失电内容并不消失,ROM分为系统分区和用户分区,
系统分区受到保护不让写的,但获取ROOT权限后用软件可以将它变成可写的,
用户分区是可以写的,安装的APK应用程序是到了用户分区
三、SD卡,可以擦写的存储器,是后插入的存储卡,也有的手机也集成在手机内部的,
可以存放文件
㈥ 操作系统本身是在内存中的还是在磁盘上的
内存是系统运行的一个暂存空间,实际系统程序文件是在磁盘上。
㈦ 操作系统的定义是什么简述操作系统的几大功能。
操作系统是管理计算机硬件与软件资源的计算机程序。
操作系统需要处理如管理与配置内存、决定系统资源供需的优先次序、控制输入设备与输出设备、操作网络与管理文件系统等基本事务。操作系统也提供一个让用户与系统交互的操作界面。
操作系统主要包括的功能有:
1、进程管理,其工作主要是进程调度,在单用户单任务的情况下,处理器仅为一个用户的一个任务所独占,进程管理的工作十分简单。但在多道程序或多用户的情况下,组织多个作业或任务时,就要解决处理器的调度、分配和回收等问题 。
2、存储管理分为几种功能:存储分配、存储共享、存储保护 、存储扩张。
3、设备管理分有以下功能:设备分配、设备传输控制、设备独立性。
4、文件管理:文件存储空间的管理、目录管理 、文件操作管理、文件保护。
5、作业管理是负责处理用户提交的任何要求。
(7)操作系统即驻留在内存储器中扩展阅读:
从使用者角度来说,操作系统可以对计算机系统的各项资源板块开展调度工作,其中包括软硬件设备、数据信息等,运用计算机操作系统可以减少人工资源分配的工作强度,使用者对于计算的操作干预程度减少,计算机的智能化工作效率就可以得到很大的提升。
在资源管理方面,如果由多个用户共同来管理一个计算机系统,那么可能就会有冲突矛盾存在于两个使用者的信息共享当中。
为了更加合理的分配计算机的各个资源板块,协调计算机系统的各个组成部分,就需要充分发挥计算机操作系统的职能,对各个资源板块的使用效率和使用程度进行一个最优的调整,使得各个用户的需求都能够得到满足。
㈧ 计算机操作系统知识点
计算机操作系统知识点
网络的神奇作用吸引着越来越多的用户加入其中,正因如此,网络的承受能力也面临着越来越严峻的考验―从硬件上、软件上、所用标准上......,各项技术都需要适时应势,对应发展,这正是网络迅速走向进步的催化剂。下面是关于计算机操作系统知识点,希望大家认真阅读!
4.1.1操作系统的概念
操作系统:是管理计算机软硬件资源的程序,同时它又是用户与计算机硬件的接口。
4.1.2操作系统的构成
进程管理、内存管理、文件管理、输入/输出系统管理、二级存储管理、联网、保护系统、命令解释程序
4.2.1操作系统的类别
经过多年的发展,操作系统多种多样。为提高大型计算机系统的资源利用率,操作系统从批处理,多道程序发展为分时操作系统。为了满足计算机处理实时事件的需要,就有实时操作系统。为适应个人计算机系统的需要又出现了桌面操作系统。为适应并行系统的需要,就有了多处理器操作系统。为满足网络和分布计算的需要,就有了网络操作系统和分布式操作系统。此外,还有为支持嵌入式计算机的嵌入式操作系统。
4.2.2计算环境
从计算机诞生至今,操作系统总是与具体的计算环境相联系,它总是在某种计算环境中设置和使用,就目前来看计算环境可分为以下几类:
1.传统计算环境
指普通意义下的独立或联网工作的通用计算机所形成的计算环境。
2.基于Web的计算环境
互联网的普及使得计算被延伸到Web环境。
3.嵌入式计算环境
嵌入式计算机就是安装在某些设备上的计算部件,其计算相对比较简单。
4.3.1进程的概念
什么是进程?它与程序有什么区别?
程序:用户为完成某一个特定问题而编写的操作步骤。
进程:可以简单地被看作是正在执行的程序。但是进程需要一定的资源来完成它的任务(例如CPU时间、内存、文件和I/O设备)。
进程与程序的区别在于进程是动态的、有生命力的,而程序是静态的。一个程序加载到内存,系统就创建一个进程,程序执行结束后,该进程也就消亡了。
在计算机中,由于多个程序共享系统资源,就必然引发对CPU的争夺。如何有效地利用CPU资源,如何在多个请求CPU的进程中选择取舍,这就是进程管理要解决的问题。
4.3.3进程控制块PCB(略)
为了控制进程,操作系统就必须知道进程存储在哪里,以及进程的一些属性。
进程控制块是进程实体的一部分,是操作系统中记录进程的专用数据结构。一个新的进程创建时,操作系统就会为该进程建立一个进程控制块。操作系统根据进程控制块对并发进程进行控制。
4.3.4进程调度及队列图
计算机采用多道程序的目的是使得计算机系统无论何时都有进程运行,单处理器的计算机在某一时刻CPU只能运行一个进程,如果存在多个进程,其它进程就需要等待CPU空闲时才能被调度执行。
当一个进程处于等待或CPU时间片用完时,操作系统就会从该进程中拿走CPU控制权,然后再交给其它进程使用,这就是进程的调度。
4.3.5CPU调度及其准则
在设计CPU调度程序时主要应该考虑的准则包括:
(1)CPU使用率。让CPU尽可能地忙。
(2)吞吐量。让CPU在一定时间内完成的进程数尽可能多。
(3)周转时间。让进程从提交到运行完成的时间尽可能短。
(4)等待时间。让进程在就绪队列中等待所花时间之和尽可能短。
(5)响应时间。让进程从提交请求到产生第一响应之间的时间尽可能短。
主要的CPU调度算法
1、先到先服务
2、最短作业优先
3、优先权
4、轮转
5、多级队列
6、多级反馈队列
4.3.7进程的同步与互斥
进程的同步就是指相互协作的进程不断调整它们之间的相对速度,以实现共同有序地推进。
换句话说,在操作系统中,允许多个进程并发运行。然而,有些进程之间本身存在某种联系,它们在系统中需要一种协作,以保证进程能正确有序地执行并维护数据的一致性。
在操作系统中,可能存在着多个进程。而系统中一些资源一次只允许一个进程使用,这类资源被称为临界资源。在进程中访问临界资源的那段程序称为临界区。当一个进程进入临界区执行时,其它进程就不允许进入临界区执行,否则就会导致错误结果。由此得出:
多个进程并发执行时,只允许一个进程进入临界区运行,这就是进程的互斥。
例如:多个进程在竞争使用打印机时表现为互斥。
一个文件可供多个进程共享,其中有一个进程在写操作时,其它进程则不允许同时写或读,表现为互斥。
4.3.8进程的死锁及处理方法
在多道程序设计中,多个进程可能竞争一定数量的资源。一个进程在申请资源时,如果所申请资源不足,该进程就必须处于等待状态。如果所申请的资源被其它进程占有,那么进程的等待状态就可能无法改变,从而形成进程之间相互一直等待的局面,这就是死锁。
竞争资源引起死锁
引起死锁的四个必要条件:
互斥:任一时刻只能有一个进程独占某一资源,若另一进程申请该资源则需延迟到该资源释放为止。
占有并等待:即该进程占有部分资源后还在等待其它资源,而该资源被其它进程占有。
非抢占:某进程已占用资源且不主动放弃它所占有的资源时,其它进程不能强占该资源,只有等其完成任务并释放资源。
循环等待:在出现死锁的系统中,一定存在这样一个进程链,其中每个进程至少占有其它进程所必需的资源,从而形成一个等待链。
处理死锁问题的三种方式:
可使用协议预防和避免死锁,确保系统从不会进入死锁状态。
可允许系统进入死锁状态,然后检测出死锁状态,并加以恢复。
可忽略进程死锁问题,并假装系统中死锁从来不会发生。即没有必要把精力花在小概率事件上。
处理死锁优先考虑的顺序:先预防和避免再检测和恢复
4.4内存管理
内存是现代操作系统的核心。内存用于容纳操作系统和各种用户进程,是可以被CPU和I/O设备所共同访问的数据仓库。计算机的所有程序运行时都要调入内存。
内存管理的主要工作是:为每个用户进程合理地分配内存,以保证各个进程之间在存储区不发生冲突;当内存不足时,如何把内存和外存结合起来,给用户提供一个比实际内存大得多的虚拟内存,使得程序能顺利执行。内存管理包括内存分配、地址映射、内存保护和扩充。
4.4.1用户程序执行与地址映射
用户编写程序在执行前,需要多个处理步骤,这些步骤可将源程序转变为二进制机器代码,然后在内存中等待执行。当然有时并非每个步骤都是必需的。
通常,将指令和数据的.地址映射成内存地址可以发生在以下三个执行阶段。(了解)
1.编译阶段:如果在编译时就知道进程将在内存中的什么位置驻留,那么编译器就可以直接以生成绝对地址代码。
2.加载阶段:不知道进程将驻留在什么位置,那么编译器就必须生成程序的逻辑地址,在加载阶段再转变成内存的绝对地址。
3.执行阶段:如果进程在执行时可以从一个内存段移动到另一个内存段,那么进程的绝对地址映射工作只能延迟到执行时进行。
4.4.2物理地址空间与逻辑地址空间
物理地址:是计算机内存单元的真实地址。
物理地址空间:由物理地址所构成的地址范围。
逻辑地址:用户程序地址,从0开始编址。
逻辑地址空间:由逻辑地址所构成的地址范围。
地址映射:用户程序在运行时要装入内存,这就需要将逻辑地址变换成物理地址,这个过程称为地址映射,也称重定位。
用户编写的源程序是不考虑地址的,源程序经CPU编译后产生逻辑地址。从CPU产生的逻辑地址转换为内存中的物理地址的映射是由计算机中被称为内存管理单元的硬件设备来实现的,将逻辑地址与内存管理单元中存放的内存基址相加就得到了物理地址。
4.4.3进程使用内存的交换技术
为了更加有效地使用内存,进程在不运行时,可以暂时从内存移至外存上,直到需要再运行时再重新调回到内存中。也就是说内存管理程序可将刚刚运行过的进程从内存中换出以释放出占用的内存空间,然后将另一个要运行的进程占据前者释放的内存空间。
计算机工作时,为了将多个进程放入到内存就必须考虑在内存中如何放置这些进程。
4.4.4内存分配方案-连续
对于连续内存分配方案,开始时所有内存是一个大的孔,随着内存分配的进行就会形成位置上不连续的大小不一的孔。在连续内存分配方案中,当新进程需要内存时,为其寻找合适的孔,实现内存分配。该方案为每个进程所分配的内存物理地址空间在位置上是连续的。
4.4.5内存分配方案-分页式
分页管理基本思想:
o内存物理地址空间划分为若干个大小相等的块(页框)
o进程的逻辑地址空间也划分为同样大小的块(页面)
o内存分配时每个页面对应地分配一个页框,而一个进程所分得页框在位置上不必是连续的。
页表:操作系统为每个用户程序建立一张页表,该表记录用户程序的每个逻辑页面存放在哪一个内存物理页框。
4.5虚拟内存方案
虚拟内存是一个容量很大的存储器的逻辑模型,它不是任何实际的物理存储器,它一般是借助硬盘来扩大主存的容量。
虚拟内存:对于一个进程来讲,如果仅将当前要运行的几个页面装入内存便可以开始运行,而其余页面可暂时留在磁盘上,待需要时再调入内存,并且调入时也不占用新的内存空间,而是对原来运行过的页面进行置换。这样,就可以在计算机有限的内存中同时驻留多个进程并运行。而对用户来讲感觉到系统提供了足够大的物理内存,而实际上并非真实的,这就是虚拟内存。
4.5.2页面请求与页面置换算法
页面请求:在虚拟内存技术中,进程运行时并没有将所有页面装入到内存,在运行过程中进程会不断地请求页面,如果访问的页面已在内存,就继续执行下去;但如果要访问的页面尚未调入到内存,便请求操作系统将所缺页面调入内存,以便进程能继续运行下去。
页面置换:如果请求页面调入内存时,分配给该进程的页框已用完,就无法立即装入所请求页面。此时,必须将进程中的某个页面从内存的页框调出到磁盘上,再从磁盘上将所请求的页面调入到内存的该页框中。这个过程叫做页面置换。
4.6文件管理
文件管理是操作系统最常见的组成部分。文件管理主要提供目录及其文件的管理。
4.6.1文件的概念
文件:保存在外部存储设备上的相关信息的集合。
文件命名:文件主名+扩展名
文件存取属性:
只读:只允许授权用户进行读操作。
读写:只允许授权用户进行读和写的操作。
文档:允许任何用户进行读写操作。
隐藏:不允许用户直接看到文件名。
文件系统:是对文件进行操作和管理的软件,是用户与外存之间的接口。这个系统将所有文件组织成目录结构保存在外存,一个文件对应其中的一个目录条。目录条记录有文件名、文件位置等信息。
操作系统对文件的基本操作包括:
创建文件、文件写、文件读、文件重定位、文件删除、文件截短。
对文件的其它操作包括:文件复制、重命名、更改属性等。
;㈨ 计算机安装操作系统后,操作系统即驻留在内存储器中,加电启动计算机工作时,CPU就开始执行其中的程序。
存放程序和数据
存储器分为内存储器(简称内存或主存)、外存储器(简称外存或辅存)。
采用动态或者静态的工作方式
㈩ 内存储器中存储的是什么
我们平常所提到的计算机的内存指的是动态内存(即DRAM),动态内存中所谓的“动态”,指的是当我们将数据写入DRAM后,经过一段时间,数据会丢失,因此需要一个额外设电路进行内存刷新操作。具体的工作过程是这样的:一个DRAM的存储单元存储的是0还是1取决于电容是否有电荷,有电荷代表1,无电荷代表0。但时间一长,代表1的电容会放电,代表0的电容会吸收电荷,这就是数据丢失的原因;刷新操作定期对电容进行检查,若电量大于满电量的1/2,则认为其代表1,并把电容充满电;若电量小于1/2,则认为其代表0,并把电容放电,借此来保持数据的连续性。