① 罗德频谱仪怎么截图保存
罗德频谱仪截图保存:
1、把频谱仪接入键盘,按截图键。
2、打开画图软件粘贴,最后插入优盘保存。
频谱仪,又称频谱分析仪,是一种多用途的电子测量仪器,它是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,频谱分析仪是对无线电信号进行测量的必备手段,是从事电子产品研发、生产、检验的常用工具,因此,应用十分广泛,被称为工程师的射频万用表。
② 如何使用频谱分析仪
一、什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y轴表示信号幅度。 二、原理:用窄带带通滤波器对信号进行选通。 三、主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。 四、测量机制: 1、把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。 2、波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如DG、DP、CLDI、调制深度、频偏等。 五、操作: (一)硬键、软键和旋钮:这是仪器的基本操作手段。 1、三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。 2、软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。 3、其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USER测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个BKSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。 (二)输入和输出接口:位于一起面板下边一排。TV IN测视频指标的信号输入口;VOL INTEN是内外一套旋钮控制、调节内置喇叭的音量和屏幕亮度;CAL OUT仪器自检信号输出;300Mhz 29dBmv仪器标准信号输出口;PROBE PWR仪器探针电源;IN 75Ω1M—1.8G测试信号总输入口。 (三)测试准备: 1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:直流25V,交流峰峰值100V。 2、预热:测试须等到OVER COLD消失。 3、自校:使用三个月,或重要测量前,要进行自校。 4、系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。配置步骤:按MODE键——CABLE TV ANALYZER软键——Setup软键,进入设置状态。细节为tune config调谐配置:包括频率、频道、制式、电平单位。Analyzer input输入配置:是否加前置放大器。Beats setup拍频设置、测CTB、CSO的频点(频率偏移CTB FRQ offset、CSO FRQ offset)。GATING YES NO是否选通测试行。C/N setup载噪比设置:频点(频率偏移C/N FRQ offset)、带宽。 频谱分析仪的特点1.频谱分析仪采用扫频调谐接收技术,把信号的幅频特性等参数在CRT上显示出来,很直观,一目了然。2.频谱分析仪能同时显示复合信号的各个频率的量值(但不反映相位量值)3.频谱分析仪显示动态范围大:70-120db。4.频谱分析仪的频率覆盖很宽,从uHz-325GHz,一般微波频谱分析仪在:100Hz-26.5GHz如日本爱德万公司的R3271A、R3371A,HP8566HB等等。5.输入信号幅度范围宽:-156dbm-+30dbm,不论小信号、大信号它都能适应。6.频率稳定度好。现代频谱分析仪大都用合成锁相技术,一般都可以达到2*10(-6)/日-5*10(-9)/日,如爱德万公司R3365A,R3265A,R3371A,R3271A等可达2X10(-8)/日,并有5X10(-9)/日的选件。频率显示分辨率可达1Hz。7.分辨带宽很窄,高档次、高质量的频谱分析仪一般都可以达到:10Hz-3MHz,低频谱分析仪可达mHz数量级。8.测量幅度精度高,对各种频率的幅度测量精度可达:±0.1db-±3db。9.有部分频谱分析仪还增加固定调谐法(另扫宽),相当于一台示波器,能测量信号频率的时域特性。如爱德万公司的R4136等。10.80年代中期以来的频谱分析仪都带有计算机控制接口,各种输出设备接口,能组成自动化测试系统,并可远程测量和控制。又可硬拷贝输出,不需昂贵的照机设备。11.频谱分析仪还备有各种选件、测试软件,在许多专用场合也是一台理想的仪器。 频谱分析仪测量要注意的问题使用频谱分析仪测量系统指标,一般只需将频谱分析仪与系统直接相连,然后按照指标的测量方法操作,在测量过程中,特别需要注意以下一些问题。 (1) 信号输入大小的调节频谱分析仪的输入如果过高,分析仪将使它产生非线性失真,测试出的结果则由于失真产生误差;如果信号电平过低,信号可能被分析仪的底噪声所掩盖,无法正确测量信号,这两种情况都会减小测量的动态范围。因此,使用前要十分清楚地了解信号的输入范围,正确选择输入衰减。射频信号输入时,还应注意电缆特性阻抗与仪器输入阻抗匹配,否则信号不匹配则会引起衰减,造成测量误差。在有线电视系统中,电缆特性阻抗一般为75Ω,分析仪输入阻抗一般可以在50Ω和75Ω之间选择,所以在测量时要正确选择分析仪的输入阻抗,减小测量误差。 (2) 分辨带宽的选择 在频谱分析仪中,频率分辨力是一个非常重要的概念,它是由中频滤波器的带宽决定的,这个带宽决定了仪器的分辨带宽BWRES,如果滤波器的带宽是100Hz,那么谱线频率就有100Hz的不定性。若在一个滤波器的带宽频率范围内出现了两条谱线,则不可能检出这两条谱线是不同的频率分量,但是将测出它在频率范围内的能量而不考虑多少谱线产生这一能量,因此,对于两条紧密相关的谱线,其分辨力取决于滤波器的宽度。在实际测量过程中,应该正确选择频率分辨带宽的大小,既不能把不需要的信号混合到测量信号中,也不能把需要的信号排除在外。 (3) 信号检波器的选择 频谱分析仪中的信号检波器有峰值检波和取样检波等类型,峰值检波是最常用的类型。中频滤波器的输出接到检波器上,检波器产生与中频级输出的交流信号电平成正比的直流电平。我们可以根据信号测量指标的不同,选用不同的检波方式,如测量信号电平时采用峰值检波,测量噪声时采用取样检波。 (4) 垂直刻度的选择在频谱分析仪中,由于信号电平大幅度变化,一般采用对数刻度,而在检波器之前有一个对数放大器,对数放大器按照对数函数来压缩信号电平,即对于输入电平幅度V,输出电压幅度为lgV,这样大大地减小了由检测器所检测的信号电平变化,同时向用户提供了校准成单位为分贝的对数垂直刻度。另外也可以根据信号的不同选择线性垂直刻度,它所表示的信号范围较小。 (5) 视频滤波器带宽的选择视频滤波器是一个低通滤波器,它可以减小检波器输出的噪声变化,揭示一些已被掩盖且接近本底噪声的信号,如果噪声是待测量,则视频滤波器还有助于稳定测量。采用宽带视频滤波器时,噪声的波动较大;采用窄带视频滤波器时,波动显着减小,两者噪声平均值一样,只是噪声的波动不同。
③ 安立频谱仪校准
安立频谱仪校准方法如下:
1、频率校准:当频谱仪受到振动、运输、长期存放或环境温度变化较大时,频谱仪的频率调谐会发生变化,从而导致频率测量误差。在严重的情况下,被测信号会左右抖动,这可以通过频率校准来消除。校准过程主要以300MHz信号为参考信号,对光谱仪的扫描时间、中心频率、跨度(扫频宽度)、YIG主线圈延迟、次级线圈灵敏度、扫频灵敏度进行误差校准,使光谱仪的频率调谐范围正常。使用频率(振幅)校准电缆将校准信号(CAL输出)连接到光谱仪的信号输入。按CAL、CALfreq进入频率校准程序。校准完成后,屏幕上出现CALDONE消息,按calstore键将校准数据存储在仪器的E2PROM中。
2、幅度校准:与频率校准一样,当光谱仪测量振幅的精度发生变化时,仪器可以通过振幅校准程序满足出厂规格。其过程主要是以300MHz信号为参考信号,测量并修正光谱仪的全通道振幅、分辨率带宽滤波器、对数放大器和输入衰减器的误差。使用频率(振幅)校准电缆将校准信号(CAL输出)连接到光谱仪的信号输入。按CAL、CALAMP,光谱仪进入振幅校准程序。校准完成后,屏幕上出现CALDONE消息,按calstore键将校准数据存储在仪器的E2PROM中。
3、预选器的校准(YTF):预选器的扫频和跟踪是频谱仪谐波带的关键。在该机的设计中,采用了独立于第一本振的驱动电路来分别校准和驱动各个频段。当频谱仪进行快扫、慢扫和跨波段扫频时,第一振荡器和预选器的迟滞和延迟得到补偿,大大改善了YTF的跟踪特性。如果频谱分析仪在谐波频段有5dB以上的幅度误差,往往是由于仪器静置时间长,环境温度变化大造成的。预选跟踪器不良会造成幅度测量误差,甚至没有信号,因此此时应进行YTF校准。使用YTF校准电缆,并将100MHz梳状信号连接到频谱仪的射频输入端。按CAL、CALYTF进入YTF校准程序。校准完成后,屏幕上出现CALDONE消息,按calstore键将校准数据存储在仪器的E2PROM中。如果在退出时出现错误信号,或者在校准期间无法完成校准,请按calfetch检索校准数据。此时,仪器需要重新调整和修理。
④ 如何获取频谱仪存储器中的采样值
接电脑,接U盘,看频谱仪支持什么方式
⑤ 频谱仪的工作原理
频谱分析仪是微波测量中必不可少的测量仪器之一,它能对信号的谐波分量、寄生、交调、噪声边带等进行很直观的测量和分析,因此,广泛应用于微波通信网络、雷达、电子对抗、空间技术、卫星地面站、EMC测试等领域。 2微波频谱仪的基本工作原理和各主要组件的功能 2.1微波频谱仪的基本工作原理 为了能动态地观察被测信号的频谱,现代频谱仪大多采用扫频超外差式接收方案,利用扫频第一本振的方法,被测信号经混频后得到固定的中频信号,经不同带宽滤波器后,就能观察到频差较小的两个信号。在宽带外差式频谱仪设计中,为消除镜像和多重响应等干扰,常采用两种方案:第一种是采用预选器;第二种是采用上变频。由于预选器频率受下限限制,宽带频谱仪总是被划分成高、低两个波段。低波段采用高中频的方案,它只要一个固定的低通滤波器而不是可调的低通或带通就可以对镜像进行抑制。高波段采用预选器对输入信号进行预选,有效地抑制镜像。图1是HP859X系列频谱仪的简化原理框图。微波信号经输入衰减器后被分成两路,分别输入到高、低两个波段。 在低波段,频率为9kHz~2.95GHz的信号被切换到第一变频器中的基波混频器部分(MXR1),得到第一中频F1IF(3.9214MHz),F1IF经过第二变频器得到第二中频F2IF(321.4MHz)。高波段,频率为2.75GHz~22GHz的信号被切换到预选器(YTF),预选后的信号输入到第一变频器中的谐波混频器部分(MXR2),得到第二中频F2IF。F2IF经第三变频器变换得到第三中频F3IF(21.4MHz)。在该中频上,对信号进行处理,使信号经不同带宽滤波器的选择,再经过线性及对数放大、检波、数字量化和显示。调谐方程如下:
⑥ 频谱分析仪原理是什么呢
虽然今天的技术使得现代数字实现替代许多模拟电路成为可能,但是从经典的频谱分析仪结构开始了解仍然非常有好处。