当前位置:首页 » 服务存储 » 磁表面存储器怎么设置
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

磁表面存储器怎么设置

发布时间: 2023-02-14 12:43:17

1. 文件辅存空间管理有哪些方法

文件辅存空间管理方法:空白文件目录、空白块链、位示图。

辅存狭婡垍义头上筿是我们平时讲的硬盘。科学地说是外部存储器(需要通过I/O系统与之交换数据,又称为辅助存储器)。

简介

存储容量大、成本低、存取速度慢,以及可以永久地脱机保存信息。主要包括磁表面存储器、软盘存储器、磁带存储设备、光盘存储设备。

磁表面存储器

1、语音的优点为存储容量大、单位价格低、记录介质可以重复使用、记录信息可以长期保存而不丢失,甚至可以脱机存档、非破坏性读出,读出时不需要再生信息。

2、磁表面存储器也有缺点,主要是存取速度较慢,机械结构复杂,对工作环境要求较高。磁表面存储器由于存储容量大,单位成本低,多在计算机系统中作为辅助大容量存储器使用,用以存放系统软件、大型文件、数据库等大量程序与数据。

3、磁表面存储器又可分为磁带存储器和磁盘存储器两大类。磁带存储器是一种顺序存取的设备,存取时间较长,但存储容量大,便于携带,价格便宜,是一种主要的辅助存储器。磁带的内容由磁带机进行读写,按磁带机的读写方式分为启停式和数据流式两种。

4、磁盘存储器的主要指标包括存储密度、存储容量、存取时间及数据传输率。

2. 磁表面存储器的介绍

磁表面存储器是利用涂覆在载体表面的磁性材料具有两种不同的磁化状态来表示二进制信息的“0”和“1”。将磁性材料均匀地涂覆在圆形的铝合金或塑料的载体上就成为磁盘,涂覆在聚酯塑料带上就成为磁带。磁头是磁表面存储器用来实现“电←→磁”转换的重要装置,一般由铁磁性材料(铁氧体或玻莫合金)制成,上面绕有读写线圈,在贴近磁表面处开有一个很窄的缝隙。见特点图片。

3. 磁带存储器的记录方式

形成不同写入电流波形的方式,称为记录方式。记录方式是一种编码方式,它按某种规律将一串二进制数字信息变换成磁层中相应的磁化元状态,用读写控制电路实现这种转换。在磁表面存储器中,由于写入电流的幅度、相位、频率变化不同,从而形成了不同的记录方式。常用记录方式可分为不归零制(NRZ),调相制(PM),调频制(FM)几大类。这些记录方式中代码0或1的写入电流波形。 (NRZ):
不归零制(NRZ0)其特点是磁头线圈中始终有电流,不是正向电流(代表1)就是反向电流(代表0),因此不归零制记录方式的抗干扰性能较好。就翻不归零制(NRZ1)与NRZ0制的相同处:磁头线圈中始终有电流通过。不同处:记录0时电流方向不变,只有遇到1时才改变方向。 (PM):
调相制(PM)其特点是在一个位周期的中间位置,电流由负到正为1,由正到负为0,即利用电流相位的变化进行写1和0,所以通过磁头中的电流方向一定要改变一次,这种记录方式中1和0的读出信号相位不同,抗干扰能力较强。另外读出信号经分离电路可提取自同步定时脉冲,所以具有自同步能力。磁带存储器中一般采用这种记录方式。? (FM):
调频制(FM)其特点如下:(1)无论记录的代码是1或0,或者连续写1或写0,在相邻两个存储元交界处电流都要改变方向;(2)记录1时电流一定要在位周期中间改变方向,写1电流的频率是写0电流频率的2倍,故称为倍频法。这种记录方式的优点是记录密度高,具有自同步能力。FM可用于单密度磁盘存储器。改进调频制(MFM)与调频制的区别在于只有连续记录两个或两个以上0时,才在位周期的起始位置翻转一次,而不是在每个位周期的起始处都翻转,因而进一步提高了记录密度。MFM可用于双密度磁盘存储器。

4. 磁表面存储器一般用什么校验方式发现

fast-track这个字意思是快速磁道。
track这个字,意思是磁道。
当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹,这些圆形轨迹就叫做磁道。
磁盘上的磁道是一组记录密度不同的同心圆。磁表面存储器是在不同形状(如盘状、带状等)的载体上,涂有磁性材料层,工作时,靠载磁体高速运动,由磁头在磁层上进行读写操作,信息被记录在磁层上,这些信息的轨迹就是磁道。磁盘的磁道是一个个同心圆,磁带的磁道是沿磁带长度方向的直线,这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着这样的轨道存放的。相邻磁道之间并不是紧挨着的,这是因为磁化单元相隔太近时磁性会产生相互影响,同时也为磁头的读写带来困难。一张老式1.44MB的3.5英寸软盘,一面有80个磁道,而硬盘上的磁道密度则远远大于此值,通常一面有成千上万个磁道。
硬盘的物理结构一般由磁头与盘片、电动机、主控芯片与排线等部件组成;当主电动机带动盘片旋转时,副电动机带动一组(磁头)到相对应的盘片上并确定读取正面还是反面的碟面,磁头悬浮在碟面上画出一个与盘片同心的圆形轨道(磁轨或称柱面),这时由磁头的磁感线圈感应碟面上的磁性与使用硬盘厂商指定的读取时间或数据间隔定位扇区,从而得到该扇区的数据内容。
元音字母a在重读闭音节中,发短元音/æ/的音,发音时,舌端靠近下齿,舌前部抬高,舌位低,是四个前元音中舌位最低的,但开口最大的一个,属于短元音,但是,在实际发音中有相当的长度,牙床介于半开和开之间,不圆唇。这个音出现在字首、字中位置,如:
mat 垫子
map 地图
bag 袋子,包
cat 猫
hat 宽边的帽子
fan 风扇
bat 球拍,蝙蝠
apple 苹果
希望我能帮助你解疑释惑。

5. 磁表面存储器记录方式提问

选择不了吧. 倒出来弄个TXT吧.

6. 磁表面存储器读写原理的介绍

磁表面存储器是目前使用最广泛的外存储器。所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息。根据记录载体的外形,磁表面存储器有磁鼓、磁带、磁盘、磁卡等。而在计算机系统中广泛使用的是磁盘和磁带;特别是磁盘,几乎是稍具规模系统的基本配置。为了写入不同的信息,磁化电流按一定编码方法呈变化波形,随时间而变。在写入或读出过程中,记录介质与磁头之间相对运动,一般是记录介质运动而磁头不动。对此,采用分解的方法进行分析,不同时刻的电流变化、磁化状态、留下的剩磁状况、读出时的感应电势等。

7. 百度里说计算机的外存储器又称磁表面存储设备,而DDR内存也是一种磁表面存储器

你错了。 内存断电后是不保存内容的。DDR不是用磁性保存数据的,是用二极管原理的晶体保存数据,保存过程中要不断用电的,断电后就不会有任何数据。 磁表面存储设备在断电后,用磁性保存了数据,下次开机就可继续使用这些数据。

8. 磁表面存储器是怎样记录和读出信息的

电压

9. 为什么设置磁表面存储器的六种记录方式,以及它们的不同

、所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息。
在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态。磁头实际上是由软磁材料做铁芯绕有读写线圈的电磁铁。
写操作:当写线圈中通过一定方向的脉冲电流时,铁芯内就产生一定方向的磁通。
读操作:当磁头经过载磁体的磁化元时,由于磁头铁芯是良好的导磁材料,磁化元的磁力线很容易通过磁头而形成闭合磁通回路。不同极性的磁化元在铁芯里的方向是不同的。
通过电磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;反之,通过磁电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出。这就是磁表面存储器存取信息的原理。
磁层上的存储元被磁化后,它可以供多次读出而不被破坏。当不需要这批信息时,可通过磁头把磁层上所记录的信息全部抹去,称之为写“0”。通常,写入和读出是合用一个磁头,故称之为读写磁头。每个读写磁头对应着一个信息记录磁道。
磁表面存储器的优点:
①存储容量大,位价格低;
②记录介质可以重复使用;
③记录信息可以长期保存而不丢失,甚至可以脱机存档;
④非破坏性读出,读出时不需要再生信息。
磁表面存储器的缺点
存取速度较慢,机械结构复杂,对工作环境要求较高。
2、光盘存储器是一种采用光存储技术存储信息的存储器,它采用聚焦激光束在盘式介质上非接触地记录高密度信息,以介质材料的光学性质(如反射率、偏振方向)的变化来表示所存储信息的“1”或“0”

10. 计算机组成原理(三)存储系统

辅存中的数据要调入主存后才能被CPU访问

按存储介质,存储器可分为磁表面存储器(磁盘、磁带)、磁心存储器半导体存储器(MOS型存储器、双极型存储器)和光存储器(光盘)。

随机存取存储器(RAM):读写任何一个存储单元所需时间都相同,与存储单元所在的物理位置无关,如内存条等

顺序存取存储器(SAM):读写一个存储单元所需时间取决于存储单元所在的物理位置,如磁盘等

直接存取存储器(DAM):既有随机存取特性,也有顺序存取特性。先直接选取信息所在区域,然后按顺序方式存取。如硬盘等

相联存储器,即可以按内容访问的存储器(CAM)可以按照内容检索到存储位置进行读写,“快表”就是一种相联存储器

读写存储器—即可读、也可写(如:磁盘、内存、Cache)
只读存储器—只能读,不能写(如:实体音乐专辑通常采用CD-ROM,实体电影采用蓝光光盘,BIOS通常写在ROM中)

断电后,存储信息消失的存储器——易失性存储器(主存、Cache)
断电后,存储信息依然保持的存储器——非易失性存储器(磁盘、光盘)
信息读出后,原存储信息被破坏——破坏性读出(如DRAM芯片,读出数据后要进行重写)
信息读出后,原存储信息不被破坏——非破坏性读出(如SRAM芯片、磁盘、光盘)

存储器芯片的基本电路如下

封装后如下图所示

图中的每条线都会对应一个金属引脚,另外还有供电引脚、接地引脚,故可以由此求引脚数目

n位地址对应2 n 个存储单元

假如有8k×8位的存储芯片,即

现代计算机通常按字节编址,即每个字节对应一个地址

但也支持按字节寻址、按字寻址、按半字寻址、按双字寻址

(Dynamic Random Access Memory,DRAM)即动态RAM,使用栅极电容存储信息
(Static Random Access Memory,SRAM)即静态RAM,使用双稳态触发器存储信息

DRAM用于主存、SRAM用于Cache,两者都属于易失性存储器

简单模型下需要有 根选通线,而行列地址下仅需 根选通线

ROM芯片具有非易失性,断电后数据不会丢失

主板上的BIOS芯片(ROM),存储了“自举装入程序”,负责引导装入操作系统(开机)。逻辑上,主存由 辅存RAM+ROM组成,且二者常统一编址

位扩展的连接方式是将多个存储芯片的地址端、片选端和读写控制端相应并联,数据端分别引出。

字扩展是指增加存储器中字的数量,而位数不变。字扩展将芯片的地址线、数据线、读写控制线相应并联,而由片选信号来区分各芯片的地址范围。

实际上,存储器往往需要同时扩充字和位。字位同时扩展是指既增加存储字的数量,又增加存储字长。

两个端口对同一主存操作有以下4种情况:

当出现(3)(4)时,置“忙”信号为0,由判断逻辑决定暂时关闭一个端口(即被延时),未被关闭的端口正常访问,被关闭的端口延长一个很短的时间段后再访问。

多体并行存储器由多体模块组成。每个模块都有相同的容量和存取速度,各模块都有独立的读写控制电路、地址寄存器和数据寄存器。它们既能并行工作,又能交义工作。多体并行存储器分为高位交叉编址(顺序方式)和低位交叉编址(交叉方式)两种.

①高位交叉编址

②低位交叉编址

采用“流水线”的方式并行存取(宏观上并行,微观上串行),连续取n个存储字耗时可缩短为

宏观上,一个存储周期内,m体交叉存储器可以提供的数据量为单个模块的m倍。存取周期为T,存取时间/总线传输周期为r,为了使流水线不间断,应保证模块数

单体多字系统的特点是存储器中只有一个存储体,每个存储单元存储m个字,总线宽度也为m个字。一次并行读出m个字,地址必须顺序排列并处于同一存储单元。

缺点:每次只能同时取m个字,不能单独取其中某个字;指令和数据在主存内必须是连续存放的

为便于Cache 和主存之间交换信息,Cache 和主存都被划分为相等的块,Cache 块又称Cache 行,每块由若干字节组成。块的长度称为块长(Cache 行长)。由于Cache 的容量远小于主存的容盘,所以Cache中的块数要远少于主存中的块数,它仅保存主存中最活跃的若干块的副本。因此 Cache 按照某种策略,预测CPU在未来一段时间内欲访存的数据,将其装入Cache.

将某些主存块复制到Cache中,缓和CPU与主存之间的速度矛盾

CPU欲访问的信息已在Cache中的比率称为命中率H。先访问Cache,若Cache未命中再访问主存,系统的平均访问时间t 为

同时访问Cache和主存,若Cache命中则立即停止访问主存系统的平均访问时间t 为

空间局部性:在最近的未来要用到的信息(指令和数据),很可能与现在正在使用的信息在存储空间上是邻近的

时间局部性:在最近的未来要用到的信息,很可能是现在正在使用的信息

基于局部性原理,不难想到,可以把CPU目前访问的地址“周围”的部分数据放到Cache中

直接映射方式不需要考虑替换算法,仅全相联映射和组相联映射需要考虑

①随机算法(RAND):若Cache已满,则随机选择一块替换。实现简单,但完全没考虑局部性原理,命中率低,实际效果很不稳定

②先进先出算法(FIFO):若Cache已满,则替换最先被调入Cache的块。实现简单,依然没考虑局部性原理

③近期最少使用算法(LRU):为每一个Cache块设置一个“计数器”,用于记录每个Cache块已经有多久没被访问了。当Cache满后替换“计数器”最大的.基于“局部性原理”,LRU算法的实际运行效果优秀,Cache命中率高。

④最不经常使用算法(LFU):为每一个Cache块设置一个“计数器”,用于记录每个Cache块被访问过几次。当Cache满后替换“计数器”最小的.并没有很好地遵循局部性原理,因此实际运行效果不如LRU

现代计算机常采用多级Cache,各级Cache之间常采用“全写法+非写分配法”;Cache-主存之间常采用“写回法+写分配法”

写回法(write-back):当CPU对Cache写命中时,只修改Cache的内容,而不立即写入主存,只有当此块被换出时才写回主存。减少了访存次数,但存在数据不一致的隐患。

全写法(写直通法,write-through):当CPU对Cache写命中时,必须把数据同时写入Cache和主存,一般使用写缓冲(write buffer)。使用写缓冲,CPU写的速度很快,若写操作不频繁,则效果很好。若写操作很频繁,可能会因为写缓冲饱和而发生阻塞访存次数增加,速度变慢,但更能保证数据一致性

写分配法(write-allocate):当CPU对Cache写不命中时,把主存中的块调入Cache,在Cache中修改。通常搭配写回法使用。

非写分配法(not-write-allocate):当CPU对Cache写不命中时只写入主存,不调入Cache。搭配全写法使用。

页式存储系统:一个程序(进程)在逻辑上被分为若干个大小相等的“页面”, “页面”大小与“块”的大小相同 。每个页面可以离散地放入不同的主存块中。CPU执行的机器指令中,使用的是“逻辑地址”,因此需要通“页表”将逻辑地址转为物理地址。页表的作用:记录了每个逻辑页面存放在哪个主存块中

逻辑地址(虚地址):程序员视角看到的地址
物理地址(实地址):实际在主存中的地址

快表是一种“相联存储器”,可以按内容寻访,表中存储的是页表项的副本;Cache中存储的是主存块的副本

地址映射表中每一行都有对应的标记项

主存-辅存:实现虚拟存储系统,解决了主存容量不够的问题

Cache-主存:解决了主存与CPU速度不匹配的问题