A. 关于计算机组成原理中存储器的问题。求详细解释
8k=2^13=10 0000 0000 0000B
2000H=0010 0000 0000 0000B
是一样的,H也确实是十六进制的标志
这题的其它答案也都没有问题。
B. 存储器的发展史
存储器设备发展
1.存储器设备发展之汞延迟线
汞延迟线是基于汞在室温时是液体,同时又是导体,每比特数据用机械波的波峰(1)和波谷(0)表示。机械波从汞柱的一端开始,一定厚度的熔融态金属汞通过一振动膜片沿着纵向从一端传到另一端,这样就得名“汞延迟线”。在管的另一端,一传感器得到每一比特的信息,并反馈到起点。设想是汞获取并延迟这些数据,这样它们便能存储了。这个过程是机械和电子的奇妙结合。缺点是由于环境条件的限制,这种存储器方式会受各种环境因素影响而不精确。
1950年,世界上第一台具有存储程序功能的计算机EDVAC由冯.诺依曼博士领导设计。它的主要特点是采用二进制,使用汞延迟线作存储器,指令和程序可存入计算机中。
1951年3月,由ENIAC的主要设计者莫克利和埃克特设计的第一台通用自动计算机UNIVAC-I交付使用。它不仅能作科学计算,而且能作数据处理。
2.存储器设备发展之磁带
UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。
磁带是所有存储器设备发展中单位存储信息成本最低、容量最大、标准化程度最高的常用存储介质之一。它互换性好、易于保存,近年来,由于采用了具有高纠错能力的编码技术和即写即读的通道技术,大大提高了磁带存储的可靠性和读写速度。根据读写磁带的工作原理可分为螺旋扫描技术、线性记录(数据流)技术、DLT技术以及比较先进的LTO技术。
根据读写磁带的工作原理,磁带机可以分为六种规格。其中两种采用螺旋扫描读写方式的是面向工作组级的DAT(4mm)磁带机和面向部门级的8mm磁带机,另外四种则是选用数据流存储技术设计的设备,它们分别是采用单磁头读写方式、磁带宽度为1/4英寸、面向低端应用的Travan和DC系列,以及采用多磁头读写方式、磁带宽度均为1/2英寸、面向高端应用的DLT和IBM的3480/3490/3590系列等。
磁带库是基于磁带的备份系统,它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。它的存储容量可达到数百PB,可以实现连续备份、自动搜索磁带,也可以在驱动管理软件控制下实现智能恢复、实时监控和统计,整个数据存储备份过程完全摆脱了人工干涉。
磁带库不仅数据存储量大得多,而且在备份效率和人工占用方面拥有无可比拟的优势。在网络系统中,磁带库通过SAN(Storage Area Network,存储区域网络)系统可形成网络存储系统,为企业存储提供有力保障,很容易完成远程数据访问、数据存储备份或通过磁带镜像技术实现多磁带库备份,无疑是数据仓库、ERP等大型网络应用的良好存储设备。
3.存储器设备发展之磁鼓
1953年,随着存储器设备发展,第一台磁鼓应用于IBM 701,它是作为内存储器使用的。磁鼓是利用铝鼓筒表面涂覆的磁性材料来存储数据的。鼓筒旋转速度很高,因此存取速度快。它采用饱和磁记录,从固定式磁头发展到浮动式磁头,从采用磁胶发展到采用电镀的连续磁介质。这些都为后来的磁盘存储器打下了基础。
磁鼓最大的缺点是利用率不高, 一个大圆柱体只有表面一层用于存储,而磁盘的两面都利用来存储,显然利用率要高得多。 因此,当磁盘出现后,磁鼓就被淘汰了。
4.存储器设备发展之磁芯
美国物理学家王安1950年提出了利用磁性材料制造存储器的思想。福雷斯特则将这一思想变成了现实。
为了实现磁芯存储,福雷斯特需要一种物质,这种物质应该有一个非常明确的磁化阈值。他找到在新泽西生产电视机用铁氧体变换器的一家公司的德国老陶瓷专家,利用熔化铁矿和氧化物获取了特定的磁性质。
对磁化有明确阈值是设计的关键。这种电线的网格和芯子织在电线网上,被人称为芯子存储,它的有关专利对发展计算机非常关键。这个方案可靠并且稳定。磁化相对来说是永久的,所以在系统的电源关闭后,存储的数据仍然保留着。既然磁场能以电子的速度来阅读,这使交互式计算有了可能。更进一步,因为是电线网格,存储阵列的任何部分都能访问,也就是说,不同的数据可以存储在电线网的不同位置,并且阅读所在位置的一束比特就能立即存取。这称为随机存取存储器(RAM),在存储器设备发展历程中它是交互式计算的革新概念。福雷斯特把这些专利转让给麻省理工学院,学院每年靠这些专利收到1500万~2000万美元。
最先获得这些专利许可证的是IBM,IBM最终获得了在北美防卫军事基地安装“旋风”的商业合同。更重要的是,自20世纪50年代以来,所有大型和中型计算机也采用了这一系统。磁芯存储从20世纪50年代、60年代,直至70年代初,一直是计算机主存的标准方式。
5.存储器设备发展之磁盘
世界第一台硬盘存储器是由IBM公司在1956年发明的,其型号为IBM 350 RAMAC(Random Access Method of Accounting and Control)。这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘。1968年,IBM公司提出“温彻斯特/Winchester”技术,其要点是将高速旋转的磁盘、磁头及其寻道机构等全部密封在一个无尘的封闭体中,形成一个头盘组合件(HDA),与外界环境隔绝,避免了灰尘的污染,并采用小型化轻浮力的磁头浮动块,盘片表面涂润滑剂,实行接触起停,这是现代绝大多数硬盘的原型。1979年,IBM发明了薄膜磁头,进一步减轻了磁头重量,使更快的存取速度、更高的存储密度成为可能。20世纪80年代末期,IBM公司又对存储器设备发展作出一项重大贡献,发明了MR(Magneto Resistive)磁阻磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度比以往提高了数十倍。1991年,IBM生产的3.5英寸硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此,硬盘容量开始进入了GB数量级。IBM还发明了PRML(Partial Response Maximum Likelihood)的信号读取技术,使信号检测的灵敏度大幅度提高,从而可以大幅度提高记录密度。
目前,硬盘的面密度已经达到每平方英寸100Gb以上,是容量、性价比最大的一种存储设备。因而,在计算机的外存储设备中,还没有一种其他的存储设备能够在最近几年中对其统治地位产生挑战。硬盘不仅用于各种计算机和服务器中,在磁盘阵列和各种网络存储系统中,它也是基本的存储单元。值得注意的是,近年来微硬盘的出现和快速发展为移动存储提供了一种较为理想的存储介质。在闪存芯片难以承担的大容量移动存储领域,微硬盘可大显身手。目前尺寸为1英寸的硬盘,存储容量已达4GB,10GB容量的1英寸硬盘不久也会面世。微硬盘广泛应用于数码相机、MP3设备和各种手持电子类设备。
另一种磁盘存储设备是软盘,从早期的8英寸软盘、5.25英寸软盘到3.5英寸软盘,主要为数据交换和小容量备份之用。其中,3.5英寸1.44MB软盘占据计算机的标准配置地位近20年之久,之后出现过24MB、100MB、200MB的高密度过渡性软盘和软驱产品。然而,由于USB接口的闪存出现,软盘作为数据交换和小容量备份的统治地位已经动摇,不久会退出存储器设备发展历史舞台。
6. 存储器设备发展之光盘
光盘主要分为只读型光盘和读写型光盘。只读型指光盘上的内容是固定的,不能写入、修改,只能读取其中的内容。读写型则允许人们对光盘内容进行修改,可以抹去原来的内容,写入新的内容。用于微型计算机的光盘主要有CD-ROM、CD-R/W和DVD-ROM等几种。
上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。
从LD的诞生至计算机用的CD-ROM,经历了三个阶段,即LD-激光视盘、CD-DA激光唱盘、CD-ROM。下面简单介绍这三个存储器设备发展阶段性的产品特点。
LD-激光视盘,就是通常所说的LCD,直径较大,为12英寸,两面都可以记录信息,但是它记录的信号是模拟信号。模拟信号的处理机制是指,模拟的电视图像信号和模拟的声音信号都要经过FM(Frequency Molation)频率调制、线性叠加,然后进行限幅放大。限幅后的信号以0.5微米宽的凹坑长短来表示。
CD-DA激光唱盘 LD虽然取得了成功,但由于事先没有制定统一的标准,使它的开发和制作一开始就陷入昂贵的资金投入中。1982年,由飞利浦公司和索尼公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EMF(8~14位调制)编码之后记录到盘上。数字记录代替模拟记录的好处是,对干扰和噪声不敏感,由于盘本身的缺陷、划伤或沾污而引起的错误可以校正。
CD-DA系统取得成功以后,使飞利浦公司和索尼公司很自然地想到利用CD-DA作为计算机的大容量只读存储器。但要把CD-DA作为计算机的存储器,还必须解决两个重要问题,即建立适合于计算机读写的盘的数据结构,以及CD-DA误码率必须从现有的10-9降低到10-12以下,由此就产生了CD-ROM的黄皮书(Yellow Book)标准。这个标准的核心思想是,盘上的数据以数据块的形式来组织,每块都要有地址,这样一来,盘上的数据就能从几百兆字节的存储空间上被迅速找到。为了降低误码率,采用增加一种错误检测和错误校正的方案。错误检测采用了循环冗余检测码,即所谓CRC,错误校正采用里德-索洛蒙(Reed Solomon)码。黄皮书确立了CD-ROM的物理结构,而为了使其能在计算机上完全兼容,后来又制定了CD-ROM的文件系统标准,即ISO 9660。
在上世纪80年代中期,光盘存储器设备发展速度非常快,先后推出了WORM光盘、磁光盘(MO)、相变光盘(Phase Change Disk,PCD)等新品种。20世纪90年代,DVD-ROM、CD-R、CD-R/W等开始出现和普及,目前已成为计算机的标准存储设备。
光盘技术进一步向高密度发展,蓝光光盘是不久将推出的下一代高密度光盘。多层多阶光盘和全息存储光盘正在实验室研究之中,可望在5年之内推向市场。
7.存储器设备发展之纳米存储
纳米是一种长度单位,符号为nm。1纳米=1毫微米,约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。与纳米存储有关的主要进展有如下内容。
1998年,美国明尼苏达大学和普林斯顿大学制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系。一个量子磁盘相当于我们现在的10万~100万个磁盘,而能源消耗却降低了1万倍。
1988年,法国人首先发现了巨磁电阻效应,到1997年,采用巨磁电阻原理的纳米结构器件已在美国问世,它在磁存储、磁记忆和计算机读写磁头等方面均有广阔的应用前景。
2002年9月,美国威斯康星州大学的科研小组宣布,他们在室温条件下通过操纵单个原子,研制出原子级的硅记忆材料,其存储信息的密度是目前光盘的100万倍。这是纳米存储材料技术研究的一大进展。该小组发表在《纳米技术》杂志上的研究报告称,新的记忆材料构建在硅材料表面上。研究人员首先使金元素在硅材料表面升华,形成精确的原子轨道;然后再使硅元素升华,使其按上述原子轨道进行排列;最后,借助于扫瞄隧道显微镜的探针,从这些排列整齐的硅原子中间隔抽出硅原子,被抽空的部分代表“0”,余下的硅原子则代表“1”,这就形成了相当于计算机晶体管功能的原子级记忆材料。整个试验研究在室温条件下进行。研究小组负责人赫姆萨尔教授说,在室温条件下,一次操纵一批原子进行排列并不容易。更为重要的是,记忆材料中硅原子排列线内的间隔是一个原子大小。这保证了记忆材料的原子级水平。赫姆萨尔教授说,新的硅记忆材料与目前硅存储材料存储功能相同,而不同之处在于,前者为原子级体积,利用其制造的计算机存储材料体积更小、密度更大。这可使未来计算机微型化,且存储信息的功能更为强大。
以上就是本文向大家介绍的存储器设备发展历程的7个关键时期
C. ROM的特点是
特点:ROM是一种只能读出事先所存数据的固态半导体存储器。其特性是一旦储存资料就无法再将之改变或删除。通常用在不需经常变更资料的电子或电脑系统中,并且资料不会因为电源关闭而消失。
ROM所存数据,一般是装入整机前事先写好的,整机工作过程中只能读出,而不像随机存储器那样能快速地、方便地加以改写。ROM所存数据稳定,断电后所存数据也不会改变;其结构较简单,读出较方便,因而常用于存储各种固定程序和数据。
除少数品种的只读存储器(如字符发生器)可以通用之外,不同用户所需只读存储器的内容不同。为便于使用和大批量生产 ,进一步发展了可编程只读存储器(PROM)、可擦可编程序只读存储器(EPROM)和电可擦可编程只读存储器(EEPROM)。
(3)次世代存储器好还是现有好扩展阅读:
种类:
1、ROM
此内存的制造成本较低,常用于电脑中的开机启动如启动光盘,在系统装好的电脑上时,计算机将C盘目录下的操作系统文件读取至内存,然后通过cpu调用各种配件进行工作这时系统存放存储器为RAM。这种属于COMPACT DISC激光唱片,光盘就是这种。
2、PROM
可编程程序只读存储器(Programmable ROM,PROM)之内部有行列式的熔丝,是需要利用电流将其烧断,写入所需的资料,但仅能写录一次。
3、EPROM
可抹除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)可利用高电压将资料编程写入,抹除时将线路曝光于紫外线下,则资料可被清空,并且可重复使用。通常在封装外壳上会预留一个石英透明窗以方便曝光。
4、OTPROM
一次编程只读存储器(One Time Programmable Read Only Memory,OTPROM)之写入原理同EPROM,但是为了节省成本,编程写入之后就不再抹除,因此不设置透明窗。
D. 如何判断25系列存储器的好坏
25存储芯片的温度都普遍高,25存储芯片供电电源太高,或电流过大,都会导致25存储芯片内部电路由于超过其极限工作电流电压而导致25存储芯片损坏。
存储芯片,是嵌入式系统芯片的概念在存储行业的具体应用。因此,无论是系统芯片还是存储芯片,都是通过在单一芯片中嵌入软件,实现多功能和高性能,以及对多种协议、多种硬件和不同应用的支持。
E. 比较各个存储类型的优缺点
【块存储】
典型设备:磁盘阵列,硬盘
块存储主要是将裸磁盘空间整个映射给主机使用的,就是说例如磁盘阵列里面有5块硬盘(为方便说明,假设每个硬盘1G),然后可以通过划逻辑盘、做Raid、或者LVM(逻辑卷)等种种方式逻辑划分出N个逻辑的硬盘。(假设划分完的逻辑盘也是5个,每个也是1G,但是这5个1G的逻辑盘已经于原来的5个物理硬盘意义完全不同了。例如第一个逻辑硬盘A里面,可能第一个200M是来自物理硬盘1,第二个200M是来自物理硬盘2,所以逻辑硬盘A是由多个物理硬盘逻辑虚构出来的硬盘。)
接着块存储会采用映射的方式将这几个逻辑盘映射给主机,主机上面的操作系统会识别到有5块硬盘,但是操作系统是区分不出到底是逻辑还是物理的,它一概就认为只是5块裸的物理硬盘而已,跟直接拿一块物理硬盘挂载到操作系统没有区别的,至少操作系统感知上没有区别。
此种方式下,操作系统还需要对挂载的裸硬盘进行分区、格式化后,才能使用,与平常主机内置硬盘的方式完全无异。
优点:
1、 这种方式的好处当然是因为通过了Raid与LVM等手段,对数据提供了保护。
2、 另外也可以将多块廉价的硬盘组合起来,成为一个大容量的逻辑盘对外提供服务,提高了容量。
3、 写入数据的时候,由于是多块磁盘组合出来的逻辑盘,所以几块磁盘可以并行写入的,提升了读写效率。
4、 很多时候块存储采用SAN架构组网,传输速率以及封装协议的原因,使得传输速度与读写速率得到提升。
缺点:
1、采用SAN架构组网时,需要额外为主机购买光纤通道卡,还要买光纤交换机,造价成本高。
2、主机之间的数据无法共享,在服务器不做集群的情况下,块存储裸盘映射给主机,再格式化使用后,对于主机来说相当于本地盘,那么主机A的本地盘根本不能给主机B去使用,无法共享数据。
3、不利于不同操作系统主机间的数据共享:另外一个原因是因为操作系统使用不同的文件系统,格式化完之后,不同文件系统间的数据是共享不了的。例如一台装了WIN7/XP,文件系统是FAT32/NTFS,而Linux是EXT4,EXT4是无法识别NTFS的文件系统的。就像一只NTFS格式的U盘,插进Linux的笔记本,根本无法识别出来。所以不利于文件共享。
【文件存储】
典型设备:FTP、NFS服务器
为了克服上述文件无法共享的问题,所以有了文件存储。
文件存储也有软硬一体化的设备,但是其实普通拿一台服务器/笔记本,只要装上合适的操作系统与软件,就可以架设FTP与NFS服务了,架上该类服务之后的服务器,就是文件存储的一种了。
主机A可以直接对文件存储进行文件的上传下载,与块存储不同,主机A是不需要再对文件存储进行格式化的,因为文件管理功能已经由文件存储自己搞定了。
优点:
1、造价交低:随便一台机器就可以了,另外普通以太网就可以,根本不需要专用的SAN网络,所以造价低。
2、方便文件共享:例如主机A(WIN7,NTFS文件系统),主机B(Linux,EXT4文件系统),想互拷一部电影,本来不行。加了个主机C(NFS服务器),然后可以先A拷到C,再C拷到B就OK了。(例子比较肤浅,请见谅……)
缺点:
读写速率低,传输速率慢:以太网,上传下载速度较慢,另外所有读写都要1台服务器里面的硬盘来承担,相比起磁盘阵列动不动就几十上百块硬盘同时读写,速率慢了许多。
【对象存储】
典型设备:内置大容量硬盘的分布式服务器
对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。
之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。
首先,一个文件包含了了属性(术语叫metadata,元数据,例如该文件的大小、修改时间、存储路径等)以及内容(以下简称数据)。
以往像FAT32这种文件系统,是直接将一份文件的数据与metadata一起存储的,存储过程先将文件按照文件系统的最小块大小来打散(如4M的文件,假设文件系统要求一个块4K,那么就将文件打散成为1000个小块),再写进硬盘里面,过程中没有区分数据/metadata的。而每个块最后会告知你下一个要读取的块的地址,然后一直这样顺序地按图索骥,最后完成整份文件的所有块的读取。
这种情况下读写速率很慢,因为就算你有100个机械手臂在读写,但是由于你只有读取到第一个块,才能知道下一个块在哪里,其实相当于只能有1个机械手臂在实际工作。
而对象存储则将元数据独立了出来,控制节点叫元数据服务器(服务器+对象存储管理软件),里面主要负责存储对象的属性(主要是对象的数据被打散存放到了那几台分布式服务器中的信息),而其他负责存储数据的分布式服务器叫做OSD,主要负责存储文件的数据部分。当用户访问对象,会先访问元数据服务器,元数据服务器只负责反馈对象存储在哪些OSD,假设反馈文件A存储在B、C、D三台OSD,那么用户就会再次直接访问3台OSD服务器去读取数据。
这时候由于是3台OSD同时对外传输数据,所以传输的速度就加快了。当OSD服务器数量越多,这种读写速度的提升就越大,通过此种方式,实现了读写快的目的。
另一方面,对象存储软件是有专门的文件系统的,所以OSD对外又相当于文件服务器,那么就不存在文件共享方面的困难了,也解决了文件共享方面的问题。
所以对象存储的出现,很好地结合了块存储与文件存储的优点。
最后为什么对象存储兼具块存储与文件存储的好处,还要使用块存储或文件存储呢?
1、有一类应用是需要存储直接裸盘映射的,例如数据库。因为数据库需要存储裸盘映射给自己后,再根据自己的数据库文件系统来对裸盘进行格式化的,所以是不能够采用其他已经被格式化为某种文件系统的存储的。此类应用更适合使用块存储。
2、对象存储的成本比起普通的文件存储还是较高,需要购买专门的对象存储软件以及大容量硬盘。如果对数据量要求不是海量,只是为了做文件共享的时候,直接用文件存储的形式好了,性价比高。