1. 传感器的信号能实时保存在外部存储设备里吗具体说说
可以的。
购买一块数据采集卡,利用随卡附带的采样程序(pc机上运行),就可以快速实时采样传感器的模拟信号,然后保存到硬盘。
一些数字传感器(比如Keller公司的压力传感器)可以直接连接到PC机然后快速测量、记录。
2. 地磅模拟传感器的优缺点
优点就是价格便宜点,其它方面自从有了数字传感器在没有什么优点可言。 可了解一下数字传感器的优点:
1、先进的A/D转换技术和智能滤波算法,在满量程的情况下仍可保证输出码的稳定。 2、可行的数据存储技术,保证模块参数不会丢失。 3、良好的电磁兼容性能。 4、传感器的性能参数采用数字化误差补偿技术和高度集成化电子元件,用软件实现传感器的线性、零点、额定输出温漂、蠕变等性能参数的综合补偿,消除了人为因素对补偿的影响,大大提高了传感器综合精度和可靠性。 5、传感器的输出一致性误差可以达到0.02%以内甚至更高,传感器的特性参数可完全相同,因而具有良好的互换性。 6、采用A/D转换电路、数字化信号传输和数字滤波技术,传感器的抗干扰能力增加,信号传输距离远,提高了传感器的稳定性。 7、数字传感器能自动采集数据并可预处理、存储和记忆,具有唯一标记,便于故障诊断。 8、传感器采用标准的数字通讯接口,可直接连入计算机,也可与标准工业控制总线连接,方便灵活。 青岛斯美衡器有限公司 0532-89081986
3. 如何实现数据在传感器基础上的采集,传感器收集到的信息如何传输并转换成数据来存储的非常感谢!
这个需要汇编来实现基础通讯,通过串口读取传感器传回的数据组,进行分析,得出你需要的数据,通过程序传递到界面或者数据库中
4. 传感器的信号如何传递给电脑,进而存储在数据库里
传感器都有开发接口的,使用开发接口就能获取到传感器的数据了
5. 请问有哪些传感器是数字式的,哪些是模拟的举一些简单例子和其原理
数字式传感器的性能区别于模拟式汽车衡,主要有以下几点:(1)解决模拟式传感器信号弱的问题 模拟式传感器的输出信号最大一般在几十毫伏,最低时只有百万分之几毫伏。在电缆传输这些弱信号过程中,很容易受到干扰,从而造成系统工作不稳定或计量性能降低。而数字式传感器的输出信号均在3~4V左右,其抗干扰能力远大于模拟信号的百万倍。(2)解决射频干扰问题 模拟式称重传感器的低电压信号极易受到电子干扰及其它天线电信号的干扰,而数字式称重传感器在设计时已考虑到这些抗干扰能力,它们可以在高干扰区域,并保证计量性能。(3)解决防潮、防腐问题 数字式传感器采用100%不锈钢焊接壳体。密封、防水、防潮湿、防腐蚀,适用于各种恶劣工作环境,计量性能不受任何影响,防护等级达到IP68。(4)解决防雷击问题 数字式传感器具有防雷击和大电流放电能力,在室外安装使用时,这一点尤其重要。METTLER-TOLEDO数字式汽车衡系统通过美国权威机构Lightning Technologies,INC的雷击测试。(5)解决偏载/温度影响问题 数字式称重传感器能自动补偿和调整因偏载和温度变化而产生影响。(6)解决时间效应—蠕变问题当负荷时间加在-称重传感器上时,其输出常有较大变化,数字式称重传感器通过内部微处理器里的软件,自动补偿了蠕变。(7)数字式汽车衡称重精度、稳定性和可靠性更高,减少模拟式汽车衡经常引起的误差由于经校正后的称重数据是以数字形式存储在每个传感器内部的,因此就减少了模拟信号引起的积累误差。这些误差通常都是由于模拟信号在传输过程中由接头、接线排(端子)、电位器、开关及长电缆等因素造成的。数字式称重传感器的补偿/修正参数存储在传感器内部的永久性存储器中,因此,省掉了开关/电位器等元器件。(8)具有自诊断功能 数字式传感器具有自诊断功能。它不断对内部工作状况进行检测,当检测到出现故障时,会发出错误代码,这就大大降低了漏检故障的可能性,这也是模拟式称重传感器无法做到的
6. 压力传感器的数据怎么用电脑读取存储
没办法实现的。传感器给出的一般是模拟信号,计算机没法读模拟信号,你只能去买一个带模拟接口的PLC或数据采集卡,把模拟信号转成数字信号以后才能用计算机读入,然后再用软件显示
7. 传感器的输出方式有哪些
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器的分类方式有很多种,根据不同的原理来区分:
1、按被测物理量分:如:力,压力,位移,温度,角度传感器等;
2、按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;
3、按照传感器转换能量的方式分:
(1)能量转换型:如:压电式、热电偶、光电式传感器等;
(2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;
4、按照传感器工作机理分:
(1)结构型:如:电感式、电容式传感器等;
(2)物性型:如:压电式、光电式、各种半导体式传感器等;
5、按照传感器输出信号的形式分:
(1)模拟式:传感器输出为模拟电压量;
(2)数字式:传感器输出为数字量,如:编码器式传感器。
6、根据能量转换原理可分为:
(1)有源传感器:有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;
(2)无源传感器:无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。
8. 数字传感器与模拟传感器的区别
第一节 模拟信号与数字信号
一、模拟信号
模拟信号是一种不仅再时间上连续、数值上也连续的物理量,具有无穷多的数值,其数学表达是必较复杂,比如正弦函数、指数函数等。
从自然界感知的大部分物理量都是模拟性质的,如速度、压力、温度、声音、重量以及位置等都是最常见的物理量。
图1.1.1 是几种常见的模拟信号波形
正弦波:例如我们最经常接触到的声波。可能你有机会用一台示波器察看一个真实的声音波形,你将发现所看到的波形可不像这里所示范的这样清晰的正弦波,而是看起来非常杂乱的一种波形,确实如此,这只是因为真实的声音波形中包含了多种频率的正弦波。另一个例子由发条驱动的钟摆,将钟摆的运动轨迹延时间轴展开,得到的连续波形正好就是一个正弦波形。
调幅波:自从发明收音机以来,普通百姓就开始与调幅波打交道了,这种波形是以一种频率很高的正弦波作为载波,在此基础上叠加一个频率较低的信号波就形成了入图所示得波形。
阻尼振荡波:凡是自然界中可以看到的振荡运动,都可以观察到这种波形,比如弹簧的自由振动、钟摆的自由运动(不同于由发条驱动得钟摆运动)等,如果说这些还有人工的痕迹,那么水波的涟漪则是在自然不过的了。
指数衰减波:许多发光物质都具有这种波形,也就是荧光寿命。我们平时使用的日光灯就是一个例子,当我们将一个点亮的日光灯的电源切断时,可以观察到日光灯不是一下子就熄灭,而是有一个短暂的熄灭过程,也就是通常所说的日光灯的余辉。
在电子技术中通常采用一些传感器将这些信号转换为电流、电压或电阻等电学量。这些同样是模拟量,因为如果采用一台示波器来测量这些电学量的波形的话,将观察到与图1.1.2图示波形一样的波形。
实际使用中电流和电压常用图形来表示。
下面我们看到的就是一个幅值为0~5V、周期为100ms的电压波形:
图1.1.2 周期性电压波形
图中电压的幅值按照正弦波形周期性地变化,图中显示了两个完整的波形,起始相位为零,如果想确定其中值的个数是不可能的,其值的个数有无穷多个。
正如我们在模拟电路中所学习的,周期性模拟信号的基本参数之一是频率,也可以用周期表示。通常频率用f表示,单位为赫兹(Hz);周期用T表示,单位为秒(s)。二者之间的关系是互为倒数,即有 。图1.1.2中已知电压波形的周期T=100ms,则频率为10Hz,该电压的幅值介于0~5V之间,值的个数为无穷大。
典型的模拟信号包括工频信号、射频信号、视频信号等。我国和欧洲的工频信号的频率为50Hz ,美国为60Hz 。调幅波的射频信号在 530Hz~1600kHz之间。调频波的射频信号在880MHz~108MHz之间。甚高频(VHF)和超高频(UHF)视频信号在6GHz以上。
二、数字信号
电子系统中一般含有模拟和数字两种构件,通常使用的收音机等,其中的电路结构主要是模拟电路,比如功率放大器,不过现在有许多音响系统中不仅包含模拟电路,而且已经有了数字模块,比如CD机,其中主要的部件就是数字模块;而像电脑这样一类的电子系统,则主要就是建立在数字技术上的,但即使是所谓的纯数字系统,仍然离不开模拟电路,因为数字电路实事上可以说是模拟电路的一种特例,比如说在模拟电路中我们采用晶体管的线性工作区间,而数字电路则采用晶体管的非线性工作区间,因此说模拟电路是电子系统中必须的组成部分。
人们发现在对信号的存储、分析和传输中,数字电路更具优越性。为了能够处理存储连续变化的模拟信号,数字电路采用二进制数首先对其进行量化处理后,再使用复杂的数字系统来实现信号的存储、分析和量化。
1.二值数字逻辑和逻辑电平
二进制数正好是利用二值数字逻辑中的0和1来表示的。二值数字逻辑是Binary Digital Logic的译称。
与模拟信号相反,数字数字信号在时间上和数值上均是离散的,而离散信号的值只有真或假,是与不是,因此可以使用二进制数中的0和1来表示。需要注意的是这里的0和1并非通常意义上的0和1,也就是说并不像在十进制中0和1有大小之分,这里的0和1指的是逻辑0和逻辑1。
因此我们可以将其称之为二值数字逻辑或简称为数字逻辑。
二值数字的产生,是基于客观世界中存在许多可以用彼此相关又互相对立的两种状态来描述的事物,比如人的性别,不是男的就是女的,开关的开与关等,就是这样一种关系。很显然,这些都具有明显的二值特性,因此完全可以用电子器件的开关特性来表示。比如,利用晶体管的非线性特性制作成的开关二极管,工作时仅有两种状态,不是导通就是关断,也是一个二值特性,因此可以用其来表示人的性别等。
当开关器件起作用时,电路中只可能出现两种电压值,当开关器件导通时,开关后的电路中将有电流流过(比如串联于三极管发射极的负载),因而将可得到一个较高的电压值,而当开关器件关断时,开关后的电路中将没有电流流过,因而将只能得到一个较低的电压值,从而在电路中将形成离散的电压信号,也叫数字电压,通常称之为逻辑电平。
应该注意的是逻辑电平不是一个具体的物理量,而是物理量的相对表示。比如,当使用示波器测量一个音响设备的输出时,你可观察到一个输出电压幅值连续变化的波形,但是将该输出信号量化成二值信号后,你观察到的只是一系列电压值不是5V就是0V的离散电压值,很显然我们不能因此就说该音响设备的输出就是5V。
电压/V 二值逻辑 逻辑电平
正逻辑 负逻辑
+5 1 0 H(高电平)
0 0 1 L(低电平)
表1.1.1 逻辑电平与电压值的关系
从表中可以看到,+5V的电压值可以用二值逻辑中的1或0来表示,就看你使用的是正逻辑还是负逻辑。在逻辑电平中则使用高电平来表示。事实上高电平并非就只等于+5V,可以是3V,还可以是其它任何值。图1.1.3表示用逻辑电平描述的数字波形,其中图1.1.3a的逻辑0表示0V,逻辑1表示5V;图1.1.3b的逻辑0表示5V,逻辑1表示0V;图1.1.3c 则是一个16位长数据的图形表示。
2.数字波形
数字波形是逻辑电平对时间的图形表示。通常,我们将只有两个离散值的波形称之为脉冲波形,在这一点上脉冲波形与数字波形是一致的,只不过数字波形用逻辑电平表示,而脉冲波形用电压值表示而已。
与模拟波形的定义相同,数字波形也有周期性和非周期性之分。图1.1.4表示了这两类数字波形:
周期性数字波形同样用周期T或频率f来描述;而脉冲波形的频率常称为脉冲重复率PRR--Pulse Repetition Rate。
脉冲波形的参数:
脉冲宽度:tw表示,表示脉冲作用的时间;
占空比:q,表示脉冲宽度tw占整个周期T的百分数,常用下式来表示:
占空比是一个重要参数,其定义同样适用于数字波形。图1.1.5表示两种数字波形及其周期、频率、脉冲宽度和占空比:
例题1.1.1设周期性数字波形的高电平持续6ms,低电平持续10ms,求占空比q?
解:根据给定的高电平持续时间有tw= 6ms,而高电平与低电平持续时间之和即为周期T
所以有 T=6ms+10ms=16ms
到目前为止,我们所讨论的数字波形都是理想波形,然而实际的数字系统中,数字波形的升降都要经历一段时间,也就是说波形存在上升时间tr和下降时间tf 。
上升时间tr的定义是:从脉冲幅值的10%到90%所经历的时间;下降时间tf的定义刚好相反:从脉冲幅值的90%到10%所经历的时间。tr和tf的典型值约为几个纳秒(ns),视不同类型的器件和电路而异。
脉冲宽度的定义是脉冲幅值为50%时前后两个时间点所跨越的时间。非理想脉冲如图1.1.6所示:
例题1.1.2 试绘出一脉冲波形,设它的占空比为50%,脉冲宽度 tw=100ns,上升时间tr=10ns,下降时间tf=20ns。
解:根据题意,可绘出脉冲波形如下:
图1.1.7 例1.1.2的波形图
一般情况下波形的上升或下降时间均要比高电平或低电平的持续时间要小很多,画波形的目的主要是为了了解高、低电平所经历的时间。因此在理想波形中就只有高、低电平,而忽略了上升和下降时间。本课程中所用的数字波形将采用理想波形。
当然,实际中碰到的波形,不管从示波器上来看,其上升沿和下降沿是多么的直,tr和tf都不可能为零,只是在数字电路中,只需关注逻辑电平的高低,因此在画波形时只需画出高低电平所经历的时间即可,无需画出上升沿和下降沿。
(a)
(b)
图1.1.8 用逻辑1和0表示的二值位行图
(a) 对称方波 (b) 二值数据
上图为一个二值位形图,其中1或1占用的最小时间称为位时间,也就是1位数据所占用的时间。我们将每秒钟所传输的位数称为数据率或比特率。
例题1.1.3 某通信系统每秒中传输1.544兆位数据,求每位数据的时间。
解:根据题意,只需将1.544M倒数,即可求得每位数据的时间为:
举例来说,象图1.1.8b中看到的22位的二值位形图,如果每一位数据所占用的时间是648ns,则22位共占用14256ns,也就是14.256微秒,而其数据率就是1.544兆。
在设计数字集成电路时,有时为了分析各种信号之间的逻辑关系,需要将多个数字波形按时间排列在一起,用来表明相互间的时间关系,我们将这样一种关系图称为时序图(Timing diagram)。
时序图中的每一个波形都被称为时间信号。时序图被广泛运用在设计数字集成电路中,在设计存储器、微处理机等数字应用电路时均须附有时序图,以便数字系统的分析、应用和设计。
图1.1.9就是一个时序图的例子:
图1.1.9 数字时序图
图中CP为时钟脉冲信号,用作系统中的时间参考信号,一般由石英晶体振荡器来产生,如图所示波形为对称方波。关于图中各个波形的具体作用,将在以后的课程加以介绍
3.模拟量的数字表示
为便于存储、分析和传输,常常需要将模拟信号转换为数字信号。
在数字电路中用数字0、1的编码来表示一个模拟量,这里的编码所指的是数字0、1的字符串,图1.1.3和图1.1.8所示的数字波形即是这种编码的图形。这样一种编码实际上就是二进制编码。
下面通过图1.1.10的图示来了解用数字表示模拟信号的过程:
取其中A、B、C3个取样点。以B点为例,该点的模拟电压为3V,将其送入一个模数转换器后可得到以数字0、1表示的数字电压,如图1.1.10b所示。同样地也可以得到A、C点的数字编码。
当信号的取样点数足够多时,原信号就可以被较真实地复制下来。
当然,必要的话还可以通过数模转换器将已经数字化的信号还原成模拟信号。
9. 数字型压力传感器和摄像头构成的一个测试存储电路如何实现
既然上小白,看提的问题也像,就不应该考虑这么复杂的问题。摄像关和传感器要配一个计算机系统才能工作,你要做的就是开发一个计算机系统,主个你做得到吗?