当前位置:首页 » 服务存储 » 声音存储实验
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

声音存储实验

发布时间: 2023-03-03 06:34:34

A. 物理老师用纸杯留声机成功留声,他是怎么做到的

纸杯留声机究竟是怎么做到的呢?

根据物理老师的介绍:

留声机的工作内容分别是录音和放音声音引起纸杯底振动,而杯底带动钢针随声振动这个振动的钢针,并且在转动的纸杯上刻画出声音振动的痕迹,随后在运动声道上的钢针受到声道原来记录的声音,最终导致信号作用而振动并驱动纸杯振动发声。

马上去试试效果吧!

B. 电影院的超级音效是如何炼成的

电影诞生至今已有100多年的历史,经过从无声、单声道到多声道立体声的技术改进,从普通银幕发展到大幕、球幕、环幕等。在世界电影放映史上曾产生过3次大的危机。一直以来,改善电影院的视听环境是增强电影放映竞争力的重要手段。影院中观众所接收的声音信息的质量,不仅取决于影片自身及还音系统质量的优劣,还取决于电影院声学特性的好坏。在片源和还音系统相同的条件下,对影厅的控制就成为各个影院改善观众厅视听环境的重要手段。

近年来电影蓬勃发展,而相对地电影院的趋势式逐渐趋向小型化和多厅化;小型化的电影院的一般观众厅容纳在300-500座以下,且均已不设楼座。而多厅化的情况则集中在整栋建筑物内部,有时厅与厅之间相邻接,难免噪声相互干扰的问题相对突显,建筑设计时就需要谨慎应对处理。

对于观众而言,选择一家电影院,除了考虑影片的播出方式——如平面或三维IMAX形式,其次就是电影院的音效如何了。

电影院的银幕可以做得很大,使观众在很远也能看清楚。扬声器的功率也不受声回输的限制,也可以音量调整到很响亮;如此观众厅可以很长,但是长度超过40米以上,会造成视听不同步的缺陷。再择如果扬声器功率使用过大,前后座位的声级差会更加悬殊。

来自未经声学处理后墙的长延迟反射声(主要对前区座位),很容易产生明显回声,使对白清晰度严重受损,这是常见的声学缺陷。可以在后墙加装倾斜的板墙,使来自扬声器的直达声部分反射给后座听众。务使扬声器发出的直达声与任何反射面的第一次强反射声之间的初始延迟时间的间隙不超过40微秒,它相当于直达声和反射声的传播路程差13.7米。观众厅内如果要保留一些反射面时,顶棚中央区乃是优选界面。

从视线方面来考虑,电影院座位应以环绕银幕成弧形排列为宜,结果后墙也顺着成为弧形;而银幕后面的扬声器总是指向观众厅的后墙,如此就更会对前座引起强烈反射声,甚至产生声聚焦现象,形成的回声干扰特别严重。因此电影院的后墙一般还是处理强吸声为宜。

平行侧墙之间会产生颤动回声,但电影院的背景噪声较音乐厅为高,因为时有笑声、嘁嘁细语声,所以只要不是十分强烈的反射表面,这些颤动回音的干扰程度并不太明显。为控制电影院的混响时间,侧墙必须做吸声处理,有利于消除颤动回音。

为了使全场听众都有较为均匀的直接声,前后的声级差不致过大,扬声器的位置应该放置在银幕高度2/3以上;同时利用扬声器的指向特性,主轴射向后墙,以便利用扬声器轴向声级最高的特点,弥补随着距离作反平方衰减的损失。这样使声束覆盖区均匀一些,以便调节前后排座位声级的差异。实验得知扬声器主轴对着前面观众席,前后排相差10dB-12dB,而对着后墙则前后差可缩减为5dB左右。但是如此将会使后墙反射更强烈,更需要做强吸声处理。如果扬声器主轴射向2/3的后座,可以减少后墙强反射的威胁,但是前后排的声级差异会稍微大些。

银幕后面的强吸声处理,可以消除后墙反射声对直达声的干扰,同时也减少这个空间的混响而提高言语清晰度,对多声道立体声电影院,则更有利于声像定位。

电影院的声音是录音重放,其衰减过程比较特殊,它不仅体现出观众厅的衰减过程,而且包括录音棚中录下的衰减过程,或是电子调音加工过程中所带来的衰减过程。

为了便于控制混响,电影院的每座容积在4 m3左右。作为专用电影院虽然没有舞台空间,但银幕到第一排座位之间必须保持相当距离,而使用宽银幕时,这个距离更大。因此在这个空区的地面上最好铺设地毯,减少反射和加强声源定位。银幕有一定的设置高度,如此观众厅的每座平均容积会比4 m3大些,这时只有加强界面吸声处理。另外电影院的满座率因为影片关系的变化很大,所以要采用吸声较大的软垫式座椅,俾使人多或人少的不同占用座席的电影院内部的总吸声量,都能保持稳定不致差异过大。人造皮革座椅吸声较差,不易满足此种要求。这些都是保持观众厅内有较短响时间的控制因素。

放映立体声电影效果影片的观众厅,为使来自各个声道的声音保持明确的方向感,电影院厅内混响时间比普通单声道的厅堂要求更短一些。

由于电影厅混响时间很短,声音在厅堂内传播有点像半自由场,所以靠近扬声器的前排可能太响,而后排又会太轻;因此把扬声器尽量提高,使扬声器高音头刚好放到银幕上部边缘处的高度,并利用扬声器高频指向性对着后墙来缓和厅内前响后轻的这种矛盾。由于人尔对于垂直方向的敏感度较差,所以不会有声音和影像分离的感觉。有人尝试把高音扬声器升高到银幕之上,聆听感觉还不错,只是对于最前面的几排会听出定位偏高。扬声器挂高之后,可以使掠入射听众席所带来的低频衰减低谷消除,从而也相当于提高听众席中后区的低频响应。

人耳对水平面上声源定位是十分敏感的,所以在布置银幕后面扬声器时要特别注意。通常使用三声道扬声器时,中置的一组扬声器放在中央是毫无疑问的,而左右两组则分别放在银幕左右边线之内约为幕幅宽度六分之一宽的位置。如果是五声道扬声器时,两侧扬声器约为宽幅约十分之一宽的位置。其第二和第四组扬声器则分别与相邻扬声器距离幕幅宽度五分之一宽的位置。有时尤其在狭长电影院内,为了加强中区和后区的立体声效果,还可以把扬声器间距布置得更大一些。

有时为了加强低音效果,把低音扬声器前的障板连接起来,高音扬声器则露出在上面。这时就要考虑大面积障板表面作高频吸声处理,以减少电影厅纵轴上的反射。注意扬声器切勿与建筑障板有任何联接,以免产生不应有的强迫振动杂声。

在特别小型的电影院厅中,有时可把扬声器完全嵌入墙体内部,此时要考虑检修时出入的方便。当时宽银幕立体声电影已经日趋普及。为了增加某些情景的临场效果,观众厅还设有一套环绕式扬声器,布置在两侧墙的后三分之二部位及后墙上。它们一般不少于12个扬声器,两侧和后墙各4个扬声器。宽的后墙可适当增加一些,扬声器数量增多,声场可以均匀一些,而且不让听众感到环绕声来自某一个扬声器,以获得置身其境的效果。再则环绕扬声器的单只功率不会很大,但总的声功率应与一个主声道的声功率相近,如果个数太少就会影响环绕感的气氛。

环绕扬声器的高度一般至少3-4米,并作15度向下倾斜,以照顾中区听众。否则边座听众会特别注意到环绕声来自最近一个扬声器,而破坏整体环绕感气氛。为了达到均匀覆盖听众席的效果,这种非强方向的小扬声器要使用得很多。扬声器垂直辐射角-3 dB处,应与听众席靠墙边线相接。

在众多的立体声电影院中常见的观众厅平面体形主要有矩形、扇形、钟形等,剖面体形主要有一层悬挑式楼座、一层悬挑后退式楼座和无楼座等模式。由统计分析结果可知,扇形和钟形的STI均值无明显差异,矩形的STI均值比其它两种体形稍低。三种平面体形在频率1000Hz的SPL值在观众席分布都比较均匀,由统计分析结果可知,扇形和钟形的SPL均值无明显差异,矩形的SPL均值和其它两种体形有显着区别,且平均声压级值也最高。

一层悬挑式楼座体形和一层悬挑后退式楼座体形的整个观众席STI均值无显着差异,无楼座体形整个观众席的STI 均值和另两种体形有区别,均值稍低。三种体形全部观众席的SPL均值之间无显着性差异。

对于有楼座的观众厅,给安装环绕扬声器带来很大困难,尤其在眺台下的听众席。所以正规电影院厅不推荐采用跳台方式,而采用坡式布置。

银幕画面要对上口型是件非常重要的事情,此时眼睛(以及画面)会欺骗耳朵的声源定位能力。当然有时耳朵也会欺骗眼睛,声音会使人感到固定光点似乎在移动,因此画面上某处出现讲者嘴唇方向。所以多年来电影系统中的所有对白只录在中置扬声器的声轨上。

现在流行多厅式电影院,房屋隔声更显重要。相邻两厅之间的隔声量要求很高,一个分离的双层墙可达到此要求。如有可能设置走到隔离,顶棚和墙面均用吸声处理,这样方式最为理想。如果两厅式上下迭加构造方式,则楼板的空气声和固体撞击声(例如翻动座垫)隔绝都很重要;理想措施式浮筑式楼板再加上弹簧吊钩的顶棚。

THX系统曾按不同条件提出隔声推荐值,相当于美国隔声曲线指数达到STC-70的墙体构造。所以在隔墙设计上需要仔细考虑,尤其在低频段困难更大。另外在电影厅与休息厅之间也要处理隔声问题,采用类似声闸的双道门吸声处理走道,除了阻绝噪声侵入内厅,另也可使观众进出较暗电影厅之前后,适当调整眼睛适应过程,防止门扉开关的漏光干扰。

电影院的超级音质不只在主动方面的扬声器的等级,对于被动方面的建筑声环境的预先规划设计与装饰处理,更是保证电影院观众的视觉与听觉的多重感官享受。

(作者:杜铭秋;同济大学建筑声学博士)

C. 写出声音文件存储量的计算公式

如果采样频率为8kHz,样本精度为8位,则产生的数据率为:
8(bit)*8kHz=64.0kb/s如果使用双声道,则要对两个通道上的声音同时采样和量化,数据量是单声道数字化的两倍,即:
8(bit)*8kHz*2(声道数)=128kb/s1分钟的双声道声音文件的数据量为:
8(bit)*8kHz*2(声道数)*60(秒)/(bit/Byte)=960kB

可见数字音频文件大小的计算公式为:数据量Byte=
采样频率Hz
×(采样位数/8)
× 声道数
× 时间s[例]如果采样频率为44.1kHz,分辨率为16位,立体声,录音时
间为10s,符合CD音质的声音文件的大小是多少?
根据计算公式:
数据量Byte=
44100Hz
×(16/8)×2
×10s=1764KByte然后转化为相应的单位。

D. 声音文件存储量的计算公式

不经过压缩,声音数据量的计算公式为:

数据量(字节/秒)=(采样频率(Hz)×采样位数(bit)×声道数)/8

(4)声音存储实验扩展阅读


AAC实际上高级音频编码的缩写。AAC是由Fraunhofer IIS-A、杜比和AT&T共同开发的一种音频格式,它是MPEG-2规范的一部分。AAC所采用的运算法则与MP3的运算法则有所不同,AAC通过结合其他的功能 来提高编码效率。

AAC的音频算法在压缩能力上远远超过了以前的一些压缩算法(比如MP3等)。它还同时支持多达48个音轨、15个低频音轨、更多种采样率和比特率、多种语言的兼容能力、更高的解码效率。总之,AAC可以在比MP3文件缩小30%的前提下提供更好的音质。

数字音频以音质优秀、传播无损耗、可进行多种编辑和转换而成为主流,并且应用于各个方面。

常见到的MP3、WMA、OGG被称为有损压缩,有损压缩顾名思义就是降低音频采样频率与比特率,输出的音频文件会比原文件小。

另一种音频压缩被称为无损压缩,能够在100%保存原文件的所有数据的前提下,将音频文件的体积压缩的更小,而将压缩后的音频文件还原后,能够实现与源文件相同的大小、相同的码率。

无损压缩格式有APE、FLAC、WavPack、LPAC、WMALossless、AppleLossless、TTA、Tak、TAC、La、OptimFROG、Shorten,而常见的、主流的无损压缩格式有APE、FLAC、TTA、TAK。

WAV一般CD可以抓取该格式音乐。但是由于体积较大且属于未压缩的原始音频,所以一般可压缩转换为体积较小的FLAC或者APE。注:wav仍然属于无损格式,后两者则为无损压缩格式

E. 学会保存声音的人类,经历了哪样的演变和创造

美国科学家曾成功地将1878年锡箔上记录的声音传输到计算机上。这段录音是用爱迪生发明的留声机录制的。虽然声音嘈杂,只持续78秒,但这是现代人能听到的最古老的可播放录音,也是历史上第一次录制的音乐表演。



在当今的数字时代,除了智能手机外,最专业、最常见的录音设备就是一种叫做录音笔的数码录音机。它的形状像钢笔或者小盒子,便于携带。同时,它还具有激光笔和MP3相关功能。记录笔的主体是记忆。由于采用了flash存储器和超大规模集成电路核心系统,整个产品小巧轻便。记录笔的记录原理是通过数模转换器对模拟信号进行采样编码,将模拟信号转换成数字信号,然后压缩存储。即使这种数字信号被多次复制,其声音信息也不会被破坏,并且可以保持不变。

如今,借助各种移动应用,我们的手机和平板电脑可以随时随地录制他们的歌曲和对话,并立即与朋友分享。录音技术不再只是一种专利设备,而是多媒体技术的一部分。留声机、唱片、磁带、CD今天最先进的技术也许几年后就会被遗忘。

F. 物理老师是如何运用纸杯留声机留声的呢

物理老师是通过留声机原理,作用纸杯制作了简易的留声装置。

相信大家最近也刷到过这条新闻,一名江西赣州某中学的物理老师朱向阳用纸杯留声机成功留声走红网络。

这是一个很有趣的声现象实验,虽然留声机早已有了,现在也已被淘汰,利用简易器材制作成具备录音、放音的有趣功能,作为科普特别是科学教学的实验素材,就是通过实验来培养学生的思想创新意识和动手实践能力。

朱老师表示,这个实验并非是新发明,留声机的原理很早之前就已经被发明,将它做出来主要供教学,并且老师表示“纸杯留声机”是朋友设计的,拿来给他做实验研究教学。而“纸杯留声机”之所以在留声机原理上又制造,是为了让学生和大众知道要有创新、发明意识。