‘壹’ 量子计算机的原理
普通的数字计算机在0和1的二进制系统上运行,称为“比特”(bit)。但量子计算机要远远更为强大。它们可以在量子比特(qubit)上运算,可以计算0和1之间的数值。假想一个放置在磁场中的原子,它像陀螺一样旋转,于是它的旋转轴可以不是向上指就是向下指。
常识告诉我们:原子的旋转可能向上也可能向下,但不可能同时都进行。但在量子的奇异世界中,原子被描述为两种状态的总和,一个向上转的原子和一个向下转的原子的总和。在量子的奇妙世界中,每一种物体都被使用所有不可思议状态的总和来描述。
想象一串原子排列在一个磁场中,以相同的方式旋转。如果一束激光照射在这串原子上方,激光束会跃下这组原子,迅速翻转一些原子的旋转轴。通过测量进入的和离开的激光束的差异,我们已经完成了一次复杂的量子“计算”,涉及了许多自旋的快速移动。
从数学抽象上看,量子计算机执行以集合为基本运算单元的计算,普通计算机执行以元素为基本运算单元的计算(如果集合中只有一个元素,量子计算与经典计算没有区别)。
以函数y=f(x),x∈A为例。量子计算的输入参数是定义域A,一步到位得到输出值域B,即B=f(A);经典计算的输入参数是x,得到输出值y,要多次计算才能得到值域B,即y=f(x),x∈A,y∈B。
量子计算机有一个待解决的问题,即输出值域B只能随机取出一个有效值y。虽然通过将不希望的输出导向空集的方法,已使输出集B中的元素远少于输入集A中的元素,但当需要取出全部有效值时仍需要多次计算。
(1)量子位可以同时存储2次方数据吗扩展阅读:
2017年5月,中国科学院宣布制造出世界首台超越早期经典计算机的光量子计算机,研发了10比特超导量子线路样品,通过高精度脉冲控制和全局纠缠操作,成功实现了目前世界上最大数目的超导量子比特多体纯纠缠,并通过层析测量方法完整地刻画了十比特量子态。
此原型机的“玻色取样”速度比国际同行之前所有实验机加快至少24000倍,比人类历史上第一台电子管计算机(ENIAC)和第一台晶体管计算机(TRADIC)运行速度快10-100倍,虽然还是缓慢但已经逐步跨入实用价值阶段。
2017年7月,美国研究人员宣布完成51个量子比特的量子计算机模拟器[23]。哈佛大学米哈伊尔·卢金(Mikhail Lukin)在莫斯科量子技术国际会议上宣布这一消息。量子模拟器使用了激光冷却的原子,并使用激光将原子固定。
2018年6月,英特尔宣布开发出新款量子芯片,使用五十奈米的量子比特做运算,并已在摄氏零下273度的极低温度中进行测试。
‘贰’ 一个量子位可以存储多少个数据
2的N次方个。
传统计算机使用0和1,量子计算机也是使用0跟1,但与之不同的是,其0与1可同时计算。古典系统中,一个比特在同一时间,不是0,就是1,但量子比特是0和1的量子叠加。这是量子计算机计算的特性。
谷歌计算机科学家的一篇论文声称一种称为量子计算机的创新型新机器已经证明了“量子”的速度。根据该论文,该电脑在三分钟内完成了一项高科技和专业化的计算,而这需要一台普通计算机花费10,000年的时间才能完成。
这项成就可能预示着我们在思维,计算,保护数据以及审讯自然最微妙方面方面的一场革命。
通过利用量子怪异性的性质,这些计算机可以同时进行数以百万计的计算,足以破坏当前牢不可破的代码并解决迄今无法解决的数学难题。
谷歌,IBM,微软和其他公司现在正在设计和构建入门版,甚至将其发布到网上,几乎每个人都可以学习将量子领域付诸实践。普通计算机以一系列为1或0的位存储数据并执行计算。
相比之下,量子计算机使用的量子位可以同时为1和0,至少直到被测量为止,此时它们状态被定义。
‘叁’ 一个量子位存储多少数据
一个量子位存储2的N次方个数据。
传统计算机使用0和1,量子计算机也是使用0跟1,但与之不同的是,其0与1可同时计算。古典系统中,一个比特在同一时间,不是0,就是1,但量子比特是0和1的量子叠加。这是量子计算机计算的特性。
量子计算机储存方式:
量子随机存取存储器并不是将数十亿比特以某种方式存储在几个量子位上。相反,这是一种让量子计算机将其量子运算应用到机器学习问题中大量数据的方法。常规随机存取存储器由存储供程序使用的数据和通过指定位的地址访问存储数据的程序组成。
例如,你可以通过键入“sum (A2+B2)”来对电子表格单元格求和,而不是每次在单元格中键入特定的数字。
量子算法需要能够访问常规随机存取存储器量子,在最基本的层次上,它可以同时设置A2和B2的叠加,然后在计算完成时返回A2中的值或B2中的值。内存本身并没有什么量子性,量子性部分体现在如何使用和访问内存的。