当前位置:首页 » 服务存储 » 存储设备数据传输率最低的是什么
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储设备数据传输率最低的是什么

发布时间: 2023-04-01 02:09:44

硬盘传输速率一般是多少

硬盘的传输速率:作为电脑中最重要的数据存储设备和数据交换媒介,硬盘传输速率的快慢直接影响了系统的运行速度。不同类型的硬盘,其传输速率往往差别很大。现在主流硬盘主要有三种:按照不同的接口可以分为并口ATA硬盘(即IDE硬盘)、SCSI硬盘和Serial ATA硬盘。

IDE接口硬盘在当前电脑中应用最为广泛,主流的规格包括ATA/66、ATA/100、ATA/133,这种命名方式也表明了它们在理论上的外部最大传输速率分别达到了66MB/s、100MB/s和133MB/s。这里需要说明:100MB/s、133MB/s是峰值速度,并不能表示硬盘能持续这个速度,也就是说这是理论上的最高峰值速度。

硬盘真正的传输速度由于受硬盘内部传输速率的影响,其稳定传输速率一般在30MB/s到45MB/s之间。这样随着CPU、内存等硬件运行速度的不断提高,ATA硬盘的低速率渐渐成为影响整机运行速度的瓶颈。于是,一种新的硬盘接口方式,Serial ATA应运而生。

Serial ATA 硬盘就是我们常说的串口硬盘,它采用点对点的方式实现了数据的分组传输从而带来更高的传输效率。Serial ATA 1.0版本硬盘的起始传输速率就达到150MB/s,而Serial ATA 3.0版本将实现硬盘峰值数据传输率为600MB/s,从而最终解决硬盘的系统瓶颈问题。

SCSI接口不是专为硬盘设计的,实际上它是一种总线型的接口,独立于系统总线工作。SCSI接口的硬盘以高稳定性、低CPU占有率而被广泛应用于服务器和专业工作站中,它的传输速率最高可达320MB/s。当然,对于硬盘的整体性能而言,除了硬盘的传输速率,硬盘的转速、缓存及平均寻道时间等也是重要的因素。

小知识:1.硬盘的内部数据传输率

内部数据传输率是磁头到硬盘的高速缓存之间的数据传输速度,这可以说是影响硬盘整体性能的关键,一般取决于硬盘的盘片转速和盘片数据线密度。在这项指标中常常使用MB/s或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8。例如有的硬盘给出最大内部数据传输率为240Mbps,但如果按MB/s计算就只有30MB/s。由此可以看出目前硬盘作为电脑的瓶颈,其病根还在于硬盘的内部数据传输率上。

2.硬盘的外部数据传输率

指从硬盘缓冲区读取数据的速率。它与硬盘的接口类型是直接挂钩的,因此在广告或硬盘特性表中常以数据接口速率代替,单位为MB/s如我们平常所说的ATA100/133硬盘。

光驱的传输速率:通常光驱传输速率的高低取决于光驱的倍速,如16X DVD、52X的CD-ROM,一般情况下光驱的倍速越高,数据传输也就越快。那么“倍速”是个什么概念呢?原来很早以前CD-ROM的传输速率很低,每秒只能传送150KB字节,即最初光驱的速率为150KB/s,这就是1X(单倍速)的CD-ROM光驱。后来随着CD-ROM光驱技术的日新月异,其速率越来越快,为了区分不同速率的光驱,于是把最初的150KB/s作为基准进行衡量得到相应的倍速值。如50X的CD-ROM就是指其传输的速度是1X光驱的50倍即其速率为50×150KB/s=7500KB/s。而现在流行的DVD-ROM的速率算法也基本相同,只不过DVD-ROM的单倍速率要比CD-ROM高得多,一倍速的DVD-ROM速率理论上可以达到1358KB/s,由此我们可以算出现在流行的16倍速DVD-ROM的速度应该是1358KB/s×16=21728KB/s。

❷ 可否为我解释一下关于硬盘的各种数据呢

缓存

缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。
硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某些数据凳昌是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。
缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。
大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。

内部数据传输率

内部数据传输率(Internal Transfer Rate)是指硬盘磁头与缓存之间的数据传输率,简单的说就是硬盘将数据从盘片上读取出来,裤手然后存储在缓存内的速度。内部传输率可以明确表现出硬盘的读写速度,它的高低才是评价一个硬盘整体性能的决定性因素,它是衡量硬盘性能的真正标准。有效地提高硬盘的内部传输率才能对磁盘子系统的性能有最直接、最明显的提升。目前各硬盘生产厂家努力提高硬盘的内部传输率,除了改进信号处理技术、提高转速以外,最主要的就是不断的提高单碟容量以提高线性密度。由于单碟容量越大的硬盘线性密度越高,磁头的寻道频率与移动距离可以相应的减少,从而减少了平均寻道时间,内部传输速率也就提高了。虽然硬盘技术发展的很快,但内部数据传输率还是在一个比较低(相对)的层次上,内部数据传输率低已经成为硬盘性能的最大瓶颈。目前主流的家用级硬盘,内部数据传输率基本还停留在70~90 MB/s左右,而且在连续工作时,这个数据会降到更低。
数据传输率的单位一般采用MB/s或Mbit/s,尤其在内部数据传输率上官方数据中更多的采用Mbit/s为单位。此处有必要讲解一下两个单位二者之间的差异:
MB/s的含义是兆字节每秒,Mbit/s的枣纯扒含义是兆比特每秒,前者是指每秒传输的字节数量,后者是指每秒传输的比特位数。MB/s中的B字母是Byte的含义,虽然与Mbit/s中的bit翻译一样,都是比特,也都是数据量度单位,但二者是完全不同的。Byte是字节数,bit是位数,在计算机中每八位为一字节,也就是1Byte=8bit,是1:8的对应关系。因此1MB/s等于8Mbit/s。因此在在书写单位时一定要注意B字母的大小写,尤其有些人还把Mbit/s简写为Mb/s,此时B字母的大小真可以称为失之毫厘,谬以千里。
上面这是一般情况下MB/s与Mbit/s的对应关系,但在硬盘的数据传输率上二者就不能用一般的MB和Mbit的换算关系(1B=8bit)来进行换算。比如某款产品官方标称的内部数据传输率为683Mbit/s,此时不能简单的认为683除以8得到85.375,就认为85MB/s是该硬盘的内部数据传输率。因为在683Mbit中还包含有许多bit(位)的辅助信息,不完全是硬盘传输的数据,简单的用8来换算,将无法得到真实的内部数据传输率数值。

外部数据传输率
硬盘数据传输率的英文拼写为Data Transfer Rate,简称DTR。硬盘数据传输率表现出硬盘工作时数据传输速度,是硬盘工作性能的具体表现,它并不是一成不变的而是随着工作的具体情况而变化的。在读取硬盘不同磁道、不同扇区的数据;数据存放的是否连续等因素都会影响到硬盘数据传输率。因为这个数据的不确定性,所以厂商在标示硬盘参数时,更多是采用外部数据传输率(External Transfer Rate)和内部数据传输率(Internal Transfer Rate)。
外部数据传输率(External Transfer Rate),一般也称为突发数据传输或接口传输率。是指硬盘缓存和电脑系统之间的数据传输率,也就是计算机通过硬盘接口从缓存中将数据读出交给相应的控制器的速率。平常硬盘所采用的ATA66、ATA100、ATA133等接口,就是以硬盘的理论最大外部数据传输率来表示的。ATA100中的100就代表着这块硬盘的外部数据传输率理论最大值是100MB/s;ATA133则代表外部数据传输率理论最大值是133MB/s;而SATA接口的硬盘外部理论数据最大传输率可达150MB/s。这些只是硬盘理论上最大的外部数据传输率,在实际的日常工作中是无法达到这个数值的。

转速
转速(Rotationl Speed),是硬盘内电机主轴的旋转速度,也就是硬盘盘片在一分钟内所能完成的最大转数。转速的快慢是标示硬盘档次的重要参数之一,它是决定硬盘内部传输率的关键因素之一,在很大程度上直接影响到硬盘的速度。硬盘的转速越快,硬盘寻找文件的速度也就越快,相对的硬盘的传输速度也就得到了提高。硬盘转速以每分钟多少转来表示,单位表示为RPM,RPM是Revolutions Per minute的缩写,是转/每分钟。RPM值越大,内部传输率就越快,访问时间就越短,硬盘的整体性能也就越好。
硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,则等待时间也就越短。因此转速在很大程度上决定了硬盘的速度。
家用的普通硬盘的转速一般有5400rpm、7200rpm几种,高转速硬盘也是现在台式机用户的首选;而对于笔记本用户则是4200rpm、5400rpm为主,虽然已经有公司发布了7200rpm的笔记本硬盘,但在市场中还较为少见;服务器用户对硬盘性能要求最高,服务器中使用的SCSI硬盘转速基本都采用10000rpm,甚至还有15000rpm的,性能要超出家用产品很多。
较高的转速可缩短硬盘的平均寻道时间和实际读写时间,但随着硬盘转速的不断提高也带来了温度升高、电机主轴磨损加大、工作噪音增大等负面影响。笔记本硬盘转速低于台式机硬盘,一定程度上是受到这个因素的影响。笔记本内部空间狭小,笔记本硬盘的尺寸(2.5寸)也被设计的比台式机硬盘(3.5寸)小,转速提高造成的温度上升,对笔记本本身的散热性能提出了更高的要求;噪音变大,又必须采取必要的降噪措施,这些都对笔记本硬盘制造技术提出了更多的要求。同时转速的提高,而其它的维持不变,则意味着电机的功耗将增大,单位时间内消耗的电就越多,电池的工作时间缩短,这样笔记本的便携性就受到影响。所以笔记本硬盘一般都采用相对较低转速的4200rpm硬盘。
转速是随着硬盘电机的提高而改变的,现在液态轴承马达(Fluid dynamic bearing motors)已全面代替了传统的滚珠轴承马达。液态轴承马达通常是应用于精密机械工业上,它使用的是黏膜液油轴承,以油膜代替滚珠。这样可以避免金属面的直接磨擦,将噪声及温度被减至最低;同时油膜可有效吸收震动,使抗震能力得到提高;更可减少磨损,提高寿命。

平均寻道时间
平均寻道时间的英文拼写是Average Seek Time,它是了解硬盘性能至关重要的参数之一。它是指硬盘在接收到系统指令后,磁头从开始移动到移动至数据所在的磁道所花费时间的平均值,它一定程度上体现硬盘读取数据的能力,是影响硬盘内部数据传输率的重要参数,单位为毫秒(ms)。不同品牌、不同型号的产品其平均寻道时间也不一样,但这个时间越低,则产品越好,现今主流的硬盘产品平均寻道时间都在在9ms左右。
平均寻道时间实际上是由转速、单碟容量等多个因素综合决定的一个参数。一般来说,硬盘的转速越高,其平均寻道时间就越低;单碟容量越大,其平均寻道时间就越低。当单盘片容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘速度。当然处于市场定位以及噪音控制等方面的考虑,厂商也会人为的调整硬盘的平均寻道时间。
在硬盘上数据是分磁道、分簇存储的,经常的读写操作后,往往数据并不是连续排列在同一磁道上,所以磁头在读取数据时往往需要在磁道之间反复移动,因此平均寻道时间在数据传输中起着十分重要的作用。在读写大量的小文件时,平均寻道时间也起着至关重要的作用。在读写大文件或连续存储的大量数据时,平均寻道时间的优势则得不到体现,此时单碟容量的大小、转速、缓存就是较为重要的因素。

磁头数
硬盘磁头是硬盘读取数据的关键部件,它的主要作用就是将存储在硬盘盘片上的磁信息转化为电信号向外传输,而它的工作原理则是利用特殊材料的电阻值会随着磁场变化的原理来读写盘片上的数据,磁头的好坏在很大程度上决定着硬盘盘片的存储密度。目前比较常用的是GMR(Giant Magneto Resisive)巨磁阻磁头,GMR磁头的使用了磁阻效应更好的材料和多层薄膜结构,这比以前的传统磁头和MR(Magneto Resisive)磁阻磁头更为敏感,相对的磁场变化能引起来大的电阻值变化,从而实现更高的存储密度 。
磁头是硬盘中对盘片进行读写工作的工具,是硬盘中最精密的部位之一。磁头是用线圈缠绕在磁芯上制成的。硬盘在工作时,磁头通过感应旋转的盘片上磁场的变化来读取数据;通过改变盘片上的磁场来写入数据。为避免磁头和盘片的磨损,在工作状态时,磁头悬浮在高速转动的盘片上方,而不与盘片直接接触,只有在电源关闭之后,磁头会自动回到在盘片上的固定位置(称为着陆区,此处盘片并不存储数据,是盘片的起始位置)。
由于磁头工作的性质,对其磁感应敏感度和精密度的要求都非常高。早先的磁头采用铁磁性物质,在磁感应敏感度上不是很理想,因此早期的硬盘单碟容量都比较低,单碟容量大则盘片上磁道密度大,磁头感应程度不够,就无法准确读出数据。这就造成早期的硬盘容量都很有限。随着技术的发展,磁头在磁感应敏感度和精密度方面都有了长足的进步。
最初磁头是读、写功能一起的,这对磁头的制造工艺、技术都要求很高,而对于个人电脑来说,在与硬盘交换数据的过程中,读取数据远远快于写入数据,读、写操作二者的特性也完全不同,这也就导致了读、写分离的磁头,二者分别工作、各不干扰。
薄膜感应(TEI)磁头
在1990年至1995年间,硬盘采用TFI读/写技术。TFI磁头实际上是绕线的磁芯。盘片在绕线的磁芯下通过时会在磁头上产生感应电压。TFI读磁头之所以会达到它的能力极限,是因为在提高磁灵敏度的同时,它的写能力却减弱了。
各向异性磁阻(AMR)磁头
AMR(Anisotropic Magneto Resistive)90年代中期,希捷公司推出了使用AMR磁头的硬盘。AMR磁头使用TFI磁头来完成写操作,但用薄条的磁性材料来作为读元件。在有磁场存在的情况下,薄条的电阻会随磁场而变化,进而产生很强的信号。硬盘译解由于磁场极性变化而引起的薄条电阻变化,提高了读灵敏度。AMR磁头进一步提高了面密度,而且减少了元器件数量。由于AMR薄膜的电阻变化量有一定的限度,AMR技术最大可以支持3.3GB/平方英寸的记录密度,所以AMR磁头的灵敏度也存在极限。这导致了GMR磁头的研发。
GMR(Giant Magneto Resistive,巨磁阻)
GMR磁头继承了TFI磁头和AMR磁头中采用的读/写技术。但它的读磁头对于磁盘上的磁性变化表现出更高的灵敏度。GMR磁头是由4层导电材料和磁性材料薄膜构成的:一个传感层、一个非导电中介层、一个磁性的栓层和一个交换层。GMR传感器的灵敏度比AMR磁头大3倍,所以能够提高盘片的密度和性能。
硬盘的磁头数取决于硬盘中的盘片数,盘片正反两面都存储着数据,所以一个盘片对应两个磁头才能正常工作。比如总容量80GB的硬盘,采用单碟容量80GB的盘片,那只有一张盘片,该盘片正反面都有数据,则对应两个磁头;而同样总容量120GB的硬盘,采用二张盘片,则只有三个磁头,其中一张盘片的一面没有磁头。

硬盘及磁盘阵列常用技术术语
Ø 硬盘的转速(Rotational Speed):也就是硬盘电机主轴的转速,转速是决定硬盘内部传输率的关键因素之一,它的快慢在很大程度上影响了硬盘的速度,同时转速的快慢也是区分硬盘档次的重要标志之一。 硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,等待时间也就越短。因此转速在很大程度上决定了硬盘的速度。目前市场上常见的硬盘转速一般有5400rpm、7200rpm、甚至10000rpm。理论上,转速越快越好。因为较高的转速可缩短硬盘的平均寻道时间和实际读写时间。可是转速越快发热量越大,不利于散热。现在的主流硬盘转速一般为7200rpm以上。
Ø 平均寻道时间(Average seek time):指硬盘在盘面上移动读写头至指定磁道寻找相应目标数据所用的时间,它描述硬盘读取数据的能力,单位为毫秒。当单盘片容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘速度。目前市场上主流硬盘的平均寻道时间一般在9ms以下,大于10ms的硬盘属于较早的产品,一般不值得购买。
Ø 平 狈 奔?Average latency time):指当磁头移动到数据所在的磁道后,然后等待所要的数据块继续转动到磁头下的时间,一般在2ms-6ms之间。
Ø 平均访问时间(Average access time):指磁头找到指定数据的平均时间,通常是平均寻道时间和平均潜伏时间之和。平均访问时间最能够代表硬盘找到某一数据所用的时间,越短的平均访问时间越好,一般在11ms-18ms之间。注意:现在不少硬盘广告之中所说的平均访问时间大部分都是用平均寻道时间所代替的。
Ø 突发数据传输率(Burst data transfer rate):指的是电脑通过数据总线从硬盘内部缓存区中所读取数据的最高速率。也叫外部数据传输率(External data transfer rate)。目前采用UDMA/66技术的硬盘的外部传输率已经达到了66.6MB/s。
Ø 最大内部数据传输率(Internal data transfer rate):指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据间隔度)。也叫持续数据传输率(sustained transfer rate)。一般采用UDMA/66技术的硬盘的内部传输率也不过25-30MB/s,只有极少数产品超过30MB/s,由于内部数据传输率才是系统真正的瓶颈,因此大家在购买时要分清这两个概念。不过一般来讲,硬盘的转速相同时,单碟容量大的内
部传输率高;在单碟容量相同时,转速高的硬盘的内部传输率高。
Ø 自动检测分析及报告技术(Self-Monitoring Analysis and Report Technology,简称S.M.A.R.T): 现在出厂的硬盘基本上都支持S.M.A.R.T技术。这种技术可以对硬盘的磁头单元、盘片电机驱动系统、硬盘内部电路以及盘片表面媒介材料等进行监测,当S.M.A.R.T监测并分析出硬盘可能出现问题时会及时向用户报警以避免电脑数据受到损失。S.M.A.R.T技术必须在主板支持的前提下才能发生作用,而且S.M.A.R.T技术也不能保证能预报出所有可能发生的硬盘故障。
Ø 磁阻磁头技术MR(Magneto-Resistive Head):MR(MAGNETO-RESITIVEHEAD)即磁阻磁头的简称。MR技术可以更高的实际记录密度、记录数据,从而增加硬盘容量,提高数据吞吐率。目前的MR技术已有几代产品。MAXTOR的钻石三代/四代等均采用了最新的MR技术。磁阻磁头的工作原理是基于磁阻效应来工作的,其核心是一小片金属材料,其电阻随磁场变化而变化,虽然其变化率不足2%,但因为磁阻元件连着一个非常灵敏的放大器,所以可测出该微小的电阻变化。MR技术可使硬盘容量提高40%以上。GMR(GiantMagnetoresistive)巨磁阻磁头GMR磁头与MR磁头一样,是利用特殊材料的电阻值随磁场变化的原理来读取盘片上的数据,但是GMR磁头使用了磁阻效应更好的材料和多层薄膜结构,比MR磁头更为敏感,相同的磁场变化能引起更大的电阻值变化,从而可以实现更高的存储密度,现有的MR磁头能够达到的盘片密度为3Gbit-5Gbit/in2(千兆位每平方英寸),而GMR磁头可以达到10Gbit-40Gbit/in2以上。目前GMR磁头已经处于成熟推广期,在今后的数年中,它将会逐步取代MR磁头,成为最流行的磁头技术。
Ø 缓存:缓存是硬盘与外部总线交换数据的场所。硬盘的读数据的过程是将磁信号转化为电信号后,通过缓存一次次地填充与清空,再填充,再清空,一步步按照PCI总线的周期送出,可见,缓存的作用是相当重要的。在接口技术已经发展到一个相对成熟的阶段的时候,缓存的大小与速度是直接关系到硬盘的传输速度的重要因素。目前主流硬盘的缓存主要有512KB和2MB等几种。其类型一般是EDO DRAM或SDRAM,目前一般以SDRAM为主。根据写入方式的不同,有写通式和回写式两种。写通式在读硬盘数据时,系统先检查请求指令,看看所要的数据是否在缓存中,如果在的话就由缓存送出响应的数据,这个过程称为命中。这样系统就不必访问硬盘中的数据,由于SDRAM的速度比磁介质快很多,因此也就加快了数据传输的速度。回写式就是在写入硬盘数据时也在缓存中找,如果找到就由缓存就数据写入盘中,现
在的多数硬盘都是采用的回写式硬盘,这样就大大提高了性能。
Ø 连续无故障时间(MTBF):指硬盘从开始运行到出现故障的最长时间。一般硬盘的MTBF至少在30000或40000小时。
Ø 部分响应完全匹配技术PRML(Partial Response Maximum Likelihood):它能使盘片存储更多的信息,同时可以有效地提高数据的读取和数据传输率。是当前应用于硬盘数据读取通道中的先进技术之一。PRML技术是将硬盘数据读取电路分成两段“操作流水线”,流水线第一段将磁头读取的信号进行数字化处理然后只选取部分“标准”信号移交第二段继续处理,第二段将所接收的信号与PRML芯片预置信号模型进行对比,然后选取差异最小的信号进行组合后输出以完成数据的读取过程。PRML技术可以降低硬盘读取数据的错误率,因此可以进一步提高磁盘数据密集度。
Ø 单磁道时间(Single track seek time):指磁头从一磁道转移至另一磁道所用的时间。
Ø 超级数字信号处理器(Ultra DSP)技术:应用Ultra DSP进行数学运算,其速度较一般CPU快10到50倍。采用Ultra DSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的双重功能,以减少其它电子元件的使用,可大幅度地提高硬盘的速度和可靠性。接口技术可以极大地提高硬盘的最大外部传输率,最大的益处在于可以把数据从硬盘直接传输到主内存而不占用更多的CPU资源,提高系统性能。
Ø 硬盘表面温度:指硬盘工作时产生的温度使硬盘密封壳温度上升情况。硬盘工作时产生的温度过高将影响薄膜式磁头(包括MR磁头)的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更好的数据读、写稳定性。
Ø 全程访问时间(Max full seek time):指磁头开始移动直到最后找到所需要的数据块所用的全部时间。
Ø 硬盘镜像(Disk Mirroring):硬盘镜像最简单的形式是,一个主机控制器带二个互为镜像的硬盘。数据同时写入二个硬盘,二个硬盘上的数据完全相同,因此一个硬盘故障时,另一个硬盘可提供数据。
Ø 硬盘数据跨盘(Disk Spanning):利用这种技术,几个硬盘看上去像一个大硬盘;这个虚拟盘可以把数据跨盘存储在不同的物理盘上,用户不需要关心哪个盘上存有他需要的数据
Ø 硬盘数据分段(Disk striping):数据分散存储在几个盘上。数据的第一段放在盘0,第2段放在盘1,……直到达到硬盘链中的最后一个盘,然后下一个逻辑段放在硬盘0,再下一
个逻辑段放在盘1,……如此循环直至完成写操作。
Ø 双控(Duplexing):这里指的是用二个控制器来驱动一个硬盘子系统。一个控制器发生故障,另一个控制器马上控制硬盘操作。此外,如果编写恰当的控制器软件,可实现不同的硬盘驱动器同时工作。
Ø 容错:(Fault Tolerant):具有容错功能的机器有抗故障的能力。例如RAID 1镜像系统是容错的,镜像盘中的一个出故障,硬盘子系统仍能正常工作。
Ø 主机控制器(Host Adapter):这里指的是使主机和外设进行数据交换的控制部件(如SCSI控制器)
Ø 热修复(Hot Fix):指用一个硬盘热备份来替换发生故障的硬盘。要注意故障盘并不是真正地被物理替换了。用作热备份的盘被加载上故障盘原来的数据,然后系统恢复工作。
Ø 热补(Hot Patch):具有硬盘热备份,可随时替换故障盘的系统。
Ø 热备份(Hot Spare):与CPU系统电连接的硬盘,它能替换下系统中的故障盘。与冷备份的区别是,冷备份盘平时与机器不相连接,硬盘故障时才换下故障盘。
Ø 平均数据丢失时间(MTBDL – Mean Time Between Data Loss):发生数据丢失的事件间的平均时间。
Ø 平均无故障工作时间(MTBF – Mean Time Between Failure 或 MTIF):设备平均无故障运行时间。
Ø 廉价冗余磁盘阵列(RAID – Rendant Array of Inexpensive Drives):一种将多个廉价硬盘组合成快速,有容错功能的硬盘子系统的技术。
Ø 系统重建(Reconstruction or Rebuild):一个硬盘发生故障后,从其他正确的硬盘数据和奇偶信息恢复故障盘数据的过程。
Ø 恢复时间(Reconstruction Time):为故障盘重建数据所需要的时间。
Ø 单个大容量硬盘(SED – Singe Expensive Drive)
Ø 传输速率(Transfer Rate):指在不同条件下存取数据的速度。
Ø 虚拟盘(Virtual Disk):与虚拟存储器类似,虚拟盘是一个概念盘,用户不必关心他的数据写在哪个物理盘上。虚拟盘一般跨越几个物理盘。但用户看到的只是一个盘。
Ø 热插拔(Hot Swap):指在不宕机制情况下,在线更换设备。
Ø DAS (direct access storage device)直接访问存储设备
Ø NAS (Network Attached Storage)网络附加存储设备
Ø SAN (Storage Area Networks)存储区域网

❸ 硬盘的内部传输速率是什么意思

内部数据传输率(Internal Transfer Rate),简单的说就是硬盘将数据从盘片上读取出来,然后存储在缓存内的速度。内部传输率可以明确表现出硬盘的读写速度,它的高低才是评价一个硬盘整体性能的决定性因素,它是衡量硬盘性能的真正标准。

虽然硬盘技术发展的贺绝很快,但内部数据传输率还是在一个比较低(相对)的层次上,内部数据传输率低已经成为硬盘性能的最大瓶颈。目前主流的家用级硬盘,内部数据传输率基本还停留在600 MB/s左右,而且在连续工作时,这个数据会降到更低。

有效地提高硬盘的内部传输率才能对磁盘子系统的性能有最直接、最明显的提升。

(3)存储设备数据传输率最低的是什么扩展阅读:

移动硬盘传输速率

与硬盘产品不同,硬盘的数据传输率强调的是内部传输率(硬盘磁头与缓存之间的数据传输率),而移动硬盘则更多是其接口的数据传输率。因为移动硬盘是通过外部接口与系统相连接,其接口的速度就限制着移动硬盘的数据传输率。

虽然当前的USB1.1接口能提供12Mbps;USB 2.0接口能提供480Mbps;IEEE1394a接口能提供400Mbps;IEEE1394b能提供800Mbps的数据传输率,但在实际应用中会因为某些客观的原因(例如存储设备采用的主控芯片、电路板的制作质量是否优良等),减慢了在应用中的传输速率。

比如说同样是USB 1.1接口的移动硬盘产品,一个可以提禅磨姿供1.2MB/S的读取速度,而另一个则能提供900KB/S的读取速度,这就是因为二者所游肢采用的主控芯片等部件上的差异所造成的。

❹ 硬盘的内部传输速率是什么意思

硬盘的内部传输速率
内部数据传输率(Internal
Transfer
Rate)是指硬盘磁头与缓存之间的数据传输率,简单的说就是硬盘将数据从盘片上读取出来,然后存储在缓存内的速度。内部传输率可以明确表现出硬盘的读写速度,它的高低才是评价一个硬盘整体性能的决定性因素,它是衡量硬盘性能的真正标准。有效地提高硬盘的内部传输率才能对磁盘子系统的性能有最直接、最明显的提升。目前各硬盘生产厂家努力提高硬盘的内部传输率,除了改进信号处理技术、提高转速以外,最主要的就是不断的提高单碟容量以提高线性密度。由于单碟容量越大的硬盘线性密度越高,磁头的寻道频率与移动距离可以相应的减少,从而减少了平均寻道时间,内部传输速率也就提高了。虽然硬盘技术发展的很快,但内部数据传输率还是在一个比较低(相对)的层次上,内部数据传输率低已经成为硬盘性能的最大瓶颈。目前主流的家用级硬盘,内部数据传输率基本还停留在60
MB/s左右,而且在连续工作时,这个数据会降到更低。
数据传输率的单位一般采用MB/s或Mbit/s,尤其在内部数据传输率上官方数据中更多的采用Mbit/s为单位。此处有必要讲解一下两个单位二者之间的差异:
MB/s的含义是兆字辩差节每秒,Mbit/s的含义是兆比特每秒,前者是指每秒传输的字节数量,后者是指每秒传输的比特位数。MB/s中的B字母是Byte的含义,虽然与Mbit/s中的bit翻译一样,都是比特,也纳衫都是数据量度单位,但二者是完全不同的。Byte是字节数,bit是位数,在计算机中每八位为一字节,也就是1Byte=8bit,是1:8的对应关系。因此1MB/s等于8Mbit/s。因此在在书写单位时一定要注意B字母的大小写,尤其有些人还把Mbit/s简写为Mb/s,此时B字母的大小真可以称为失之毫厘,谬以千里。
上面这是一般情况下MB/s与Mbit/s的对应关系,但在硬盘的数据传输率上二者就不能用一般的MB和Mbit的换算关系(1B=8bit)来进行换算。比如某款产品官方标称的内部数据传输率为683Mbit/s,此时不能简单的认洞灶腔为683除以8得到85.375,就认为85MB/s是该硬盘的内部数据传输率。

❺ SD传输速率

不好,要10MB的

❻ 硬盘传输速度怎么看

问题一:怎么看一个硬盘的传输速度? 要看传输速度就下载硬盘测试工具 一般的硬盘传输速度主要是看二级缓存 目前希捷的比金钻的传输速度快一点 一般是感觉不到的 在解压的时候就比较明显。 台式机硬盘的转数速度一般是7200转和5400转

问题二:如何查看硬盘读取速度 你是指硬盘读取速度实时监控还是读取速度测试?
实时监控:
如果是Win7操作系统的话倒是可以通过资源监视器来观察:任务栏空白处点右键 任务管理器 性能(选项卡) 资源监视器(按钮) 磁盘(选项卡),
“磁盘活骇的进程”栏显示的是当前所有进程的硬盘读写速度,右边折线图显示的是各个硬盘的读写速度。
至于XP,我暂时不知道哪个软件能实时监控的。
如果是速度测试,可以用HDTrue等软件测试,也可以用Fast复制文件根据软件显示的速度来测试

问题三:怎么查看移动硬盘的传输速度 最简单直观的方法:
1、找一台安装windows7以上版本系统的电脑。
2、从移动硬盘中复制文件到此电脑中,可以直接看到复制进度以及传输速度,如下图所示。

问题四:怎么测试硬盘传输速度 CrystalDiskMark 简称 CDM,是一款比较流行的硬盘/存储器性能测试工具
AS SSD Benchmark 如其名,是一款专门用于测试 SSD 固态硬盘性能的工具,此软件可以测出固态硬盘持续读写等的性能

问题五:如何查看自己硬盘的最大读写速度 方法一:在网上下载这个软件 硬盘测速工具HD_Speed;
方法二:如果是win7系统,可以通过资源监视器来查看。任务栏空白处点击右键,任务管理器,性能(选项卡),资源监视器(按钮),磁盘(选项卡)。

问题六:硬盘速度快不快。应该看哪些参数。 一看转速,必须7200转以上才快。
二看缓存,32是低配,64M以上的缓存才快。
三看寻道时间和连续传输速度。寻道时间在14ms以下的,装系统比较快,12的话就更好了。连续传输,不应低于180M/秒。这个一般不会标,要看评测才知道。
四看接口。SATA3比SATA2快,但这个其实影响不大,基本可以忽略。
其实,想让硬盘快,最好还是买SSD。随机读写(就是硬盘的寻道速度)至少比机械盘快100倍!

问题七:如何测试移动硬盘传输速度 HD TUNE可以测试,功能比较全面的一个软件

问题八:如何查看移动硬盘的传输速度,是xp系统。 下载一个叫MyDiskTest的软件,可以测试传输速度

问题九:一般硬盘读取速度和写入速度是多少 硬盘的传输速率:作为电脑中最重要的数据存储设备和数据交换媒介,硬盘传输速率的快慢直接影响了系统的运行速度。不同类型的硬盘,其传输速率往往差别很大。现在主流硬盘主要有三种:按照不同的接口可以分为并口ATA硬盘(即IDE硬盘)、SCSI硬盘和Serial ATA硬盘。
IDE接口硬盘在当前电脑中应用最为广泛,主流的规格包括ATA/66、ATA/100、ATA/133,这种命名方式也表明了它们在理论上的外部最大传输速率分别达到了66MB/s、100MB/s和133MB/s。这里需要说明:100MB/s、133MB/s是峰值速度,并不能表示硬盘能持续这个速度,也就是说这是理论上的最高峰值速度。
硬盘真正的传输速度由于受硬盘内部传输速率的影响,其稳定传输速率一般在30MB/s到45MB/s之间。这样随着CPU、内存等硬件运行速度的不断提高,ATA硬盘的低速率渐渐成为影响整机运行速度的瓶颈。于是,一种新的硬盘接口方式,Serial ATA应运而生。
Serial ATA 硬盘就是我们常说的串口硬盘,它采用点对点的方式实现了数据的分组传输从而带来更高的传输效率。Serial ATA 1.0版本硬盘的起始传输速率就达到150MB/s,而Serial ATA 3.0版本将实现硬盘峰值数据传输率为600MB/s,从而最终解决硬盘的系统瓶颈问题。
SCSI接口不是专为硬盘设计的,实际上它是一种总线型的接口,独立于系统总线工作。SCSI接口的硬盘以高稳定性、低CPU占有率而被广泛应用于服务器和专业工作站中,它的传输速率最高可达320MB/s。当然,对于硬盘的整体性能而言,除了硬盘的传输速率,硬盘的转速、缓存及平均寻道时间等也是重要的因素。
小知识:1.硬盘的内部数据传输率
内部数据传输率是磁头到硬盘的高速缓存之间的数据传输速度,这可以说是影响硬盘整体性能的关键,一般取决于硬盘的盘片转速和盘片数据线密度。在这项指标中常常使用MB/s或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8。例如有的硬盘给出最大内部数据传输率为240Mbps,但如果按MB/s计算就只有30MB/s。由此可以看出目前硬盘作为电脑的瓶颈,其病根还在于硬盘的内部数据传输率上。
2.硬盘的外部数据传输率
指从硬盘缓冲区读取数据的速率。它与硬盘的接口类型是直接挂钩的,因此在广告或硬盘特性表中常以数据接口速率代替,单位为MB/s如我们平常所说的ATA100/133硬盘。
光驱的传输速率:通常光驱传输速率的高低取决于光驱的倍速,如16X DVD、52X的CD-ROM,一般情况下光驱的倍速越高,数据传输也就越快。那么“倍速”是个什么概念呢?原来很早以前CD-ROM的传输速率很低,每秒只能传送150KB字节,即最初光驱的速率为150KB/s,这就是1X(单倍速)的CD-ROM光驱。后来随着CD-ROM光驱技术的日新月异,其速率越来越快,为了区分不同速率的光驱,于是把最初的150KB/s作为基准进行衡量得到相应的倍速值。如50X的CD-ROM就是指其传输的速度是1X光驱的50倍即其速率为50×150KB/s=7500KB/s。而现在流行的DVD-ROM的速率算法也基本相同,只不过DVD-ROM的单倍速率要比CD-R......>>

❼ 硬盘接口知多少

我们平时肯定会听说IDE SATA SAS SCSI iSCSI SSD AHCI等等的名词,那么这些都是什么意思呢?安装windows7或者XP系统时候经常会出现蓝屏报错,查询资料都会说修改下硬盘接口或者关闭AHCI模式。

IDE(集成磁盘电子接口,Integrated Device Electronics)接口就是PATA接口,指硬盘与主板间连接的方式。不过IDE不仅指接口形式,主要还指硬盘的形式,即IDE硬盘,但人们习惯用IDE来统称PATA接口类的硬盘。而PATA接口单纯指硬盘的接口形式,即“并行接口,与之对应的是SATA(串行接口)。其实PATA接口(并行接口)与SATA(串行接口)的硬盘的严格上说都是IDE硬盘,只是人们习惯上用 IDE←→SATA 或者 PATA←→SATA 来对比区分而已。如果说“PATA接口的IDE硬盘"和“SATA接口的IDE硬盘”会更准确点。
作为电脑中最重要的数据存储设备和数据交换媒介,硬盘传输速率的快慢直接影响了系统的运行速度。不同类型的硬盘,其传输速率往往差别很大。现在主流硬盘主要有三种:按照不同的接口可以分为并口ATA硬盘(即IDE硬盘)、SCSI硬盘(其实已经在逐步被SAS取代)和Serial ATA硬盘。

1.硬盘的内部数据传输率 :内部数据传输率是磁头到硬盘的高速缓存之间的数据传输速度,这可以说是影响硬盘整体性能的关键,一般取决于硬盘的盘片转速和盘片数据线密度。在这项指标中常常使用MB/s或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8。例如有的硬盘给出最大内部数据传输率为240Mbps,但如果按MB/s计算就只有30MB/s。由此可以看出目前硬盘作为电脑的瓶颈,其病根还在于硬盘的内部数据传输率上。
2.硬盘的外部数据传输率 :指从硬盘缓冲区读取数据的速率。它与硬盘的接口类型是直接挂钩的,因此在广告或硬盘特性表中常以数据接口速率代替,单位为MB/s如我们平常所说的ATA100/133硬盘。
3 . 光驱的传输速率:通常光驱传输速率的高低取决于光驱的倍速,如16X DVD、52X的CD-ROM,一般情况下光驱的倍速越高,数据传输也就越快。那么“倍速”是个什么概念呢?原来很早以前CD-ROM的传输速率很低,每秒只能传送150KB字节,即最初光驱的速率为150KB/s,这就是1X(单倍速)的CD-ROM光驱。后来随着CD-ROM光驱技术的日新月异,其速率越来越快,为了区分不同速率的光驱,于是把最初的150KB/s作为基准进行衡量得到相应的倍速值。如50X的CD-ROM就是指其传输的速度是1X光驱的50倍即其速率为50×150KB/s=7500KB/s。而现在流行的DVD-ROM的速率算法也基本相同,只不过DVD-ROM的单倍速率要比CD-ROM高得多,一倍速的DVD-ROM速率理论上可以达到1358KB/s,由此我们可以算出现在流行的16倍速DVD-ROM的速度应该是1358KB/s×16=21728KB/s。

Serial ATA 硬盘就是我们常说的串口硬盘,它采用点对点的方式实现了数据的分组传输从而带来更高的传输效率。Serial ATA 1.0版本硬盘的起始传输速率就达到150MB/s,而Serial ATA 3.0版本将实现硬盘峰值数据传输率为600MB/s,从而最终解决硬盘的系统瓶颈问题。SATA是一种电脑总线,主要功能是用作主板和大量存储设备(如硬盘及光盘驱动器)之间的数据传输之用。使我们现在使用最常见的硬盘接口。

eSATA接头与SATA接头的差别
虽然SATA具备了热插拔的规范,但连接缆线多是设计给内接式硬盘使用,最大插拔次数仅约200次,超过此插拔数目,缆线接头便会劣化,甚至有可能造成硬盘的损坏,即使是针对外接应用的eSTAT缆线,其插拔次数依然仅约2,500次左右,与USB界面相比差距甚远,不过这方面牵涉到缆线材质与成本之间的关连,虽然理论上可以达到更高的插拔次数,但是售价能否被消费者接受也是关键。而SATA缆线虽然在宽度上占尽优势,但是长度被限制在2米以内,这对部分应用来说,也是个相当大的限制,不过这点可以借由xSATA来加以解决。
ATA、IDE比较:
SATA硬盘采用新的设计结构,数据传输快,节省空间,相对于IDE硬盘具有很多优势:
1 .SATA硬盘比IDE硬盘传输速度高。目前SATA可以提供150MB/s的高峰传输速率。今后将达到300 MB/s和600 MB/s。到时我们将得到比IDE硬盘快近10倍的传输速率。
2. 相对于IDE硬盘的PATA40针的数据线,SATA的线缆少而细,传输距离远,可延伸至1米,使得安装设备和机内布线更加容易。连接器的体积小,这种线缆有效的改进了计算机内部的空气流动,也改善了机箱内的散热。
3. 相对于IDE硬盘系统功耗有所减少。SATA硬盘使用500毫伏的电压就可以工作。

SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA (Serial ATA,缩写为SATA)硬盘的兼容性。

SCSI(Small Computer System Interface)小型计算机系统接口,一种用于计算机和智能设备之间(硬盘、软驱、光驱、打印机、扫描仪等)系统级接口的独立处理器标准。 SCSI是一种智能的通用接口标准。它是各种计算机与外部设备之间的接口标准。
1.SCSI可支持多个设备,SCSI-2(FastSCSI)最多可接7个SCSI设备,WideSCSI-2以上可接16个SCSI设备。也就是说,所有的设备只需占用一个IRQ,同时SCSI还支持相当广的设备,如CD-ROM、DVD、CDR、硬盘、磁带机、扫描仪等。
2.SCSI还允许在对一个设备传输数据的同时,另一个设备对其进行数据查找。这就可以在多任务操作系统如Linux、WindowsNT中获得更高的性能。
3.SCSI占用CPU极低,确实在多任务系统中占有着明显的优势。由于SCSI卡本身带有CPU,可处理一切SCSI设备的事务,在工作时主机CPU只要向SCSI卡发出工作指令SCSI卡就会自己进行工作,工作结束后返回工作结果给CPU,在整个过程中,CPU均可以进行自身工作。
4.SCSI设备还具有智能化,SCSI卡自己可对CPU指令进行排队,这样就提高了工作效率。在多任务时硬盘会在当前磁头位置,将邻近的任务先完成,再逐一进行处理。
5.最快的SCSI总线有160MB/s的带宽,这要求使用一个64位的66MHz的PCI插槽,因此在PCI-X总线标准中所能达到的最大速度为80MB/s,若配合10,000rpm或15,000rpm转速的专用硬盘使用将带来明显的性能提升。

FC(Fibre Channel)光纤通道。是一种跟SCSI 或IDE有很大不同的接口,它很像以太网的转换开头。以前它是专为网络设计的,后来随着存储器对高带宽的需求,慢慢移植到现在的存储系统上来了。光纤通道通常用于连接一个SCSI RAID(或其它一些比较常用的RAID类型),以满足高端工作或服务器对高数据传输率的要求。
光纤信道在硬件上依赖价格昂贵的FC交换器,一台只有最基本功能的8端口FC交换器起价就要30万元,1个FC端口的平均成本高达数万甚至十多万元,且每部要连接FC SAN的服务器都必须安装1片价格1千美元上下的FC HBA,部署一套FC SAN的费用非常高昂。使用者也必须具备FC协议相关知识才能有效管理,以致限制了FC SAN的普及。因此无论储存厂商如何宣扬SAN的好处,现实上能享用这些好处的企业相当有限。

所谓AHCI,全称是Advanced Host Controller Interface,即高级主机控制接口,只有开启了AHCI模式,才能使用存储驱动程序中的高级串行ATA功能,比如NCQ全速命令队列和热插拔技术。但是根据实测AHCI速率提高不是太明显。
现在计算机安装win7或者xp系统出现蓝屏报错7B大部分和此有关,只有关闭或者开启即可

iSCSI技术是一种由IBM公司研究开发的,是一个供硬件设备使用的可以在IP协议的上层运行的SCSI指令集,这种指令集合可以实现在IP网络上运行SCSI协议,使其能够在诸如高速千兆以太网上进行路由选择。iSCSI技术是一种新储存技术,该技术是将现有SCSI接口与以太网络(Ethernet)技术结合,使服务器可与使用IP网络的储存装置互相交换资料。

❽ 请教硬盘的指标,接口、传输速率等问题~~

硬盘的容量几乎连年翻番,硬盘的淘汰、更新频率可能还要高于CPU。我们有必要熟悉硬盘的一些性能指标和技术,以便明了我们自己在硬盘使用方面的要求,在更新换代时使用上质量可靠、性能稳定的硬盘。

硬盘的一些性能指标

1.主轴转速
硬盘的主轴转速是决定硬盘内部数据传输率的决定因素之一,它在很大程度上决定了硬盘的速度,同时也是区别硬盘档次的重要标志。目前7200rpm的硬盘是主流产品, SCSI硬盘的主轴转速已经高达15000rpm,当然其价格让普通用户难以接受。
2.寻道时间
该指标是指磁头移动到数据所在磁道所用的时间,单位为毫秒(ms)。平均寻道时间则为磁头移动到正中间的磁道需要的时间。注意它与平均访问时间的差别。硬盘的平均寻道时间越小性能则越高。现在使用的硬盘平均寻道时间当在10ms以下。
3.单碟容量
因为标准硬盘的盘片数是有限的,靠增加盘片来扩充容量是有限度的。只有提高每张盘片的容量才能从根本上解决这个问题。大容量硬盘采用GMR巨阻型磁头,磁盘的记录密度大大提高,硬盘的单碟容量也相应提高了。
4.潜伏期
当磁头移动到数据所在的磁道后,等待所要的数据块继续转动(半圈或多些、少些)到磁头下的时间,其单位为毫秒(ms)。平均潜伏期就是盘片转半圈的时间。
5.硬盘表面温度
该指标表示硬盘工作时产生的热量使硬盘密封壳温度上升的情况。硬盘工作时产生的温度过高将影响薄膜式磁头的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更稳定的数据读、写性能。
6.道至道时间
该指标表示磁头从一个磁道转移至另一磁道的时间,单位为毫秒(ms)。
7.高速缓存
指硬盘内部的高速存储器。大容量硬盘的高速缓察告存一般为512KB~2MB,2MB缓存是目前败橡明IDE硬盘的主流。
8.全程访问时间
该指标指磁头开始移动直到最后找到所需要的数据块所用的全部时间,单位为毫秒(ms)。而平均访问时间指磁头找到指定数据的平均时间。通常是平均寻道时间和平均潜伏时间之和。
9.最大内部数据传输率
该指标名称也叫持续数据传输率(sustained transfer rate),单位为Mb/s。它是指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的如乎盘片转速和盘片线密度(指同一磁道上的数据容量)。注意Mb/s或Mbps与MB/s含义的不同,前者是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8(一字节8位数)。例如某硬盘给出的最大内部数据传输率为131Mbps,但如果按MB/s计算就只有16.37MB/s。
10.连续无故障时间(MTBF)
该指标是指硬盘从开始运行到出现故障的最长时间,单位为小时。一般硬盘的MTBF至少在30000小时以上。
11.外部数据传输率
也称为突发数据传输率,它是指从硬盘缓冲区读取数据的速率。在广告或硬盘特性表中常以数据接口速率代替,单位为MB/s。目前主流的硬盘已经全部采用Ultra DMA/66/100技术,外部数据传输率可达66MB/s或100MB/s。

硬盘应用的一些技术

1.Drive-TIP技术
Drive-TIP是英文Drive Temperature Indicator Processor的缩写,中文含义是硬盘温度监测仪。该技术是一项旨在提高硬盘可靠性和使用性能的技术。它通过温度感应器来监测并报告驱动器温度是否明显超过预先设定的温度阈值,一旦明显超温,即采取相应的措施,如关闭驱动器来降低温度。这对于空间有限的笔记本专用硬盘来说是非常必要的。
2.Ultra ATA/66/100技术
此技术把ATA接口的最高传输速率提升到了66MB/s和100MB/s,在提高传输速率的同时,Ultra ATA/66/100还通过改进信号的时钟边沿特性并使用CRC循环冗余纠错技术,保证了在高速传输过程中数据的完整性。Ultra ATA/6/100向后兼容Ultra ATA/33,IDE接口同样为40线,但使用的电缆为80芯,比原来的IDE电缆增加了40根地线,这种设计可以降低相邻信号线之间的串扰。如果支持Ultra ATA/66接口的硬盘接在了40芯的老式电缆上,硬盘自动能以Ultra ATA/33模式工作。为了使用Ultra ATA/66/100接口,硬盘、主板和操作系统都必须提供相应的支持。
3.Load/Unload技术
适合笔记本电脑硬盘使用,因为笔记本电脑硬盘在工作时,磁头在盘片表面飞行,与盘片距离仅为约十万分之一英寸(比灰尘或指纹还要小)。光滑的磁盘表面和日趋降低的飞行高度增加了读写头和磁面碰撞的几率,也使硬盘的损坏几率随之而增加。而Load/Unload技术可使硬盘磁头在不工作时停泊在磁盘外面的专用槽中,大大降低了磁头与磁面的碰撞几率,从而延长硬盘的使用寿命。
4.SPS技术
SPS是英文Shock Protection System的缩写。硬盘非常怕震动,不管电源是否已经启动,只要硬盘受到了撞击或震动,或多或少总有数据受到一定程度的损伤,如果处于运转状态的硬盘受到震动或撞击,所造成的“伤害”会更大。SPS这种技术可以把硬盘因冲击而造成的损害降到最低的程度。
5.ABLE技术
ABLE是英文Adaptive Battery Life Extender的缩写,该技术一般也用于笔记本硬盘之中,它的优点是可以使笔记本电脑硬盘的耗电量降低大约20%,从而有效延长电池的使用时间,使用户不必被电池使用时间问题困扰。
6.IEEE1394技术
IEEE1394又称为Firewire(火线)或P1394技术,它是一种高速串行总线,现有的IEEE 1394标准支持100Mbps、200Mbps和400Mbps的传输速率,将来会达到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作为硬盘、DVD、CD-ROM等大容量存储设备的接口。IEEE1394将来有望取代现有的SCSI总线和IDE接口。
7.S.M.A.R.T技术
该技术的英文全称是Self-Monitoring Analysis&&Reporting Technology,中文含义是自动监测分析报告技术。这项技术指标使得硬盘可以监测和分析自己的工作状态和性能,并将其显示出来。用户可以随时了解硬盘的运行状况,遇到紧急情况时,可以采取适当措施,确保硬盘中的数据不受损失。采用这种技术以后,硬盘的可靠性得到了很大的提高。
8.GMR技术
该技术的英文全称是Giant Magnetoresistive,中文含义是巨磁阻磁头。GMR技术的磁头与MR磁头一样,是利用特殊材料的电阻值随磁场变化的原理来读取盘片上的数据,但是GMR磁头使用了磁阻效应更好的材料和多层薄膜结构,比MR磁头更为敏感,相同的磁场变化能引起更大的电阻值变化,从而可以实现更高的存储密度,MR磁头能够达到的盘片密度为3Gbit-5Gbit/in2(千兆位每平方英寸),而GMR磁头可以达到10Gbit-40Gbit/in2以上。
9.DPS技术
DPS是英文Data Protection System的缩写,适合Quantum品牌Enhanced IDE接口且支持S.M.A.R.T.规格的硬盘,它可以让用户确定自己的硬盘是否真正发生了问题。用户可以在Quantum的网站上下载qdps.exe软件,如果觉得硬盘似乎有问题时,就可以用软盘开机,执行qdps.exe,以测试一下硬盘到底有没有问题。
10.OAW技术
该技术是英文Optically Assisted Winchester的缩写,它的中文含义是光学辅助温氏技术。它把传统的磁读写头和低强度激光束结合在一起,激光束通过光纤进入磁头,再通过一个微电机驱动的镜子反射到磁盘表面,从而实现磁头的精确定位。OAW技术能够在1英寸宽的范围内写入105000个以上的磁道,硬盘单碟容量可达36GB以上。
11、SB技术
SB是英文Shock Block的缩写,是Maxtor硬盘所采用的一种技术。这种设计的目的就是在于尽量降低读写磁头弹离盘片的可能性,如果读写磁头没有弹离盘片,就不会有盘片被读写磁头敲击而产生屑片的情况发生。
12、Ultra160/m
Ultra160/m是SCSI接口硬盘的高一级标准,它以Ultra3 SCSI为基础,传输速率高达160MB/s。

硬盘的传输速率:作为电脑中最重要的数据存储设备和数据交换媒介,硬盘传输速率的快慢直接影响了系统的运行速度。不同类型的硬盘,其传输速率往往差别很大。现在主流硬盘主要有三种:按照不同的接口可以分为并口ATA硬盘(即IDE硬盘)、SCSI硬盘和Serial ATA硬盘。

IDE接口硬盘在当前电脑中应用最为广泛,主流的规格包括ATA/66、ATA/100、ATA/133,这种命名方式也表明了它们在理论上的外部最大传输速率分别达到了66MB/s、100MB/s和133MB/s。这里需要说明:100MB/s、133MB/s是峰值速度,并不能表示硬盘能持续这个速度,也就是说这是理论上的最高峰值速度。

硬盘真正的传输速度由于受硬盘内部传输速率的影响,其稳定传输速率一般在30MB/s到45MB/s之间。这样随着CPU、内存等硬件运行速度的不断提高,ATA硬盘的低速率渐渐成为影响整机运行速度的瓶颈。于是,一种新的硬盘接口方式,Serial ATA应运而生。

Serial ATA 硬盘就是我们常说的串口硬盘,它采用点对点的方式实现了数据的分组传输从而带来更高的传输效率。Serial ATA 1.0版本硬盘的起始传输速率就达到150MB/s,而Serial ATA 3.0版本将实现硬盘峰值数据传输率为600MB/s,从而最终解决硬盘的系统瓶颈问题。

SCSI接口不是专为硬盘设计的,实际上它是一种总线型的接口,独立于系统总线工作。SCSI接口的硬盘以高稳定性、低CPU占有率而被广泛应用于服务器和专业工作站中,它的传输速率最高可达320MB/s。当然,对于硬盘的整体性能而言,除了硬盘的传输速率,硬盘的转速、缓存及平均寻道时间等也是重要的因素。

❾ 硬盘速度多少正常

问题一:7200转机械硬盘读写速度多少正常 看着曲线图就知道不正常了。
从来不定期做磁盘清理和碎片整理的曲线。
看看健康那页有没有报错吧。
使用中停电是会让硬盘的磁头直接掉到盘体上,很有可能造成划伤盘体的哦。建议在PE里取一下曲线,看看硬盘的盘体燃侍本身情况好不好。另外看一下健康那页有没有报错和报错的项目。严重的话,为了避免数据丢失,需要备份数据并更换硬盘了。

问题二:硬盘的读写速度是多少 ss胆快好多 机械盘没得比的 光说数字没意义 你亲身用过就知道了 一般笔记本上机械盘是5400转 台式机7200转 那些上万转的一般是高性能机用的 但转的再快也没ssd快

问题三:移动硬盘读写速度一般是多少正常 USB2.0的U盘 移动硬盘 读取速度大概在17-25M/s
USB3.0的U盘 移动硬盘 读取速度大概在40-70M/s
USB2.0的U盘写入速度大概是4-10M/s
移动硬盘写入速度大概在10-25M/s
USB3.0的U盘 移动硬盘写入速度大概在40-60M/s
固态硬盘读写速度大概在300-600M/s
普通硬盘的读写速度大概在60-120M/s

问题四:一般硬盘读取速度和写入速度是多少 硬盘的传输速率:作为电脑中最重要的数据存储设备和数据交换媒介,硬盘传输速率的快慢直接影响了系统的运行速度。不同类型的硬盘,其传输速率往往差别很大。现在主流硬盘主要有三种:按照不同的接口可以分为并口ATA硬盘(即IDE硬盘)、SCSI硬盘和Serial ATA硬盘。
IDE接口硬盘在当前电脑中应用最为广泛,主流的规格包括ATA/66、ATA/100、ATA/133,这种命名方式也表明了它们在理论上的外部最大传输速率分别达到了66MB/s、100MB/s和133MB/s。这里需要说明:100MB/s、133MB/s是峰值速度,并不能表示硬盘能持续这个速度,也就是说这是理论上的最高峰值速度。
硬盘真正的传输速度由于受硬盘内部传输速率的影响,其稳定传输速率一般在30MB/s到45MB/s之间。这样随着CPU、内存等硬件运行速度的不断提高,ATA硬盘的低速率渐渐成为影响整机运行速度的瓶颈。于是,一种新的硬盘接口方式,Serial ATA应运而生。
Serial ATA 硬盘就是我们常说的串口硬盘,它采用点对点的方式实现了数据的分组传输从而带来更高的传输效率。Serial ATA 1.0版本硬盘的起始传输速率就达到150MB/s,而Serial ATA 3.0版本将实现硬盘峰值数据传输率为600MB/s,从而最终解决硬盘的系统瓶颈问题。
SCSI接口不是专为硬盘设计的,实际上它是一种总线型的接口,独立于系统总线工作。SCSI接口的硬盘以高稳定性、低CPU占有率而被广泛应用于服务器和专业工作站中,它的传输速率最高可达320MB/s。当然,对于硬盘的整体性能而言,除了硬盘的传输速率,硬盘的转速、缓存及平均寻道时间等也是重要的因素。
小知识:1.硬盘的内部数据传输率
内部数据传输率是磁头到硬盘的高速缓存之间的数据传输速度,这可以说是影响硬盘整体性能的关键,一般取决于硬盘的盘片转速和盘片数据线密度。在这项指标中常常使用MB/s或Mbps为单位,这是兆位/秒的意思,如果需要转换成MB/s(兆字节/秒),就必须将Mbps数据除以8。例如有的硬盘给出最大内部数据传输率为240Mbps,但如果按MB/s计算就只有30MB/s。由此可以看出目前硬盘作为电脑的瓶颈,其病根还在于硬盘的内部数据传输率上。
2.硬盘的外部数据传输率
指从硬盘缓冲区读取数据的速率。它与硬盘的接口类型是直接挂钩州段档的,因此在广告或硬盘特性表中常以数据接口速率代替,单位为MB/s如我们平常所说的ATA100/133硬盘。册乱
光驱的传输速率:通常光驱传输速率的高低取决于光驱的倍速,如16X DVD、52X的CD-ROM,一般情况下光驱的倍速越高,数据传输也就越快。那么“倍速”是个什么概念呢?原来很早以前CD-ROM的传输速率很低,每秒只能传送150KB字节,即最初光驱的速率为150KB/s,这就是1X(单倍速)的CD-ROM光驱。后来随着CD-ROM光驱技术的日新月异,其速率越来越快,为了区分不同速率的光驱,于是把最初的150KB/s作为基准进行衡量得到相应的倍速值。如50X的CD-ROM就是指其传输的速度是1X光驱的50倍即其速率为50×150KB/s=7500KB/s。而现在流行的DVD-ROM的速率算法也基本相同,只不过DVD-ROM的单倍速率要比CD-R......>>

问题五:硬盘读写速度多少正常 图上看,磁盘上有不稳定的磁道,读取比较吃力,所以声音很大。不正常。如果是新硬盘,应该送回检测。另外你用磁盘检测的软件测一下使用时间 即可知道是否是新硬盘。

问题六:硬盘的正常读取速度是多少? 别听楼下的,160G硬盘 这数据非常正确!不管你是IDE .或者SATA 都是这差不多的数据!
所以不问你是什么接口,楼下的说的都是什么系列的产品,也不看看!

硬盘读取的储候,磁头是不停的在移动的,所以你能听得那些声音。

那声音不是硬盘的问题是你机箱的问题,机箱震动大,共鸣就大,越静越烦!

硬盘声音大的时候。你会真正听到硬盘,每次,读写的时候,或者开机的时候都有很明显,很大的声!

问题七:大家的硬盘一般拷贝速度是多少 一般拷贝速度按硬盘写入速度计算,大文件速度稳定,多个小文件如多张照片速度会慢很多。
实际又分很多情况,速度总体是看木桶效应
本地的机械硬盘同一块盘不同分区间拷贝40M/S左右。
本地2块硬盘间拷贝一般是100M/S左右。
固态硬盘会快一些,但普通消费级的与机械硬盘的拷贝速度相差不大。
做了磁盘阵列优化的速度会翻番。
外接移动硬盘速度会受到接口限制,USB2.0 20M/S都在以内,USB3.0可以达到70M/S。
IO接口也会影响速度,SATA1.0 问题八:机械硬盘写入速度和读写速度一般是多少 没有所谓的一般,不同时期的机械硬盘,性能差距很大。我举例:
500G 16M 的读写速度是 100~110M/S
1T 64M的读写速度是 150~160M/S
你的速度过低,先重装下系统看看。

问题九:ssd速度多少正常 和我一样的牌子M667 128G,用在笔记本上
开机是快些,尤其是打开装在SSD上软件,个人觉得不在乎噪音的话,用企业级黑盘也是很爽的(下图是台机上企业黑盘开机,一般17s)
你的SSD容量小了点,速度SSD是容量越大越快,还看高速缓存这个牌子好象是没缓存的

❿ 评价存储设备需要衡量哪些重要指标

对于硬盘来说
容量就不说了;
每分钟转速,转速越快,相关性能越好,但同时发热量越大;
平均寻道时间,是指硬盘接到读/写指令后到磁头移到指定的磁道上方所需要的平均时间。;
平均潜伏期,是指当磁头移动到指定磁道后,要等多长时间指定的读/写扇区会移动到磁头下方,转速越快,潜伏期越短。
平均访问时间,近似等于平均寻道时间+平均潜伏期
数据传输率DTR:单位为MB/s,又称MBPS或Mbits/s(兆位每秒,又称Mbps)。DTR分为最大与持续两个指标,根据数据交接方的不同又分外部与内部数据传输率。内部DTR是指磁头与缓冲区之间的数据传输率,外部DTR是指缓冲区与主机(即内存)之间的数据传输率。外部DTR上限取决于硬盘的接口,目前流行的Ultra ATA-100接口即代表外部DTR最高理论值可达100MB/s,持续DTR则要看内部持续DTR的水平。内部DTR则是硬盘的真正数据传输能力,为充分发挥内部DTR,外部DTR理论值都会比内部DTR高,但内部DTR决定了外部DTR的实际表现。由于磁盘中最外圈的磁道最长,可以让磁头在单位时间内比内圈的磁道划过更多的扇区,所以磁头在最外圈时内部DTR最大,在最内圈时内部DTR最小。
缓冲区容量,也称之为缓存.缓冲区的基本要作用是平衡内部与外部的DTR。这主要体现在三个方面:
预取,预取功能简单地说就是硬盘“私自”扩大读取范围,在缓冲区向主机发送指定扇区数据(即磁头已经读完指定扇区)之后,磁头接着读取相邻的若干个扇区数据并送入缓冲区,如果后面的读操作正好指向已预取的相邻扇区,即从缓冲区中读取而不用磁头再寻址,提高了访问速度。
写缓存,通常情况下在写入操作时,也是先将数据写入缓冲区再发送到磁头,等磁头写入完毕后再报告主机写入完毕,主机才开始处理下一任务。现在的厂商基本都应用了分段式缓存技术,将缓冲区划分成多个小块,存储不同的写入数据,而不必为小数据浪费整个缓冲区空间,同时还可以等所有段写满后统一写入,性能更好。
读缓存,将读取过的数据暂时保存在缓冲区中,如果主机再次需要时可直接从缓冲区提供,加快速度。读缓存同样也可以利用分段技术。