当前位置:首页 » 服务存储 » 电介质存储器的存储原理
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

电介质存储器的存储原理

发布时间: 2023-04-30 09:23:25

存储器的工作原理

这里只介绍动态存储器(DRAM)的工作原理。
动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。

㈡ 存储器为什么能存储数据

储器是计算机系统中的记忆设备,用来存放程序和数据。
构成存储器的存储介质,目前主要采用半导体器件和磁性材料。存储器中最小的存储单位就是一个双稳态半导体电路或一个CMOS晶体管或磁性材料的存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。

㈢ 存储器的原理是什么

存储器讲述工作原理及作用

介绍

存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。

2.按存取方式分类

(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。

(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。

(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。

3.按信息的可保存性分类

非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。

永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM。

4.按在计算机系统中的作用分

根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

能力影响

从写命令转换到读命令,在某个时间访问某个地址,以及刷新数据等操作都要求数据总线在一定时间内保持休止状态,这样就不能充分利用存储器通道。此外,宽并行总线和DRAM内核预取都经常导致不必要的大数据量存取。在指定的时间段内,存储器控制器能存取的有用数据称为有效数据速率,这很大程度上取决于系统的特定应用。有效数据速率随着时间而变化,常低于峰值数据速率。在某些系统中,有效数据速率可下降到峰值速率的10%以下。

通常,这些系统受益于那些能产生更高有效数据速率的存储器技术的变化。在CPU方面存在类似的现象,最近几年诸如AMD和 TRANSMETA等公司已经指出,在测量基于CPU的系统的性能时,时钟频率不是唯一的要素。存储器技术已经很成熟,峰值速率和有效数据速率或许并不比以前匹配的更好。尽管峰值速率依然是存储器技术最重要的参数之一,但其他结构参数也可以极大地影响存储器系统的性能。

影响有效数据速率的参数

有几类影响有效数据速率的参数,其一是导致数据总线进入若干周期的停止状态。在这类参数中,总线转换、行周期时间、CAS延时以及RAS到CAS的延时(tRCD)引发系统结构中的大部分延迟问题。

总线转换本身会在数据通道上产生非常长的停止时间。以GDDR3系统为例,该系统对存储器的开放页不断写入数据。在这期间,存储器系统的有效数据速率与其峰值速率相当。不过,假设100个时钟周期中,存储器控制器从读转换到写。由于这个转换需要6个时钟周期,有效的数据速率下降到峰值速率的 94%。在这100个时钟周期中,如果存储器控制器将总线从写转换到读的话,将会丢失更多的时钟周期。这种存储器技术在从写转换到读时需要15个空闲周期,这会将有效数据速率进一步降低到峰值速率的79%。表1显示出针几种高性能存储器技术类似的计算结果。

显然,所有的存储器技术并不相同。需要很多总线转换的系统设计师可以选用诸如XDR、RDRAM或者DDR2这些更高效的技术来提升性能。另一方面,如果系统能将处理事务分组成非常长的读写序列,那么总线转换对有效带宽的影响最小。不过,其他的增加延迟现象,例如库(bank)冲突会降低有效带宽,对性能产生负面影响。

DRAM技术要求库的页或行在存取之前开放。一旦开放,在一个最小周期时间,即行周期时间(tRC)结束之前,同一个库中的不同页不能开放。对存储器开放库的不同页存取被称为分页遗漏,这会导致与任何tRC间隔未满足部分相关的延迟。对于还没有开放足够周期以满足tRC间隙的库而言,分页遗漏被称为库冲突。而tRC决定了库冲突延迟时间的长短,在给定的DRAM上可用的库数量直接影响库冲突产生的频率。

大多数存储器技术有4个或者8个库,在数十个时钟周期具有tRC值。在随机负载情况下,那些具有8个库的内核比具有4个库的内核所发生的库冲突更少。尽管tRC与库数量之间的相互影响很复杂,但是其累计影响可用多种方法量化。

存储器读事务处理

考虑三种简单的存储器读事务处理情况。第一种情况,存储器控制器发出每个事务处理,该事务处理与前一个事务处理产生一个库冲突。控制器必须在打开一个页和打开后续页之间等待一个tRC时间,这样增加了与页循环相关的最大延迟时间。在这种情况下的有效数据速率很大程度上决定于I/O,并主要受限于DRAM内核电路。最大的库冲突频率将有效带宽削减到当前最高端存储器技术峰值的20%到30%。

在第二种情况下,每个事务处理都以随机产生的地址为目标。此时,产生库冲突的机会取决于很多因素,包括tRC和存储器内核中库数量之间的相互作用。tRC值越小,开放页循环地越快,导致库冲突的损失越小。此外,存储器技术具有的库越多,随机地址存取库冲突的机率就越小。

第三种情况,每个事务处理就是一次页命中,在开放页中寻址不同的列地址。控制器不必访问关闭页,允许完全利用总线,这样就得到一种理想的情况,即有效数据速率等于峰值速率。

第一种和第三种情况都涉及到简单的计算,随机情况受其他的特性影响,这些特性没有包括在DRAM或者存储器接口中。存储器控制器仲裁和排队会极大地改善库冲突频率,因为更有可能出现不产生冲突的事务处理,而不是那些导致库冲突的事务处理。

然而,增加存储器队列深度未必增加不同存储器技术之间的相对有效数据速率。例如,即使增加存储器控制队列深度,XDR的有效数据速率也比 GDDR3高20%。存在这种增量主要是因为XDR具有更高的库数量以及更低的tRC值。一般而言,更短的tRC间隔、更多的库数量以及更大的控制器队列能产生更高的有效带宽。

实际上,很多效率限制现象是与行存取粒度相关的问题。tRC约束本质上要求存储器控制器从新开放的行中存取一定量的数据,以确保数据管线保持充满。事实上,为保持数据总线无中断地运行,在开放一个行之后,只须读取很少量的数据,即使不需要额外的数据。

另外一种减少存储器系统有效带宽的主要特性被归类到列存取粒度范畴,它规定了每次读写操作必须传输的数据量。与之相反,行存取粒度规定每个行激活(一般指每个RAS的CAS操作)需要多少单独的读写操作。列存取粒度对有效数据速率具有不易于量化的巨大影响。因为它规定一个读或写操作中需要传输的最小数据量,列存取粒度给那些一次只需要很少数据量的系统带来了问题。例如,一个需要来自两列各8字节的16字节存取粒度系统,必须读取总共32字节以存取两个位置。因为只需要32个字节中的16个字节,系统的有效数据速率降低到峰值速率的50%。总线带宽和脉冲时间长度这两个结构参数规定了存储器系统的存取粒度。

总线带宽是指连接存储器控制器和存储器件之间的数据线数量。它设定最小的存取粒度,因为对于一个指定的存储器事务处理,每条数据线必须至少传递一个数据位。而脉冲时间长度则规定对于指定的事务处理,每条数据线必须传递的位数量。每个事务处理中的每条数据线只传一个数据位的存储技术,其脉冲时间长度为1。总的列存取粒度很简单:列存取粒度=总线宽度×脉冲时间长度。

很多系统架构仅仅通过增加DRAM器件和存储总线带宽就能增加存储系统的可用带宽。毕竟,如果4个400MHz数据速率的连接可实现 1.6GHz的总峰值带宽,那么8个连接将得到3.2GHz。增加一个DRAM器件,电路板上的连线以及ASIC的管脚就会增多,总峰值带宽相应地倍增。

首要的是,架构师希望完全利用峰值带宽,这已经达到他们通过物理设计存储器总线所能达到的最大值。具有256位甚或512位存储总线的图形控制器已并不鲜见,这种控制器需要1,000个,甚至更多的管脚。封装设计师、ASIC底层规划工程师以及电路板设计工程师不能找到采用便宜的、商业上可行的方法来对这么多信号进行布线的硅片区域。仅仅增加总线宽度来获得更高的峰值数据速率,会导致因为列存取粒度限制而降低有效带宽。

假设某个特定存储技术的脉冲时间长度等于1,对于一个存储器处理,512位宽系统的存取粒度为512位(或者64字节)。如果控制器只需要一小段数据,那么剩下的数据就被浪费掉,这就降低了系统的有效数据速率。例如,只需要存储系统32字节数据的控制器将浪费剩余的32字节,进而导致有效的数据速率等于50%的峰值速率。这些计算都假定脉冲时间长度为1。随着存储器接口数据速率增加的趋势,大多数新技术的最低脉冲时间长度都大于1。

选择技巧

存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。

选择存储器时应遵循的基本原则

1、内部存储器与外部存储器

一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。

2、引导存储器

在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。

可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。

㈣ 存储器的工作原理 [RAM,ROM,EEPROM存储器工作原理]

一.基本工作原理 基本工作原理

1、存储器构造 、 存储器就是用来存放数据的地方。它是利用电平的高低来存放数据的,也就是说,它存 放的实际上是电平的高、低,而不是我们所习惯认为的 1234 这样的数字,这样,我们的一 个谜团就解开了,计算机也没什么神秘的吗。

图1

图2 让我们看图 1。这是一个存储器的示意图:一个存储器就像一个个的小抽屉,一个小抽 屉里有八个小格子,每个小格子就是用来存放“电荷”的,电荷通过与它相连的电线传进来 或释放掉, 至于电荷在小格子里是怎样存的, 就不用我们操心了, 你可以把电线想象成水管, 小格子里的电荷就像是水,那就好理解了。存储器中的每个小抽屉就是一个放数据的地方, 我们称之为一个“单元” 。 有了这么一个构造,我们就可以开始存放数据了,想要放进一个数据 12,也就是

00001100, 我们只要把第二号和第三号小格子里存满电荷, 而其它小格子里的电荷给放掉就 行了(看图 2) 。可是问题出来了,看图 1,一个存储器有好多单元,线是并联的,在放入电 荷的时候, 会将电荷放入所有的单元中, 而释放电荷的时候, 会把每个单元中的电荷都放掉, 这样的话, 不管存储器有多少个单元, 都只能放同一个数, 这当然不是我们所希望的, 因此, 要在结构上稍作变化,看图 1,在每个单元上有个控制线,我想要把数据放进哪个单元,就 给一个信号这个单元的控制线,这个控制线就把开关打开,这样电荷就可以自由流动了,而 其它单元控制线上没有信号,所以开关不打开,不会受到影响,这样,只要控制不同单元的 控制线,就可以向各单元写入不同的数据了,同样,如果要某个单元中取数据,也只要打开 相应的控制开关就行了。 2、存储器译码 、 那么, 我们怎样来控制各个单元的控制线呢?这个还不简单, 把每个单元的控制线都引 到集成电路的外面不就行了吗?事情可没那么简单,一片 27512 存储器中有 65536 个单元, 把每根线都引出来, 这个集成电路就得有 6 万多个脚?不行, 怎么办?要想法减少线的数量。 我们有一种方法称这为译码,简单介绍一下:一根线可以代表 2 种状态,2 根线可以代表 4 种状态,3 根线可以代表几种,256 种状态又需要几根线代表?8 种,8 根线,所以 65536 种状态我们只需要 16 根线就可以代表了。 3、存储器的选片及总线的概念 、 至此,译码的问题解决了,让我们再来关注另外一个问题。送入每个单元的八根线是用 从什么地方来的呢?它就是从计算机上接过来的, 一般地, 这八根线除了接一个存储器之外, 还要接其它的器件

。这样问题就出来了,这八根线既然不是存储器和计算机之间专用的,如 果总是将某个单元接在这八根线上,就不好了,比如这个存储器单元中的数值是 0FFH 另一 个存储器的单元是 00H,那么这根线到底是处于高电平,基闭还是低电平?岂非要打架看谁历害 了?所以我们要让它们分离。办法当然很简单,当外面的线接到集成电路的引脚进来后,不 直接接到各单元去,中间再加一组开关就行了。平时我们让开关打开着,如果确实是要向这 个存储器中写入数据,或要从存储器中慧锋念读出数据,再让开关接通就行了。这组开关由三根引 线选择:读控制端、写控制端和片选端。要将数据写入片中,先选中该片, 然后发出写信号, 开关就合上了,并将传过来的数据(电荷)写入片中。如果要读,先选中该片,然后发出读 信号,开关合上,数据就被送出去了。读前困和写信号同时还接入到另一个存储器,但是由于片 选端不同, 所以虽有读或写信号,但没有片选信号, 所以另一个存储器不会“误会” 而开门, 造成冲突。 那么会不同时选中两片芯片呢?只要是设计好的系统就不会, 因为它是由计算控

制的,而不是我们人来控制的,如果真的出现同时出现选中两片的情况,那就是电路出了故 障了,这不在我们的讨论之列。 从上面的介绍中我们已经看到,用来传递数据的八根线并不是专用的,而是很多器件 大家共用的,所以我们称之为数据总线,总线英文名为 BUS,总即公交车道,谁者可以走。 而十六根地址线也是连在一起的,称之为地址总线。

二.存储器的种类及原理: 存储器的种类及原理: 及原理 1.RAM / ROM 存储器 1.

ROM 和 RAM 指的都是半导体存储器,ROM 是 Read Only Memory 的缩写,RAM 是 Random Access Memory 的缩写。ROM 在系统停止供电的时候仍然可以保持数据,而 RAM 通常都是在 掉电之后就丢失数据,典型的 RAM 就是计算机的内存。

2. RAM

随机存取存储器(RAM)是计算机存储器中最为人熟知的一种。之所以 RAM 被称为“随机 存储”,是因为您可以直接访问任一个存储单元,只要您知道该单元所在记忆行和记忆列的 地址即可。 RAM 有两大类: 1) 静态 RAM(Static RAM / SRAM),SRAM 速度非常快,是目前读写最快的存储设 备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如 CPU 的一级缓冲,二级 缓冲。 2) 动态 RAM (Dynamic RAM / DRAM) DRAM 保留数据的时间很短, , 速度也比 SRAM 慢,不过它还是比任何的 ROM 都要快,但从价格上来说 DRAM 相比 SRAM 要便宜很多, 计算机内存就是 DRAM 的。 类似于微处理器, 存储器芯片也是一种由数以百万计的晶体管和电容器

构成的集成电路 (IC)。计算机存储器中最为常见的一种是动态随机存取存储器(DRAM),在 DRAM 中晶体 管和电容器合在一起就构成一个存储单元,代表一个数据位元。电容器保存信息位——0 或 1(有关位的信息,请参见位和字节)。晶体管起到了开关的作用,它能让内存芯片上的控 制线路读取电容上的数据,或改变其状态。 电容器就像一个能够储存电子的小桶。要在存储单元中写入 1,小桶内就充满电子。要 写入 0,小桶就被清空。电容器桶的问题在于它会泄漏。只需大约几毫秒的时间,一个充满 电子的小桶就会漏得一干二净。因此,为了确保动态存储器能正常工作,必须由 CPU 或是由 内存控制器对所有电容不断地进行充电,使它们在电子流失殆尽之前能保持 1 值。为此,内

存控制器会先行读取存储器中的数据, 然后再把数据写回去。 这种刷新操作每秒钟要自动进 行数千次如(图 3 所示)

图 3 动态 RAM 存储单元中的电容器就像是一个漏水的小桶。

它需要定时刷新,否则电子泄漏会使它变为 0 值。

动态 RAM 正是得名于这种刷新操作。 动态 RAM 需要不间断地进行刷新, 否则就会丢失它 所保存的数据。这一刷新动作的缺点就是费时,并且会降低内存速度。

存储单元由硅晶片蚀刻而成,位于由记忆列(位线) 和记忆行(字线) 组成的阵列之中。 位线和字线相交,就形成了存储单元的地址。

图 4 将位元排列在二维栅格中,就构成了内存。 在上图中,红色的存储单元代表 1 值,而白色的存储单元代表 0 值。 在演示动画片中,先选出一个记忆列,然后对记忆行进行充电以将数据写入指定的记忆列中。

DRAM 工作时会向选定的记忆列(CAS)发送电荷,以激活该记忆列上每个位元处的晶体 管。写入数据时,记忆行线路会使电容保持应有状态。读取数据时,由灵敏放大器测定电容 器中的电量水平。如果电量水平大于 50%,就读取 1 值;否则读取 0 值。计数器会跟踪刷新 序列,即记录下哪些行被访问过,以及访问的次序。完成全部工作所需的时间极短,需要以 纳秒(十亿分之一秒)计算。存储器芯片被列为 70 纳秒级的意思是,该芯片读取单个存储 单元并完成再充电总共需要 70 纳秒。 如果没有读写信息的策略作为支持, 存储单元本身是毫无价值的。 所以存储单元拥有一 整套由其他类型的专用电路构成的底层设施。这些电路具有下列功能: 判别记忆行和记忆列的地址(行选址和列选址) 记录刷新序列(计数器) 从存储单元中读取、恢复数据(灵敏放大器) 告知存储单元是否接受电荷(写保护) 内存控制器要执行其他一些任务, 包

括识别存储器的类型、 速度和容量, 以及检错等等。

静态 RAM 使用了截然不同的技术。 静态 RAM 使用某种触发器来储存每一位内存信息 (有 关触发器的详细信息,请查见布尔逻辑的应用) 。存储单元使用的触发器是由引线将 4-6 个 晶体管连接而成, 但无须刷新。 这使得静态 RAM 要比动态 RAM 快得多。 但由于构造比较复杂, 静态 RAM 单元要比动态 RAM 占据更多的芯片空间。 所以单个静态 RAM 芯片的存储量会小一些, 这也使得静态 RAM 的价格要贵得多。静态 RAM 速度快但价格贵,动态 RAM 要便宜一些,但速 度更慢。因此,静态 RAM 常用来组成 CPU 中的高速缓存,而动态 RAM 能组成容量更大的系统 内存空间。

3. ROM

ROM 也分为很多种: 1) 掩膜式 ROM 芯片生产厂家在制造芯片过程中把程序一并做在芯片内部,这就是二次光刻版图形(掩 膜)。存储阵列中的基本存储单元仅由一只 MOS 管构成,或缺省,凡有 MOS 管处表示存储 0, 反之为 1. 工厂在生产时,根据客户提供的内容,决定是否布下只 MOS 管. 用户在生产好后,

是不能改写的( 难道撬开芯片,加个 MOS 管上去?) 由于集成电路生产的特点, 要求一个批次的掩膜 ROM 必须达到一定的数量 (若十个晶圆) 才能生产,否则将极不经济。掩膜 ROM 既可用双极性工艺实现,也可以用 CMOS 工艺实现。 掩膜 ROM 的电路简单,集成度高,大批量生产时价格便宜。 2) 一次性可编程 ROM(PROM= ROM(PROM=Programmable ROM) ) 允许一次编程 存储阵列除了三极管之外,还有熔点较低的连线(熔断丝)串接在每只存储三极管的某 一电极上,例如发射极. 编程之前,存储信息全为 0,或全为 1,编程写入时,外加比工作 电压高的编程电压,根据需要使某些存储三极管通电,由于此时电流比正常工作电流大,于 是熔断丝熔断开路,一旦开路之后就无法恢复连通状态,所以只能编程一次。如果把开路的 三极管存储的信息当作 0,反之,存储的信息就为 1 3) 紫外线擦除可编程 ROM(EPROM= 紫外线擦除可编程 ROM(EPROM=Erasable PROM) ) 用紫外线擦除后编程,并可多次擦除多次编程 FAMOS 管与 MOS 管结构相似,它是在 N 型半导体基片上生长出两个高浓度的 P 型区,通 过欧姆接触分别引出漏极 D 和源极 S,在漏源之间的 SiO2 绝缘层中,包围了一多晶硅材料, 与四周无直接电气连接,称之为浮置栅极,在对其编程时,在漏源之间加上编程电压(高于 工作电压)时,会产生雪崩击穿现象,获得能量的电子会穿过 SiO2 注入到多晶硅中,编程 结束后, 在漏源之间相对感应出的正电荷导电沟道将会保持下来, 如果将漏源之间感应出正 电荷导电沟道的 MOS 管表示存

入 0,反之,浮置栅不带负电,即漏源之间无正电荷导电沟道 的 MOS 管表示存入 1 状态 在 EPROM 芯片的上方, 有一圆形石英窗, 从而允许紫外线穿过透明的圆形石英窗而照射 到半导体芯片上,将它放在紫外线光源下一般照射 10 分钟左右,EPROM 中的内容就被抹掉, 即所有浮置栅 MOS 管的漏源处于断开状态,然后,才能对它进行编程输入 出厂未编程前,每个基本存储单元都是信息 1, 编程就是将某些单元写入信息 0 EPROM 是采用浮栅技术生产的可编程存储器,它的存储单元多采用 N 沟道叠栅 MOS 管 (SIMOS) ,其结构及符号如图 12.2.1(a)所示。除控制栅外,还有一个无外引线的栅极,称 为浮栅。当浮栅上无电荷时,给控制栅(接在行选择线上)加上控制电压,MOS 管导通; 而当浮栅上带有负电荷时,则衬底表面感应的是正电荷,使得 MOS 管的开启电压变高,如 图 12.1.3(b)所示,如果给控制栅加上同样的控制电压,MOS 管仍处于截止状态。由此可见, SIMOS 管可以利用浮栅是否积累有负电荷来存储二值数据。

(a) 叠栅 MOS 管的结构及符号图

(b) 叠栅 MOS 管浮栅上积累电子与开启电压的关系

图 6 叠栅 MOS 管

在写入数据前,浮栅是不带电的,要使浮栅带负电荷,必须在 SIMOS 管的漏、栅极 加上足够高的电压(如 25V) ,使漏极及衬底之间的 PN 结反向击穿,产生大量的高能电子。 这些电子穿过很薄的氧化绝缘层堆积在浮栅上, 从而使浮栅带有负电荷。 当移去外加电压后, 浮栅上的电子没有放电回路,能够长期保存。当用紫外线或 X 射线照射时,浮栅上的电子形 成光电流而泄放, 从而恢复写入前的状态。 照射一般需要 15 至 20 分钟。 为了便于照射擦除, 芯片的封装外壳装有透明的石英盖板。EPROM 的擦除为一次全部擦除,数据写入需要通用或 专用的编程器。 ROM( EPROM) 4) 电擦除可编程 ROM(EEPROM = Electrically EPROM) 加电擦除,也可以多次擦除, 可以按字节编程。 在 EPROM 基本存储单元电路的浮置栅 MOS 管 T1 上面再生成一个浮置栅 MOS 管 T2, T2 将 浮置栅引出一个电极,使该电极接某一电压 VG2,若 VG2 为正电压,T1 浮置栅极与漏极之间 产生一个隧道效应,使电子注入 T1 浮置栅极,于是 T1 的漏源接通,便实现了对该位的写入 编程。 用加电方法,进行在线(无需拔下,直接在电路中)擦写(擦除和编程一次完成)有字

节擦写、 块擦写和整片擦写方法, 按字节为单位进行擦除和写入, 擦除和写入是同一种操作, 即都是写入,只不过擦除是固定写“1”而已,在擦除时,输入的数据是 TTL 高电平。 EEPROM 在进行字节改写之前自动对所要写入的字节单元进行

擦除, 只需要像写普通 CPU RAM 一样写其中某一字节, 但一定要等到 5ms 之后, CPU 才能接着对 EEPROM 进行下一次写入 操作,因而,以字节为单元写入是常用的一种简便方式。 写入操作时,首先把待写入数据写入到页缓冲器中,然后,在内部定时电路的控制下把 页缓冲器中的所有数据写入到 EEPROM 中所指定的存储单元,显然,相对字节写入方式,第 二种方式的效率高,写入速度快。 EEPROM 也是采用浮栅技术生产的可编程存储器,构成存储单元的 MOS 管的结构如图 12.2.2 所示。它与叠栅 MOS 管的不同之处在于浮栅延长区与漏区之间的交叠处有一个厚度 约为 80 埃的薄绝缘层,当漏极接地,控制栅加上足够高的电压时,交叠区将产生一个很强 的电场, 在强电场的作用下, 电子通过绝缘层到达浮栅, 使浮栅带负电荷。 这一现象称为“隧 道效应”,因此,该 MOS 管也称为隧道 MOS 管。相反,当控制栅接地漏极加一正电压,则产 生与上述相反的过程,即浮栅放电。与 SIMOS 管相比,隧道 MOS 管也是利用浮栅是否积累 有负电荷来存储二值数据的, 不同的是隧道 MOS 管是利用电擦除的, 并且擦除的速度要快得 多。 EEPROM 电擦除的过程就是改写过程,它是以字为单位进行的。EEPROM 具有 ROM 的非易 失性, 又具备类似 RAM 的功能, 可以随时改写 (可重复擦写 1 万次以上) 目前, 。 大多数 EEPROM 芯片内部都备有升压电路。因此,只需提供单电源供电,便可进行读、擦除/写操作,为数 字系统的设计和在线调试提供了极大的方便。

图 7 隧道 MOS 管剖面结构示意图

图 8 快闪存储器存储单元 MOS 管剖面结构示意图

5) Flash 闪存 快速擦写,但只能按块编程 快闪存储器存储单元的 MOS 管结构与 SIMOS 管类似, 如图 12.2.3 所示。 但有两点不同, 一是快闪存储器存储单元 MOS 管的源极 N+区大于漏极 N+区, SIMOS 管的源极 N+区和漏极 而 N+区是对称的;二是浮栅到 P 型衬底间的氧化绝缘层比 SIMOS 管的更薄。这样,可以通过 在源极上加一正电压,使浮栅放电,从而擦除写入的数据。由于快闪存储器中存储单元 MOS 管的源极是连接在一起的,所以不能象 E2PROM 那样按字擦除,而是类似 EPROM 那样整片擦 除或分块擦除。整片擦除只需要几秒钟,不像 EPROM 那样需要照射 15 到 20 分钟。快闪存储 器中数据的擦除和写入是分开进行的, 数据写入方式与 EPROM 相同, 需输入一个较高的电压, 因此要为芯片提供两组电源。一个字的写入时间约为 200 微秒,一般可以擦除/写入 100 次 以上。 新型的 FLASH,例如 320C3B 等,在常规存储区域后面还有 128Bit 的特殊加密,其中前 64Bit(8 字节)是唯一

器件码(64BitUniqueDeviceIdentifier),每一片 Flash 在出厂时 已经带有,并且同一种 Flash 型号不会有相同的编码,哪怕这个字库是全新空白的字库。后 来 64Bit 为用户可编程 OTP 单元 (64BitUserProgrammableOTPCells) ,可以由用户自用设定, 单只能写入,不能擦除。

㈤ 存储电路是如何工作的

存储器分为RAM(数据存储器)和ROM(程序存储器),他们工作原理都是一样的,即实现对电平0和1的存储。

存储电路的工作原理见下图,你可以把它看懂用自己的语言描述出来,这样你的报告就可以写出来了,然后大规模的存储电路集成起来可以构成存储器。

如果是应付写报告,我给你概括下吧,存储电路的工作原理是:存储电路是把送来的地址信号通过地址译码电路,在存储矩阵中选中相应的存储单元,将该单元存储的数据送到输出端口,为了实现存储器的扩展往往在存储器上加使能信号EN.大规模的存储电路集成封装起来就组成存储器。

㈥ 各种存储器的工作原理是什么

1.按用途分类 ⑴内部存储器 内部存储器又叫内存,是主存储器。用来存储当前正在使用的或经常使用的程序和数据。CPU可以对他直接访问,存取速度较快。 ⑵外部存储器 外部存储器又叫外存,是辅助寄存器。外存的特点是容量大,所存的信息既可以修改也可以保存。存取速度较慢,要用专用的设备来管理。 计算机工作时,一般由内存ROM中的引导程序启动程序,再从外存中读取系统程序和应用程序,送到内存的RAM中,程序运行的中间结果放在RAM中,(内存不够是也可以放在外存中)程序的最终结果存入外部存储器。
2.按存储器的性质分类 ⑴RAM随机存取存储器(Random Access Memory) CPU根据RAM的地址将数据随机的写入或读出。电源切断后,所存数据全部丢失。按照集成电路内部结构不同,RAM又分为两类: ①SRAM静态RAM(Static RAM) 静态RAM速度非常快,只要电源存在内容就不会消失。但他的基本存储电路是由6个MOS管组成1位。集成度较低,功耗也较大。一般高速缓冲存储器(Cache memory)用它组成。 ②DRAM动态RAM(Dynamic RAM) DRAM内容在 或 秒之后自动消失,因此必须周期性的在内容消失之前进行刷新(Refresh)。由于他的基本存储电路由一个晶体管及一个电容组成,因此他的集成成本较低,另外耗电也少,但是需要刷新电路。⑵ROM只读存储器(Read Only Memory) ROM存储器将程序及数据固化在芯片中,数据只能读出不能写入。电源关掉,数据也不会丢失。ROM按集成电路的内部结构可以分为:①PROM可编程ROM(Programable ROM )将设计的程序固化进去,ROM内容不可更改。②EPROM可擦除、可编程(Erasable PROM)可编程固化程序,且在程序固化后可通过紫外线光照擦除,以便重新固化新数据。③EEPROM电可擦除可编程(Electrically Erasable PROM) 可编程固化程序,并可利用电压来擦除芯片内容,以便重新固化新数据。 3、按存储介质分
(1)半导体存储器。 存储元件由半导体器件组成的叫半导体存储器。其优点是体积小、功耗低、存取时间短。其缺点是当电源消失时,所存信息也随即丢失,是一种易失性存储器。
半导体存储器又可按其材料的不同, 分为双极型(TTL)半导体存储器和MOS半导体存储器两种。 前者具有高速的特点,而后者具有高集成度的特点,并且制造简单、成本低廉, 功耗小、故MOS半导体存储器被广泛应用。 (2)磁表面存储器。 磁表面存储器是在金属或塑料基体的表面上涂一层磁性材料作为记录介质,工作时磁层随载磁体高速运转,用磁头在磁层上进行读写操作,故称为磁表面存储器。
按载磁体形状的不同,可分为磁盘、磁带和磁鼓。现代计算机已很少采用磁鼓。由于用具有矩形磁滞回线特性的材料作磁表面物质,它们按其剩磁状态的不同而区分“0”或“1”,而且剩磁状态不会轻易丢失,故这类存储器具有非易失性的特点。
(3)光盘存储器。 光盘存储器是应用激光在记录介质(磁光材料)上进行读写的存储器,具有非易失性的特点。光盘记录密度高、耐用性好、可靠性高和可互换性强等。 4、按存取方式分类
按存取方式可把存储器分为随机存储器、只读存储器、顺序存储器和直接存取存储器四类。
(1)随机存储器RAM RAM是一种可读写存储器, 其特点是存储器的任何一个存储单元的内容都可以随机存取,而且存取时间与存储单元的物理位置无关。计算机系统中的主存都采用这种随机存储器。由于存储信息原理的不同, RAM又分为静态RAM (以触发器原理寄存信息)和动态RAM(以电容充放电原理寄存信息)。
(2)只读存储器 只读存储器是能对其存储的内容读出,而不能对其重新写入的存储器。这种存储器一旦存入了原始信息后,在程序执行过程中,只能将内部信息读出,而不能随意重新写入新的信息去改变原始信息。因此,通常用它存放固定不变的程序、常数以及汉字字库,甚至用于操作系统的固化。它与随机存储器可共同作为主存的一部分,统一构成主存的地址域。
只读存储器分为掩膜型只读存储器MROM(Masked ROM)、可编程只读存储器PROM(Programmable ROM)、可擦除可编程只读存储器EPROM(Erasable Programmable ROM)、用电可擦除可编程的只读存储器EEPROM(Electrically Erasable Programmable ROM)。以及近年来出现了的快擦型存储器Flash Memory,它具有EEPROM的特点,而速度比EEPROM快得多。
(3)串行访问存储器 如果对存储单元进行读写操作时,需按其物理位置的先后顺序寻找地址,则这种存储器叫做串行访问存储器。显然这种存储器由于信息所在位置不同,使得读写时间均不相同。如磁带存储器,不论信息处在哪个位置,读写时必须从其介质的始端开始按顺序寻找,故这类串行访问的存储器又叫顺序存取存储器。还有一种属于部分串行访问的存储器,如磁盘。在对磁盘读写时,首先直接指出该存储器中的某个小区域(磁道),然后再顺序寻访,直至找到位置。故其前段是直接访问,后段是串行访问,也称其为半顺序存取存储器。

㈦ 铁电存储器的原理

FRAM利用铁电晶体的铁电效应实现数据存储,铁电晶体的结构如图1所示。铁电效应是指在铁电晶体上施加一定的电场时,晶体中心原子在电场的作用下运动,并达到一种稳定状态;当电场从晶体移走后,中心原子会保持在原来的位置。这是由于晶体的中间层是一个高能阶,中心原子在没有获得外部能量时不能越过高能阶到达另一稳定位置,因此FRAM保持数据不需要电压,也不需要像DRAM一样周期性刷新。由于铁电效应是铁电晶体所固有的一种偏振极化特性,与电磁作用无关,所以FRAM存储器的内容不会受到外界条件诸如磁场因素的影响,能够同普通ROM存储器一样使用,具有非易失性的存储特性。
FRAM的特点是速度快,能够像RAM一样操作,读写功耗极低,不存在如E2PROM的最大写入次数的问题。但受铁电晶体特性制约,FRAM仍有最大访问(读)次数的限制。

㈧ 存储器的工作原理是什么

动态读写存贮器(DRAM),以其速度快、集成度高、功耗小、价格低在微型计算机中得到极其广泛地使用。但动态存储器同静态存储器有不同的工作原理。它是靠内部寄生电容充放电来记忆信息,电容充有电荷为逻辑1,不充电为逻辑0。欲深入了解动态RAM的基本原理请点击。 动态存储器有多种系列,如61系列、37系列、41系列、21系列等。图示为2164芯片的引脚图。将鼠标指向相应引脚可看到其对引脚功能。它是一个64K 1bit的DRAM芯片,将8片并接起来,可以构成64KB的动态存储器。
每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU 首先将行地址加在A0-A7上,而后送出RAS 锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制 器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。
只读存贮器(ROM)有多种类型。由于EPROM和EEPROM存贮容量大,可多次擦除后重新对它进行编程而写入新的内容,使用十分方便。尤其是厂家为用户提供了单独地擦除器、编程器或插在各种微型机上的编程卡,大大方便了用户。因此,这种类型的只读存贮器得到了极其广泛的应用。7. RAM的工作时序
为保证存储器准确无误地工作,加到存储器上的地址、数据和控制信号必须遵守几个时间边界条件。
图7.1—3示出了RAM读出过程的定时关系。读出操作过程如下:
欲读出单元的地址加到存储器的地址输入端;
加入有效的选片信号CS;
在 线上加高电平,经过一段延时后,所选择单元的内容出现在I/O端;
让选片信号CS无效,I/O端呈高阻态,本次读出过程结束。
由于地址缓冲器、译码器及输入/输出电路存在延时,在地址信号加到存储器上之后,必须等待一段时间tAA,数据才能稳定地传输到数据输出端,这段时间称为地址存取时间。如果在RAM的地址输入端已经有稳定地址的条件下,加入选片信号,从选片信号有效到数据稳定输出,这段时间间隔记为tACS。显然在进行存储器读操作时,只有在地址和选片信号加入,且分别等待tAA和tACS以后,被读单元的内容才能稳定地出现在数据输出端,这两个条件必须同时满足。图中tRC为读周期,他表示该芯片连续进行两次读操作必须的时间间隔。
写操作的定时波形如图7.1—4所示。写操作过程如下:
将欲写入单元的地址加到存储器的地址输入端;
在选片信号CS端加上有效电平,使RAM选通;
将待写入的数据加到数据输入端;
在 线上加入低电平,进入写工作状态;
使选片信号无效,数据输入线回到高阻状态。
由于地址改变时,新地址的稳定需要经过一段时间,如果在这段时间内加入写控制信号(即 变低),就可能将数据错误地写入其他单元。为防止这种情况出现,在写控制信号有效前,地址必须稳定一段时间tAS,这段时间称为地址建立时间。同时在写信号失效后,地址信号至少还要维持一段写恢复时间tWR。为了保证速度最慢的存储器芯片的写入,写信号有效的时间不得小于写脉冲宽度tWP。此外,对于写入的数据,应在写信号tDW时间内保持稳定,且在写信号失效后继续保持tDH时间。在时序图中还给出了写周期tWC,它反应了连续进行两次写操作所需要的最小时间间隔。对大多数静态半导体存储器来说,读周期和写周期是相等的,一般为十几到几十ns。
ddr一个时钟周期内穿2次数据
ddr2一个时钟周期传4次
所以相同频率下ddr2的带宽是ddr的2倍