㈠ 图的存储结构——所存储的信息有哪些
一、邻接矩阵存储方法
邻接矩阵是表示顶点之间相邻关系的矩阵。
设G=(V,E)是具有n(n>0)个顶点的图,顶点的顺序依次为0~n-1,则G的邻接矩阵A是n阶方阵,其定义如下:
(1)如果G是无向图,则:
A[i][j]=1:若(i,j)∈E(G) 0:其他
(2)如果G是有向图,则:
A[i][j]=1:若<i,j>∈E(G) 0:其他
(3)如果G是带权无向图,则:
A[i][j]= wij :若i≠j且(i,j)∈E(G) 0:i=j ∞:其他
(4)如果G是带权有向图,则:
A[i][j]= wij :若i≠j且<i,j>∈E(G) 0:i=j∞:其他
注意:带权图和不带权图表示的元素类型不同。
带权图(不论有向还是无向图)A[i][j]用double表示,不带权图(不论有向还是无向图)A[i][j]用int表示。
用一维数组G[ ]存储有4个顶点的无向图如:G[ ] = { 0, 1, 0, 1, 1, 0, 0, 0, 1, 0 }
则顶点2和顶点0之间是有边的。
如:
邻接矩阵的特点如下:
(1)图的邻接矩阵表示是唯一的。
(2)无向图的邻接矩阵一定是一个对称矩阵。因此,按照压缩存储的思想,在具体存放邻接矩阵时只需存放上(或下)三角形阵的元素即可。
(3)不带权的有向图的邻接矩阵一般来说是一个稀疏矩阵。因此,当图的顶点较多时,可以采用三元组表的方法存储邻接矩阵。
(4)对于无向图,邻接矩阵的第i行(或第i列)非零元素(或非∞元素)的个数正好是第i个顶点的度。
(5)对于有向图,邻接矩阵的第i行(或第i列)非零元素(或非∞元素)的个数正好是第i个顶点的出度(或入度)。
(6)用邻接矩阵方法存储图,很容易确定图中任意两个顶点之间是否有边相连。但是,要确定图中有多少条边,则必须按行、按列对每个元素进行检测,所花费的时间代价很大。这是用邻接矩阵存储图的局限性。
邻接矩阵的数据类型定义如下:
#define MAXV <最大顶点个数>
typedef struct
{ int no; //顶点编号
InfoType info; //顶点其他信息
} VertexType; //顶点类型
typedef struct //图的定义
{ int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵表示类型
二、 邻接表存储方法
图的邻接表存储方法是一种顺序分配与链式分配相结合的存储方法。
在邻接表中,对图中每个顶点建立一个单链表,第i个单链表中的节点表示依附于顶点i的边(对有向图是以顶点i为尾的边)。每个单链表上附设一个表头节点。
其中,表节点由三个域组成,adjvex指示与顶点i邻接的点在图中的位置,nextarc指示下一条边或弧的节点,info存储与边或弧相关的信息,如权值等。
表头节点由两个域组成,data存储顶点i的名称或其他信息,firstarc指向链表中第一个节点。
typedef struct ANode
{ int adjvex; //该边的终点编号
struct ANode *nextarc; //指向下一条边的指针
InfoType info; //该边的相关信息
} ArcNode; //边表节点类型
typedef struct Vnode
{ Vertex data; //顶点信息
ArcNode *firstarc; //指向第一条边
} VNode; //邻接表头节点类型
typedef VNode AdjList[MAXV]; //AdjList是邻接表类型
typedef struct
{ AdjList adjlist; //邻接表
int n,e; //图中顶点数n和边数e
} ALGraph; //完整的图邻接表类型
邻接表的特点如下:
(1)邻接表表示不唯一。这是因为在每个顶点对应的单链表中,各边节点的链接次序可以是任意的,取决于建立邻接表的算法以及边的输入次序。
(2)对于有n个顶点和e条边的无向图,其邻接表有n个顶点节点和2e个边节点。显然,在总的边数小于n(n-1)/2的情况下,邻接表比邻接矩阵要节省空间。
(3)对于无向图,邻接表的顶点i对应的第i个链表的边节点数目正好是顶点i的度。
(4)对于有向图,邻接表的顶点i对应的第i个链表的边节点数目仅仅是顶点i的出度。其入度为邻接表中所有adjvex域值为i的边节点数目。
例, 给定一个具有n个节点的无向图的邻接矩阵和邻接表。
(1)设计一个将邻接矩阵转换为邻接表的算法;
(2)设计一个将邻接表转换为邻接矩阵的算法;
(3)分析上述两个算法的时间复杂度。
解:
(1)在邻接矩阵上查找值不为0的元素,找到这样的元素后创建一个表节点并在邻接表对应的单链表中采用前插法插入该节点。
void MatToList(MGraph g,ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{ int i,j,n=g.n; ArcNode *p; //n为顶点数
G=(ALGraph *)malloc(sizeof(ALGraph));
for (i=0;i<n;i++) //给所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0;i<n;i++) //检查邻接矩阵中每个元素
for (j=n-1;j>=0;j--)
if (g.edges[i][j]!=0)
{ p=(ArcNode *)malloc(sizeof(ArcNode));
//创建节点*p
p->adjvex=j;
p->nextarc=G->adjlist[i].firstarc;
//将*p链到链表头
G->adjlist[i].firstarc=p;
}
G->n=n;G->e=g.e;
}
(2)在邻接表上查找相邻节点,找到后修改相应邻接矩阵元素的值。
void ListToMat(ALGraph *G,MGraph &g)
{ int i,j,n=G->n;ArcNode *p;
for (i=0;i<n;i++)
{ p=G->adjlist[i].firstarc;
while (p!=NULL)
{ g.edges[i][p->adjvex]=1;
p=p->nextarc;
}
}
g.n=n;g.e=G->e;
}
(3)算法1的时间复杂度均为O(n2)。算法2的时间复杂度为O(n+e),其中e为图的边数。
㈡ 图的存储结构
邻接矩阵:
有向图的邻接矩阵
具有n个顶点的有向图可以用一个n′n的方形矩阵表示。假设该矩阵的名称为M,则当<vi,vj>是该有向图中的一条弧时,M[i,j]=1;否则M[i,j]=0。第i个顶点的出度为矩阵中第i行中"1"的个数;入度为第i列中"1"的个数,并且有向图弧的条数等于矩阵中"1"的个数。
无向图的邻接矩阵
具有n个顶点的无向图也可以用一个n′n的方形矩阵表示。假设该矩阵的名称为M,则当(vi,vj)是该无向图中的一条边时,M[i,j]=M[j,i]=1;否则,M[i,j]=M[j,j]=0。第i个顶点的度为矩阵中第i 行中"1"的个数或第i列中"1"的个数。图中边的数目等于矩阵中"1"的个数的一半,这是因为每条边在矩阵中描述了两次。
在C 语言中,实现邻接矩阵表示法的类型定义如下所示: #defineMAX_VERTEX_NUM20typedefstructgraph{Elemtypeelem[MAX_VERTEX_NUM][MAX_VERTEX_NUM];intn;}Graph;邻接表
边结点的结构为:
adjvex是该边或弧依附的顶点在数组中的下标,next是指向下一条边或弧结点的指针
elem是顶点内容,firstedge是指向第一条边或弧结点的指针。
在C语言中,实现邻接表表示法的类型定义如下所示: #defineMAX_VERTEX_NUM30//最大顶点个数typestructEdgeLinklist{//边结点intadjvex;structEdgeLinklist*next;}EdgeLinklist;typedefstructVexLinklist{//顶点结点Elemtypeelem;EdgeLinklist*firstedge;}VexLinklist,AdjList[MAX_VERTEX_NUM];创建有向图和无向图邻接表的算法实现:
(1) 创建有向图邻接表 voidCreate_adj(AdjListadj,intn){for(i=0;i<n;i++){//初始化顶点数组scanf(&adj.elem);adj.firstedge=NULL;}scanf(&i,&j);//输入弧while(i){s=(EdgeLinklist*)malloc(sizeof(EdgeLinklist));//创建新的弧结点s->adgvex=j-1;s->next=adj[i-1].firstedge;//将新的弧结点插入到相应的位置adj[i-1].firstegde=s;scanf(&i,&j);//输入下一条弧}}(2)创建无向图的邻接表 voidCreate_adj(AdjListadj,intn){for(i=0;i<n;i++){//初始化邻接表scanf(&adj.elem);adj.firstedge=NULL;}scanf(&i,&j);//输入边while(i){s1=(EdgeLinklist*)malloc(sizeof(EdgeLinklist));s1->adgvex=j-1;s2=(EdgeLinklist*)malloc(sizeof(EdgeLinklist));s2->adgvex=i-1;s1->next=adj[i-1].firstedge;adj[i-1].firstegde=s1;s2->next=adj[j-1].firstedge;adj[j-1].firstegde=s2;scanf(&i,&j);}}
㈢ 用邻接表表示图的广度优先搜索时的存储结构,通常采用()结构来实现算法
B。
广度优先搜索相当于层次遍历,深度优先搜索相当于先序优先遍历,所以答案选择B。
邻接表表示的图的广度优先搜索一般采用队列结构来实现算法:
首先选择一个起始节点,把它的临界表中节点加入到队列中,每次取出队首元素,然后把该元素的邻接表中的节点加入到队列末尾,标记已遍历过的节点,直到队列中没有节点为止,一般栈用于深度优先搜索,队列用于广度优先搜索。
(3)图文存储结构算法扩展阅读:
深度优先搜索用一个数组存放产生的所有状态。
(1) 把初始状态放入数组中,设为当前状态;
(2) 扩展当前的状态,产生一个新的状态放入数组中,同时把新产生的状态设为当前状态;
(3) 判断当前状态是否和前面的重复,如果重复则回到上一个状态,产生它的另一状态;
(4) 判断当前状态是否为目标状态,如果是目标,则找到一个解答,结束算法。
㈣ 采用顺序存储方法和链式存储方法分别画出图6.1所示二叉树的存储结构。【在线等】
线性是线性,顺序是顺序,线性是逻辑结构,顺序是储存结构,两者不是一个概念。线性是指一个节点只有一个子节点,而树,或二叉树一个节点后有多个子节点,且子节点不能相互联系。
顺序存储可能会浪费空间(在非完全二叉树的时候),但是读取某个指定的节点的时候效率比较高。
链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低。
二叉树的顺序存储,寻找后代节点和祖先节点都非常方便,但对于普通的二叉树,顺序存储浪费大量的存储空间,同样也不利于节点的插入和删除。因此顺序存储一般用于存储完全二叉树。
链式存储相对顺序存储节省存储空间,插入删除节点时只需修改指针,但回寻找指定节点时很不方便。不过普通答的二叉树一般是用链式存储结构。
(4)图文存储结构算法扩展阅读:
(1)完全二叉树——若设二叉树的高度为h,除第h层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。
(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。
(3)平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
二叉树是树的一种特殊情形,是一种更简单而且应用更加广泛的树。
㈤ 数据库技术知识数据结构的算法
数据库技术知识数据结构的算法
对于将要参加计算机等级考试的考生来说,计算机等级考试的知识点辅导是非常重要的复习资料。以下是我收集的数据库技术知识数据结构的算法,希望大家认真阅读!
1、数据:数据的基本单位是数据元素。数据元素可由一个或多个数据项组成。数据项是数据的不可分割的最小单位
2、数据结构:数据的逻辑结构、数据的存储结构、数据的运算
3、主要的数据存储方式:顺序存储结构(逻辑和物理相邻,存储密度大)和链式存储结构
顺序存储结构:
顺序存储计算公式 Li=L0+(i-1)×K 顺序结构可以进行随机存取;插人、删除运算会引起相应节点的大量移动
链式存储结构:a、指针域可以有多个,可以指向空,比比顺序存储结构的存储密度小
b、逻辑上相邻的节点物理上不一定相邻。 c、插人、删除等不需要大量移动节点
4、顺序表:一般情况下,若长度为n的顺序表,在任何位置插入或删除的概率相等,元素移动的平均次数为n/2(插入)和(n-1)/2(删除)。
5、链表:线性链表(单链表和双向链表等等)和非线性链表
线性链表也称为单链表,其每个一节点中只包含一个指针域,双链表中,每个节点中设置有两个指针域。(注意结点的插入和删除操作)
6、栈:“后进先出”(LIFO)表。栈的应用:表达式求解、二叉树对称序周游、快速排序算法、递归过程的实现等
7、队列:“先进先出”线性表。应用:树的层次遍历
8、串:由零个或多个字符组成的有限序列。
9、多维数组的顺序存储:
10、稀疏矩阵的存储:下三角矩阵顺序存储
其他常见的存储方法还有三元组法和十字链表法
11、广义表:由零个或多个单元素或子表所组成的有限序列。广义表的元素可以是子表,而子表的元素还可以是子表
12、树型结构:非线性结构。常用的树型结构有树和二叉树。
二叉树与树的区别:二叉树不是树的特殊情况,树和二叉树之间最主要的区别是:二叉树的节点的子树要区分左子树和右子树,即使在节点只有一棵子树的情况下也要明确指出该子树是左子树还是右子树。
13、树(森林)与二叉树之间的转换(要会转换)
14、二叉树和树的周游(遍历)
二叉树的周游主要有以下3种方式:前序法(NLR)、对称序法(LNR)、后序法(LRN)
周游树和树林:深度优先和按广度优先两种方式进行。深度优先方式又可分为按先根次序和按后根次序周游
树与二叉树周游之间的对应关系:按先根次序周游树正好与按前序法周游树对应的二叉树等同,后根次序周游树正好与按对称序法周游对应的`二叉树等同
按广度优先方式就是层次次序周游
15、二叉树的存储和线索
二叉树的存储结构:二叉树的llink一rlink法存储表示
线索二叉树:在有n个节点的二叉树的且llink - rlink法存储表示中,必定有n+1个空指针域
16、哈夫曼树:一类带权路径长度最短的树。树的带权路径长度为树中所有叶子节点的带权路径长度之和WPL。
17、查找:
(1)顺序查找:平均查找长度为(n +1 )/2次,时间复杂度为O(n)
(2)二分法查找:线性表节点必须按关键码值排序,且线性表是以顺序存储方式存储的。查找成功比较次数log2n,查找失败比较次数log2n+1
(3)分块查找:先是块间查找,然后块内查找。
(4)散列表(哈希表Hash)的存储和查找:处理冲突的方法:开地址法(线性探测法)、拉链法等
负载因子(装填因子)=表实际存储的结点个数/表的最大能存储结点个数(即表长)
二叉排序树:每个结点左子树的所有关键码值都小于该结点关键码值,右子树所有结点关键码值都大于该结点关键码值。对称周游二叉排序树,得到一个有序序列,时间复杂度O(log2n)
B树和B+树:M阶树,每个结点至多有M-1个关键码,至少有M/2(取上界)-1个关键码。B树适合随机查找,不适合顺序查找。B+树适合顺序查找。
18、排序
直接插人排序、希尔排序、直接选择排序、堆排序、起泡排序、快速排序等排序算法要了解。
直接选择排序、希尔排序、快速排序和堆排序是不稳定排序,其他排序为稳定排序
;㈥ 数据的存储结构及数据的运算之间存在着怎样的关系
需要达到<识记>层次的基本概念和术语有:数据、数据元素、数据项、数据结构。特别是数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系。数据结构的两大类逻辑结构和四种常用的存储表示方法。
需要达到<领会>层次的内容有算法、算法的时间复杂度和空间复杂度、最坏的和平均时间复杂度等概念,算法描述和算法分析的方法、对一般的算法要能分析出时间复杂度。对于基本概念,仔细看书就能够理解,这里简单提一下:数据就是指能够被计算机识别、存储和加工处理的信息的载体。数据元素是数据的基本单位,有时一个数据元素可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。如整数这个集合中,10这个数就可称是一个数据元素.又比如在一个数据库(关系式数据库)中,一个记录可称为一个数据元素,而这个元素中的某一字段就是一个数据项。数据结构的定义虽然没有标准,但是它包括以下三方面内容:逻辑结构、存储结构、和对数据的操作。这一段比较重要,我用自己的语言来说明一下,大家看看是不是这样。
比如一个表(数据库),我们就称它为一个数据结构,它由很多记录(数据元素)组成,每个元素又包括很多字段(数据项)组成。那么这张表的逻辑结构是怎么样的呢? 我们分析数据结构都是从结点(其实也就是元素、记录、顶点,虽然在各种情况下所用名字不同,但说的是同一个东东)之间的关系来分析的,对于这个表中的任一个记录(结点),它只有一个直接前趋,只有一个直接后继(前趋后继就是前相邻后相邻的意思),整个表只有一个开始结点和一个终端结点,那我们知道了这些关系就能明白这个表的逻辑结构了。
而存储结构则是指用计算机语言如何表示结点之间的这种关系。如上面的表,在计算机语言中描述为连续存放在一片内存单元中,还是随机的存放在内存中再用指针把它们链接在一起,这两种表示法就成为两种不同的存储结构。(注意,在本课程里,我们只在高级语言的层次上讨论存储结构。) 第三个概念就是对数据的运算,比如一张表格,我们需要进行查找,增加,修改,删除记录等工作,而怎么样才能进行这样的操作呢? 这也就是数据的运算,它不仅仅是加减乘除这些算术运算了,在数据结构中,这些运算常常涉及算法问题。
弄清了以上三个问题,就可以弄清数据结构这个概念。
㈦ 图的五种存储结构
图的邻接矩阵(Adjacency Matrix): 图的邻接矩阵用两个数组来表示图。一个一维数组存储图中顶点信息,另一个二维数组(一般称之为邻接矩阵)来存储图中的边或者弧的信息。从邻接矩阵中我们自然知道一个顶点的度(对于无向图)或者有向图中一个顶点的入度出度信息。
假设图G有n个顶点,则邻接矩阵是一个n*n的方阵。
1.对于如果图上的每条边不带权值来说,那么我们就用真(一般为1)和假(一般为0)来表示一个顶点到另一个顶点存不存在边。下面是一个图的邻接矩阵的定义:
邻接矩阵法实现带权值的无向图的创建如下:
按照如图输入各边(不重复)
测试程序如下:
结果可得该矩阵,证明创建树成功。 假设n个顶点e条边的创建,createGraph算法的时间复杂度为O(n+n*n+e)。如果需要创建一个有向图,那么和上面一样一个一个录入边下标和权值。
邻接矩阵这种存储结构的优缺点: 缺点是对于边数相对顶点较少的稀疏图来说会存在极大的空间浪费。假设有n个顶点,优点是对于有向完全图和无向完全图来说邻接矩阵是一种不错的存储结构,浪费的话也只浪费了n个顶点的容量。
在树的存储结构一节中我们提到对于孩子表示法的第三种:用一段连续的存储单元(数组)存储树中的所有结点,利用一个单链表来存储数组中每个结点的孩子的信息。对于图的存储结构来说,我们也可以利用这种方法实现图的存储
邻接表(Adjacency List): 这种数组与链表相结合的存储方法叫做邻接表。1.为什么不也用单链表存储图的结点信息呢?原因就是数组这种顺序存储结构读取结点信息速率快。对于顶点数组中,每个数据元素还需要存储一个指向第一个邻接顶点的指针,这样才可以查找边的信息2.图中每个顶点Vi(i > 0)的所有邻接点构成一个线性表 (在无向图中这个线性表称为Vi的边表,有向图中称为顶点作为弧尾的出边表) ,由于邻接点的不确定性,所以用链表存储,有多少个邻接点就malloc一个空间存储邻接点,这样更不会造成空间的浪费(与邻接矩阵相比来说)。3.对于邻接表中的某个顶点来说,用户关心的是这个顶点的邻接点,完全可以遍历用单链表设计成的边表或者出边表得到,所以没必要设计成双链表。
邻接表的存储结构:
假设现在有一无向图G,如下图:
从邻接表结构中,知道一个顶点的度或者判断两个顶点之间是否存在边或者求一个顶点的所有邻接顶点是很容易的。
假设现在有一有向图G,如下图:
无向图的邻接表创建示例如下:
假设在上图(无向图)中的V0V1V2V3顶点值为ABCD,则依据下面测试程序可得结果:
邻接表的优缺点: 优点是:邻接表存储图,既能够知道一个顶点的度和顶点的邻接结点的信息,并且更不会造成空间的浪费。缺点是邻接表存储有向图时,如果关心的是顶点的出度问题自然用邻接表结构,但是想了解入度需要遍历图才知道(需要考虑逆邻接表)。
十字链表(Orthogonal List) :有向图的一种存储方法,它把邻接表和逆邻接表结合起来,因此在十字链表结构中可以知道一个顶点的入度和出度情况。
重新定义顶点表的结点如下图:
现在有一有向图如下图:
则它的存储结构示意图为:
其定义如下:
十字链表是用来存储有向图的,这样可以看出一个顶点的出入度信息。对于无向图来说完全没必要用十字链表来存储。
在无向图中,因为我们关注的是顶点的信息,在考虑节约空间的情况下我们利用邻接表来存储无向图。但是如果我们关注的是边的信息,例如需要删除某条边对于邻接表来说是挺繁琐的。它需要操作两个单链表删除两个结点。因此我们仿照十字链表的方式对边表结点结构重新定义如下图:
它的邻接多重表结构为:
多重邻接表的优点:对于边的操作相比于邻接表来说更加方便。比如说我们现在需要删除(V0,V2)这条边,只需将69步骤中的指针改为nullptr即可。
边集数组(edgeset array): 边集数组是由两个数组组成,一个存储顶点信息,另一个存储边的信息,这个边数组中的每个数据元素由起点下标,终点下标,和权组成(如果边上含有权值的话)。
边数组结构如下图:
边集数组实现图的存储的优缺点:优点是对于边的操作方便快捷,操作的只是数组元素。比如说删除某条边,只需要删除一个数组元素。缺点是:对于图的顶点信息,我们只有遍历整个边数组才知道,这个费时。因此对于关注边的操作来说,边集数组更加方便。
㈧ 海量数据存储结构和算法
下面的存储过程不仅含有分页方案,还会根据页面传来的参数来确定是否进行数据总数统计。
-- 获取指定页的数据
CREATE PROCEDURE pagination3
@tblName varchar(255), -- 表名
@strGetFields varchar(1000) = '*', -- 需要返回的列
@fldName varchar(255)='', -- 排序的字段名
@PageSize int = 10, -- 页尺寸
@PageIndex int = 1, -- 页码
@doCount bit = 0, -- 返回记录总数, 非 0 值则返回
@OrderType bit = 0, -- 设置排序类型, 非 0 值则降序
@strWhere varchar(1500) = '' -- 查询条件 (注意: 不要加 where)
AS
declare @strSQL varchar(5000) -- 主语句
declare @strTmp varchar(110) -- 临时变量
declare @strOrder varchar(400) -- 排序类型
if @doCount != 0
begin
if @strWhere !=''
set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere
else
set @strSQL = "select count(*) as Total from [" + @tblName + "]"
end
--以上代码的意思是如果@doCount传递过来的不是0,就执行总数统计。以下的所有代码都是@doCount为0的情况
else
begin
if @OrderType != 0
begin
set @strTmp = "<(select min"
set @strOrder = " order by [" + @fldName +"] desc"
--如果@OrderType不是0,就执行降序,这句很重要!
end
else
begin
set @strTmp = ">(select max"
set @strOrder = " order by [" + @fldName +"] asc"
end
if @PageIndex = 1
begin
if @strWhere != ''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from [" + @tblName + "] where " + @strWhere + " " + @strOrder
else
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["+ @tblName + "] "+ @strOrder
--如果是第一页就执行以上代码,这样会加快执行速度
end
else
begin
--以下代码赋予了@strSQL以真正执行的SQL代码
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder
if @strWhere != ''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["
+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["
+ @fldName + "] from [" + @tblName + "] where " + @strWhere + " "
+ @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder
end
end
exec (@strSQL)
GO
上面的这个存储过程是一个通用的存储过程,其注释已写在其中了。