❶ 大数据面试题及答案谁能分享一下
大数据时代才刚刚开始。随着越来越多的公司倾向于大数据运营,人才需求达到历史最高水平。这对你意味着什么?如果您想在任何大数据岗位上工作,它只能转化为更好的机会。您可以选择成为数据分析师,数据科学家,数据库管理员,大数据工程师,Hadoop大数据工程师等。在本文中,慧都网将介绍与大数据相关的前10大数据面试问题。
以下是最重要的大数据面试问题以及具体问题的详细解答。对于更广泛的问题,答案取决于您的经验,我们将分享一些如何回答它们的提示。
10个大数据面试入门级问题
无论何时进行大数据采访,采访者都可能会询问一些基本问题。无论您是大数据领域的新手还是经验丰富,都需要基础知识。因此,让我们来介绍一些常见的基本大数据面试问题以及破解大数据面试的答案。
1.您对“大数据”一词有何了解?
答:大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是使用特殊工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还允许公司采取数据支持的更好的业务决策。
2.大数据的五个V是什么?
答:大数据的五个V如下:
Volume -Volume表示体积大,即以高速率增长的数据量,即以PB为单位的数据量
Velocity -Velocity是数据增长的速度。社交媒体在数据增长速度方面发挥着重要作用。
Variety -Variety是指不同的数据类型,即各种数据格式,如文本,音频,视频等。
Veracity -Veracity是指可用数据的不确定性。由于大量数据带来不完整性和不一致性,因此产生了准确性。
Value -价值是指将数据转化为价值。通过将访问的大数据转换为价值,企业可以创造收入。
ResourceManager-该组件接收处理请求,并根据处理需要相应地分配给各个NodeManager。
NodeManager-它在每个单个数据节点上执行任务
处理
数据采集
HDFS在一组计算机上运行,而NAS在单个计算机上运行。因此,数据冗余是HDFS中的常见问题。相反,复制协议在NAS的情况下是不同的。因此,数据冗余的可能性要小得多。
在HDFS的情况下,数据作为数据块存储在本地驱动器中。在NAS的情况下,它存储在专用硬件中。
YARN的两个主要组成部分:
7.为什么Hadoop可用于大数据分析?
答:由于数据分析已成为业务的关键参数之一,因此,企业正在处理大量结构化,非结构化和半结构化数据。在Hadoop主要支持其功能的情况下,分析非结构化数据非常困难
此外,Hadoop是开源的,可在商用硬件上运行。因此,它是企业的成本效益解决方案。
8.什么是fsck?
答:fsck代表文件系统检查。它是HDFS使用的命令。此命令用于检查不一致性以及文件中是否存在任何问题。例如,如果文件有任何丢失的块,则通过此命令通知HDFS。
9. NAS(网络附加存储)和HDFS之间的主要区别是什么?
答:NAS(网络附加存储)和HDFS之间的主要区别 -
10.格式化NameNode的命令是什么?
答:$ hdfs namenode -format。
欢迎咨询慧都在线客服,我们将帮您转接大数据专家团队,并发送相关资料给您!
以上就是大数据面试题及答案,希望我的回答对您有帮助!
❷ (1)什么是安全大数据
《中华人民共和国数据安全法》中第三条,给出了数据安全的定义,是指通过采取必要措施,确保数据处于有效保护和合法利用的状态,以及具备保障持续安全状态的能力。要保证数据处理的全过程安全,数据处理,包括数据的收集、存储、使用、加工、传输、提供、公开等。
信息安全或数据安全有对立的两方面含义:
一是数据本身的安全,主要是指采用现代密码算法对数据进行主动保护,如数据保密、数据完整性、双向强身份认森手证等,
二是唯扒数据防护的安全,主要是采用现代信息存储此山嫌手段对数据进行主动防护,如通过磁盘阵列、数据备份、异地容灾等手段保证数据的安全,数据安全是一种主动的保护措施,数据本身的安全必须基于可靠的加密算法与安全体系,主要是有对称算法与公开密钥密码体系两种。
❸ 大数据存在的安全问题有哪些
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❹ 第三章 大数据存储
一,HDFS的基本特征与构架
1.基本特征
(1)大规模数据分布存储能力:以分布式存储能力和良好的可扩展性。(基于大量分布节点上的本地文件系统,构建一个逻辑上具有巨大容量的分布式文件系统,并且整个文件系统的容量可随集群中节点的增加而线性扩展)
(2)高并发访问能力:提供很高的数据访问宽带(高数据吞吐率),并且可以把带宽的大小等比例扩展到集群中的全部节点上
(3)强大的容错能力:(设计理念中硬件故障被视作常态)保证在经常有节点发生硬件故障的情况下正确检测硬件故障,并且能自动从故障中快速恢复,确保数据不丢失(采用多副本数据块形式存储)
(4)顺序式文件访问:(大数据批处理都是大量简单数据记录的顺序处理)对顺序读进行了优化,支持大量数据的快速顺序读出,代价是对于随机的访问负载较高
(5)简单的一致性模型(一次写多次读):支持大量数据的一次写入,多次读取;不支持已写入数据的更新操作,但允许在文件尾部添加新的数据
(6)数据块存储模式:默认的块大小是64MB。好处:减少元数据的数量,允许这些数据块通过随机方式选择节辩局睁点,分布存储在不同地方
2.基本框架与工作过程
(1)基本组成结构与文件访问过程
[1]HDFS;一个建立在一组分布式服务器节点的本地文件系统之上的分布式文件系统(采用经典主-从结构)
[2]主控节点NameNode:
1)是一个主服务器,用来管理整个文件系统的命名空间和元数据,以及处理来自外界的文件访问请求
2)保存了文件系统的三中元数据
命名空间:整个分布式文件系统的目录结构
数据块与文件名的映射表
每个数据块副本的位置信息,每一个数据块默认有3个副本
[3]从节点DataNode:
1)用来实际存储和管理文件的数携岁据块
2)为了防止数据丢失,每个数据块默认有3个副本,且3个副本会分别复制在不同节点上,以避免一个节点失效造成一个数据块的彻底丢失
[4]程序访问文件时,实际文件数据流并不会通过NameNode传送,而是从NameNode获得所需访问数据块的存储位置信息后,直接去访问对应的DataNode获取数据
[5]设计好处:
1)可以允许一个文件的数据能同时在不同DataNode上并发访问,提高数据访问的速度
2)减少NameNode的负担,避免使NameNode成为数据访问瓶颈
[6]基本访问过程:
1)首先,用户的应用程序通过HDFS的客户端程序将文件名发送至NameNode
2)NameNode接收到文件名之后,在HDFS目录中检索文件名对应的数据块,再根据数据块信息找到保存数据块的DataNode地址,讲这些地址回送到客户端
3)客户端接收到这些DataNode地址之后,与这些DataNode并行的进行数据传输操作,同时将操作结腊兆果的相关日志提交到NameNode
2.数据块
(1)为了提高硬盘的效率,文件系统中最小的数据读写单元是数据块
(2)HDFS数据块的默认大小是64MB,实际部署中,可能会更多
(3)将数据块设置大的原因是减少寻址开销的时间
(4)当应用发起数据传输请求:
[1]NameNode首先检索文件对应的数据块信息,找到数据块对应的DataNode
[2]DataNode根据数据块信息在自身的存储中寻找相应的文件,进而与应用程序之间交换数据
[3]因为检索过程是但进行,所以要增加数据块大小,这样就可以减少寻址的频度和时间开销
3.命名空间
(1)文件命名遵循“目录/子目录/文件”格式
(2)通过命令行或者是API可以创建目录,并且将文件保存在目录中。可以对文件进行创建,删除,重命名操作
(3)命令空间由NameNode管理。所有对命名空间的改动都会被记录
(4)允许用户配置文件在HDFS上保存的副本数量,保存的副本数称作“副本因子”
4.通信协议
(1)采用TCP协议作为底层的支撑协议
(2)应用协议
[1]应用可以向NameNode主动发起TCP连接
[2]应用和NameNode交互协议称为Client协议
[3]NameNode和DataNode交互的协议称为DataNode协议
(3)用户和DataNode的交互是通过发起远程调用(RPC),并由NameNode响应来完成的。另外,NameNode不会主动发起远程过程调用请求
5.客户端:是用户和HDFS通信最常见的渠道,部署的HDFS都会提供客户端
二,HDFS可靠性设计
1.HDFS数据块多副本存储设计
(1)采用了在系统中保存多个副本的方式保存数据,且同一个数据块的多个副本会存放在不同节点上
(2)优点:
[1]采用多副本,可以让客户从不同数据块中读取数据,加快传输速度
[2]HDFS的DataNode之间通过网络传输数据,如果采用多个副本可以判断数据传输是否出错
[3]多副本可以保证某个DataNode失效的情况下,不会丢失数据
2.可靠性的设计实现
(1)安全模式:
[1]HDFS启动时,NameNode进入安全模式
[2]处于安全模式的NameNode不能做任何文本操作,甚至内部的副本创建不允许
[3]NameNode需要和各个DataNode通信,获得其中保存的数据块信息,并对数据块信息进行检查
[4]只有通过了NameNode检查,一个数据块被认为安全。当被认为安全的数据块所占比例达到某个阈值,NameNode退出
(2)SecondaryNmaeNode
[1]使用它来备份NameNode元数据,以便在其失效时能从中恢复出其上的元数据
[2]它充当NameNode的一个副本,本身并不处理任何请求。
[3]作用:周期性保存NameNode的元数据
(3)心跳包和副本重新创建
[1]心跳包:位于HDFS核心的NameNode,通过周期性的活动检查DataNode的活动
[2]检测到DataNode失效,保存在其上的数据不可用。则其上保存的副本需要重新创建这个副本,放到另外可用的地方
(4)数据一致性
[1]采用了数据校验和机制
[2]创建文件时,HDFS会为这个文件生成一个校验和,校验和文件和文件本身保存在同一空间上,
[3]传输数据时会将数据与校验和一起传输,应用收到数据后可以进行校验
(5)租约
[1]防止同一个文件被多个人写入数据
[2]NameNode保证同一个文件只会发放一个允许的租约,可以有效防止出现多人写入的情况
(6)回滚
三,HDFS文件存储组织与读写
1.文件数据的存储组织
(1)NameNode目录结构
[1]借助本地文件系统来保存数据,保存文件夹位置由配置选项({dfs.name.dir}/{/tmp/dfs/name})决定
[2]在NameNode的${dfs.name.dir}之下有3个文件夹和1个文件:
1)current目录:
文件VERSION:保存了当前运行的HDFS版本信息
FsImages:是整个系统的空间镜像文件
Edit:EditLog编辑文件
Fstime:上一次检查点时间
2)previous.checkpoint目录:和上一个一致,但是保存的是上一次检查点的内容
3)image目录:旧版本的FsImage存储位置
4)in_use.look:NameNode锁,只在NameNode有效(启动并且能和DataNode正常交互)时存在。
(2)DataNode目录结构
[1]借助本地文件系统来保存数据。保存文件夹位置由配置选项{dfs.data.dir}决定
[2]在其之下有4个子目录和2个文件
1)current目录:已经成功写入的数据块,以及一些系统需要的文件
a)文件VERSION:保存了当前运行的HDFS版本信息
b)subdirXX:当同一目录下文件超过一定限制,新建一个目录,保存多出来的数据块和元数据
2)tmp目录和blockBeingWritten目录:正在写入的数据块,是HDFS系统内部副本创建时引发的写入操作对应的数据块
3)detach目录:用于DataNode升级
4)Storage目录:防止版本不同带来风险
5)in_user.lock文件:DataNode锁。只有在DataNode有效时存在。
(3)CheckPointNode目录结构:和上一个基本一致
2.数据的读写过程
(1)数据读取过程
[1]首先,客户端调用FileSystem实例的open方法,获得这个文件对应的输入流,在HDFS中就是DFSInputStream
[2]构造第一步的输入流时,通过RPC远程调用NameNode可以获得NameNode中此文件对应的数据块保存位置,包括这个文件副本的保存位置(注:在输入流中会按照网络拓扑结构,根据与客户端距离对DataNode进行简单排序)
[3]-[4]获得此输入流后,客户端调用READ方法读取数据。输入流选择最近的DFSInputStream会根据前面的排序结果,选择最近的DataNode建立连接并读取数据。
[5]如果已达到数据块末端,关闭这个DataNode的连接,然后重新查找下一个数据块
[6]客户端调用close,关闭输入流DFSInputStream
(2)数据输入过程
[1]-[2]:客户端调用FileSystem实例的create方法,创建文件。检查后,在NameNode添加文件信息,创建结束之后,HDFS会返回一个输出流DFSDataOutputStream给客户端
[3]调用输出流的write方法向HDFS中对应的文件写入数据。
数据首先会被分包,这些分包会写入一个输出流的内部队列Data队列中,接收完整数据分包,输出流回想NameNode申请保存文件和副本数据块的若干个DataNode
[4]DFSDataOutputStream会(根据网络拓扑结构排序)将数据传输给距离上最短的DataNode,这个节点接收到数据包后传给下一个。数据在各节点之间通过管道流通,减少传输开销
[5]数据节点位于不同机器上,数据需要通过网络发送。(为保证数据节点数据正确,接收到数据的节点要向发送者发送确认包)
[6]执行3-5知道数据全部写完,DFSDataInputStream继续等待知道所有数据写入完毕并确认,调用complete方法通知NameNode文件写入完成
[7]NameNode接收到complete消息之后,等待相应数量的副本写入完毕后,告知客户端
传输过程,当某个DataNode失效,HDFS执行:
1)关闭数据传输的管道
2)将等待ACK队列的数据放到Data队列头部
3)更新正常DataNode中所有数据块版本。当失效的DataNode重启,之前的数据块会因为版本不对被清除
4)在传输管道中删除失效的DataNode,重新建立管道并发送数据包
4.HDFS文件系统操作命令
(1)HDFS启动与关闭
[1]启动过程:
1)进入到NameNode对应节点的Hadoop安装目录
2)执行启动脚本:bin/start-dfs.sh
[2]关闭过程:bin/stop-dfs.sh
(2)文件操作命令格式与注意事项
[1]基本命令格式:
1)bin/hadoop dfs-cmd <args> args-> scheme://authority/path
2)args参数基本格式前面是scheme,authority是机器地址和对应端口
a)本地文件,scheme是file
b)HDFS上文件,scheme是hdfs
(3)文件操作基本格式
[1]hadoop dfs-cat URL [URL ...]
[2]作用:将参数所指示文件内容输出到stdout
❺ 解决数据的安全存储的策略
解决数据的安全存储的策略包括数据加密、用户安全认证、数据备份、使用跟踪过滤器、数据恢复。
1、数据加密:首先在大数据安全服务的设计中,根据数据安全存储的需求,对大数据加密后再存储,比如HBASE就提供了数据加密功能,该功能细致到能对某一列的隐私数据进行加密;其次可以通过链路加密,实现在数据集节点和应用程序之间安全地传输大数据。
在传输服务过程中,为数据流的上传与下载提供有效保护;最后还可以通过内建的审计跟踪和网络数据统计分析,对可能存在的恶意用户进行识别并耐瞎族屏蔽。
❻ 大数据安全的三要素是什么
大数据安全的三要素是安全存储、传输和认证。
大数据安全的三要素包括安全存储、安全传输和安全认证的使用者。只有安全存储、安全传输、以及认证的使用三者有机结合,才能最大程度上保证大数据安全的使用。
简介:
大数据时代来临,各行业数据规模呈TB级增长,拥有高价值数据源的企业在大数据产业链中占有至关重要的核心地位。
在实现大数据集中后,如何确保网络数据的完整性、可用性和保密性,不受到信息泄漏和非法篡改的安全威胁影响,已成为政府机构、事业单位信息化健康发展所要考虑的核心问题。
大数据安全的防护技术有:数据资产梳理(敏感数据、数据库等进行梳理)、数据库加密(核心数据存储加密)、数据库安全运维(防运维人员恶意和高危操作)、数据脱敏(敏感数据匿名化)、数据库漏扫(数据安全脆弱性检测)等。
❼ 大数据关系到网络信息安全,比较明显的影响主要表现在哪几个方面。( )
大数据关系到网络信息安全,比较明显的影响主要表现在以下几个方面:
一、规模、实时性和分布式处理羡凯大数据的本质特征(使大数据解决超过以前数据管理系统的数据管理和处理需求。
例如,在容量、实时性、分布式架构和并行处理等方枯派老面)使得保障这些系统的安全更为困难。大数据集群具有开放性和自我组织性,并可以使用户与多个数据节点同时通信。
二、嵌入式安全:在涉及大数据的疯狂竞赛中,大部分的开发资源都用于改善大数据的可升级、易用性和分析功能上。
只有很少的功能用于增加安全功能。但是,你希望得到嵌入到大数据平台中的没升安全功能。你希望开发人员在设计和部署阶段能够支持所需要的功能。你希望安全功能就像大数据集群一样可升级、高性能、自组织。
三、应用程序:面向大数据集群的大多数应用都是Web应用它们利用基于Web的技术和无状态的基于REST的API。基于Web的应用程序和API给这些大数据集群带来了一种最重大的威胁。
在遭受攻击或破坏后,它们可以提供对大数据集群中所存储数据的无限制访问应用程序安全、用户访问管理及授权控制非常重要,与重点保障大数据集群安全的安全措施一样都不可或缺。
❽ 大数据安全层面的风险包括
大数据安全层面的风险包括异常流量攻击、信息泄露风险、传输过程中的安全隐患等。
三、传输过程中的安全隐患
1、数据生命周期安全问题。伴随着大数据传输技术和应用的快速发展,在大数据传输生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中物兄可能出现逐步失真等。
2、又如,大数据传输处理环节,除数据非授权使用和被破坏的风险外,由于大数据传输的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。
❾ 保护大数据安全的10个要点
一项对2021年数据泄露的分析显示,总共有50亿份数据被泄露,陆指卖这对所有参与大数早逗据管道工作的人来说,从开发人员到DevOps工程师,安全性与基础业务需求同等重要。
大数据安全是指在存储、处理和分析过于庞大和复杂的数据集时,采用任何措施来保护数据免受恶意活动的侵害,传统数据库应用程序无法处理这些数据集。大数据可以混合结构化格式(组织成包含数字、日期等的行和列)或非结构化格式(社交媒体数据、PDF 文件、电子邮件、图像等)。不过,估计显示高达90%的大数据是非结构化的。
大数据的魅力在于,它通常包含一些隐藏的洞察力,可以改善业务流程,推动创新,或揭示未知的市场趋势。由于分析这些信息的工作负载通常会将敏感的客户数据或专有数据与第三方数据源结合起来,因此数据安全性至关重要。声誉受损和巨额经济损失是大数据泄露和数据被破坏的两大主要后果。
在确保大数据安全时,需要考虑三个关键阶段:
当数据从源位置移动到存储或实时摄取(通常在云中)时,确保数据的传输
保护大数据管道的存储层中的数据(例如Hadoop分布式文件系统)
确保输出数据的机密性,例如报告和仪表板,这些数据包含通过Apache Spark等分析引擎运行数据收集的情报
这些环境中的安全威胁类型包括不适当的访问控制、分布式拒绝服务(DDoS)攻击、产生虚假或恶意数据的端点,或在大数据工作期间使用的库、框架和应用程序的漏洞。
由于所涉及的架构和环境复杂性,大数据安全面临着许多挑战。在大数据环境中,不同的硬件和技术在分布式计算环境中相互作用。比如:
像Hadoop这样的开源框架在设计之初并没有考虑到安全性
依赖分布式计算来处理这些大型数据集意味着有更多的系统可能出逗败错
确保从端点收集的日志或事件数据的有效性和真实性
控制内部人员对数据挖掘工具的访问,监控可疑行为
运行标准安全审计的困难
保护非关系NoSQL数据库
这些挑战是对保护任何类型数据的常见挑战的补充。
静态数据和传输中数据的可扩展加密对于跨大数据管道实施至关重要。可扩展性是这里的关键点,因为除了NoSQL等存储格式之外,需要跨分析工具集及其输出加密数据。加密的作用在于,即使威胁者设法拦截数据包或访问敏感文件,实施良好的加密过程也会使数据不可读。
获得访问控制权可针对一系列大数据安全问题提供强大的保护,例如内部威胁和特权过剩。基于角色的访问可以帮助控制对大数据管道多层的访问。例如,数据分析师可以访问分析工具,但他们可能不应该访问大数据开发人员使用的工具,如ETL软件。最小权限原则是访问控制的一个很好的参考点,它限制了对执行用户任务所必需的工具和数据的访问。
大数据工作负载所需要的固有的大存储容量和处理能力使得大多数企业可以为大数据使用云计算基础设施和服务。但是,尽管云计算很有吸引力,暴露的API密钥、令牌和错误配置都是云中值得认真对待的风险。如果有人让S3中的AWS数据湖完全开放,并且对互联网上的任何人都可以访问,那会怎么样?有了自动扫描工具,可以快速扫描公共云资产以寻找安全盲点,从而更容易降低这些风险。
在复杂的大数据生态系统中,加密的安全性需要一种集中的密钥管理方法,以确保对加密密钥进行有效的策略驱动处理。集中式密钥管理还可以控制从创建到密钥轮换的密钥治理。对于在云中运行大数据工作负载的企业,自带密钥 (BYOK) 可能是允许集中密钥管理而不将加密密钥创建和管理的控制权交给第三方云提供商的最佳选择。
在大数据管道中,由于数据来自许多不同的来源,包括来自社交媒体平台的流数据和来自用户终端的数据,因此会有持续的流量。网络流量分析提供了对网络流量和任何潜在异常的可见性,例如来自物联网设备的恶意数据或正在使用的未加密通信协议。
2021年的一份报告发现,98%的组织感到容易受到内部攻击。在大数据的背景下,内部威胁对敏感公司信息的机密性构成严重风险。有权访问分析报告和仪表板的恶意内部人员可能会向竞争对手透露见解,甚至提供他们的登录凭据进行销售。从内部威胁检测开始的一个好地方是检查常见业务应用程序的日志,例如 RDP、VPN、Active Directory 和端点。这些日志可以揭示值得调查的异常情况,例如意外的数据下载或异常的登录时间。
威胁搜寻主动搜索潜伏在您的网络中未被发现的威胁。这个过程需要经验丰富的网络安全分析师的技能组合,利用来自现实世界的攻击、威胁活动的情报或来自不同安全工具的相关发现来制定关于潜在威胁的假设。具有讽刺意味的是,大数据实际上可以通过发现大量安全数据中隐藏的洞察力来帮助改进威胁追踪工作。但作为提高大数据安全性的一种方式,威胁搜寻会监控数据集和基础设施,以寻找表明大数据环境受到威胁的工件。
出于安全目的监视大数据日志和工具会产生大量信息,这些信息通常最终形成安全信息和事件管理(SIEM)解决方案。
用户行为分析比内部威胁检测更进一步,它提供了专门的工具集来监控用户在与其交互的系统上的行为。通常情况下,行为分析使用一个评分系统来创建正常用户、应用程序和设备行为的基线,然后在这些基线出现偏差时进行提醒。通过用户行为分析,可以更好地检测威胁大数据环境中资产的保密性、完整性或可用性的内部威胁和受损的用户帐户。
未经授权的数据传输的前景让安全领导者彻夜难眠,特别是如果数据泄露发生在可以复制大量潜在敏感资产的大数据管道中。检测数据泄露需要对出站流量、IP地址和流量进行深入监控。防止数据泄露首先来自于在代码和错误配置中发现有害安全错误的工具,以及数据丢失预防和下一代防火墙。另一个重要方面是在企业内进行教育和提高认识。
框架、库、软件实用程序、数据摄取、分析工具和自定义应用程序——大数据安全始于代码级别。 无论是否实施了上述公认的安全实践,代码中的安全缺陷都可能导致数据泄漏。 通过在软件开发生命周期中检测自研代码及开源组件成分的安全性,加强软件安全性来防止数据丢失。