‘壹’ mongodb的简介
MongoDB 是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。
MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,旁芹是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实厅启猛现类似关系数据库单表查询的绝大部分功能,而且还支持扮桥对数据建立索引。
‘贰’ sqlserver2005 和 mongodb的大数据量的处理
你们老板也是没事忽亏芹悠你啊! 你上当了 现在不是四月!
--------------------------------
MongoDB 是nosql 的一种存储数据库. 也就是说 所有业务都要转化.
而且这种分布式并没有带来什么好处.况且即使是银行,数据量是你的万亿倍,也没听说用mongodb啊!
-------------------------
这个问题其实很简单,将记录表 按时间分区 即可.
你可以网络销橘毕一下 sql2005 表分区
然后你将磁盘进行镜像分区 做 分布式存储 这不比你改存储方式强啊!
学过高中数学 划分 分界点伍氏 应该很容易.
‘叁’ 大数据技术有哪些
随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。
1. 预测分析技术
这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……
2. NoSQL数据库
NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知识发现
支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。
4. 大数据流计算引擎
能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。
5. 内存数据结构
通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。
6. 分布式文件存储
为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。
7. 数据虚拟化
数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。
8. 数据集成
用于跨解决方案进行数据编排的工具,如Amazon Elastic MapRece (EMR)、Apache Hive、Apache Pig、Apache Spark、MapRece、Couchbase、Hadoop和MongoDB等。
9. 数据准备
减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。
10. 数据质量
使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。
‘肆’ 为什么MongoDB适合大数据的存储
MongoDB文档型行存储行存储读写程致都第列始列结束行存储写入性完消耗间比列存储少并且能够保证数据完整性缺点数据读取程产冗余数据少量数据影响忽略;数量能影响数据处理效率使用文档词似乎让觉奇怪其实 文档型数据模型真传统意义文档没关系说文档其实数据记录记录能够包含数据类型内容进行自我描述
另外用文档查询检索效率高使用数据库带许处:减少数据冗余度节省数据存储空间;实现数据资源充共享等等外数据库技术用户提供非简便使用手段使用户易于编写关数据库应用程序
‘伍’ 为什么MongoDB适合大数据的存储
Mongo是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。Mongo使用C++开发,提供了以下功能:
◆面向集合的存储:适合存储对象及JSON形式的数据。
◆动态查询:Mongo支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。
◆完整的索引支持:包括文档内嵌对象及数组。Mongo的查询优化器会分析查询表达式,并生成一个高效的查询计划。
◆查询监视:Mongo包含一个监视工具用于分析数据库操作的性能。
◆复制及自动故障转移:Mongo数据库支持服务器之间的数据复制,支持主-从模式及服务器之间的相互复制。复制的主要目标是提供冗余及自动故障转移。
◆高效的传统存储方式:支持二进制数据及大型对象(如照片或图片)。
◆自动分片以支持云级别的伸缩性(处于早期alpha阶段):自动分片功能支持水平的数据库集群,可动态添加额外的机器。
MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。根据官方网站的描述,Mongo适合用于以下场景:
◆网站数据:Mongo非常适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。
◆缓存:由于性能很高,Mongo也适合作为信息基础设施的缓存层。在系统重启之后,由Mongo搭建的持久化缓存层可以避免下层的数据源过载。
◆大尺寸,低价值的数据:使用传统的关系型数据库存储一些数据时可能会比较昂贵,在此之前,很多时候程序员往往会选择传统的文件进行存储。
◆高伸缩性的场景:Mongo非常适合由数十或数百台服务器组成的数据库。Mongo的路线图中已经包含对MapRece引擎的内置支持。
◆用于对象及JSON数据的存储:Mongo的BSON数据格式非常适合文档化格式的存储及查询。
自然,MongoDB的使用也会有一些限制,例如它不适合:
◆高度事务性的系统:例如银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。
◆传统的商业智能应用:针对特定问题的BI数据库会对产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。
◆需要SQL的问题
MongoDB支持OS X、Linux及Windows等操作系统,并提供了Python,PHP,Ruby,Java及C++语言的驱动程序,社区中也提供了对Erlang及.NET等平台的驱动程序。
‘陆’ hadoop和mangoDb用作大数据分析哪个更好
1,hadoop是大数据分析的完整生态系统,从数据采集,存储,分析,转运,再到页面展示,构成了整个流程采集可以用flume,存储用hbase,hdfs,mangodb就相当于hbase,分析用Maprece自己写算法,还有hive做数据仓库,pig做数据流处理,转储方面有sqoop,可以将hdfs中的数据转换存储到mysql,oracle等传统数据库,这就构成了一整套大数据分析的整个流程
2,mangodb只是充当存储功能,是一款nosql数据库,支持以json的格式存储
3,所以从功能上来讲,hadoop和mangodb是不一样的,hadoop中可以用mangodb替换hbase,但是mangodb不能替换hadoop,一个是完整的生态系统,一个是数据库,两个不一样的概念
4,至于选择用mangodb还是hbase,各有优劣,不过使用较多的还是hbase,mangodb社区没有hbase活跃,所以还是hbase吧
‘柒’ 【Python基础】mongodb存储文件的优缺点
MongoDB是一个开源的、基于分布式的、面向文档存储的非关系型数据库。是非关系型数据库当中功能最丰富、最像关系数据库的。MongoDB高性能、易部署、易使用,存储数据非常方便。
MongoDB优点:
1、高性能:弱一致性,访问速度较快
2、文档结构的存储方式,能够更便捷的获取数、存储数据方便,高效存储二进制大对象
3、支持复制集、主备、互为主备、自动分片等特性
4、全索引支持,查询语言功能非常强大
MongoDB缺点:
1、不支持事务,实际开发时得搞清楚哪些功能需要使用数据库提供的事务支持
2、MongoDB占用空间大(需要强大硬盘支持)
3、相对于MySQL那样成熟的维护工具,MongoDB维护工具不够完善、成熟
‘捌’ MongoDB是一个基于分布式文件存储的数据库,为WEB应用提供高性能的数据存储解决方案;
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。
数据库是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。【感兴趣的话点击此处,了解一下】
关于数据库的相关内容,可以到亿万克官网进行深入的了解,亿万克集服务器和存储等数据中心产品的研发、生产、销售、服务系统整合于一体,是民族高科技制造企业领导品牌 ,所有产品和技术完全拥有自主知识产权,应用领域涵盖云计算、数据中心、边缘计算、人工智能、金融、电信、教育、能源等,为客户提供全方位安全自主可控技术服务保障。
‘玖’ 如何实现企业数据 大数据平台 分布式存放
Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。
1. 大数据分析大分类
Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。
按照数据分析的实时性,分为实时数据分析和离线数据分析两种。
实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。
对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。
按照大数据的数据量,分为内存级别、BI级别、海量级别三种。
这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。
图1 用于实时分析的MongoDB架构
MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。
此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的应用。
BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。
海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapRece进行分析。本文稍后将主要介绍Hadoop上基于MapRece的一个多维数据分析平台。
数据分析的算法复杂度
根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。
还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。
而大多数统计分析,机器学习问题可以用MapRece算法改写。MapRece目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。
2. 面对大数据OLAP大一些问题
OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。
Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。
然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapRece的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。
而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapRece强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显着增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显着影响分析的性能。
而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
3. 一种Hadoop多维分析平台的架构
整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分 析模块。
数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。
数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。
维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。
并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Rece,提交给Hadoop集群之后,生成报表供报表中心展示。
核心模块是将多维分析语言转化为MapRece的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapRece程序。核心模块的具体逻辑如图6所示。
图6中根据JobConf参数进行Map和Rece类的拼装并不复杂,难点是很多实际问题很难通过一个MapRece Job解决,必须通过多个MapRece Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapRece工作流的例子。
MapRece的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。
‘拾’ mongo集群可以用来进行海量数据分析吗
今已进入大数据时代,特别是大规模互联网web2.0应用不断发展及云计算所需要的海量存储和海量计算发展,传统的关系型数据库已无法满足这方面的需求。随着NoSQL数据库的不断发展和成熟,可以较好地解决海量存储和海量计算方面的应用需求。本文重点描述作为NoSQL之一MongoDB数据库在海量数据存储方面的应用。
由于MongoDB中的Bson对象大小是有限制的,在1.7版本以前单个Bson对象最大容量为4M,1.7版本以后单个Bson对象最大容量为16M[5]。对于一般的文件存储,单个对象的4到16M的存储容量能够满足需求,但无法满足对于一些大文件的存储,如高清图片、设计图纸、视频等,因此在海量数据存储方面,MongoDB提供了内置的Grid
基于GridFS的海量数据存储测试
本文主要采用MongoDB最新版2.0及官方提供的C#语言驱动进行测试。