当前位置:首页 » 服务存储 » u盘如何实现循环存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

u盘如何实现循环存储

发布时间: 2023-06-04 14:24:58

A. U盘的储存工作原理

一、 U盘基本工作原理通用串行总线(Universal serial Bus)是一种快速灵活的接口,
当一个USB设备插入主机时,由于USB设备硬件本身的原因,它会使USB总线的数据信号线的电平发生变化,而主机会经常扫描USB总线。当发现电平有变化时,它即知道有设备插入。
当USB设备刚插入主机时,USB设备它本身会初始化,并认为地址是0。也就是没有分配地址,这有点象刚进校的大学生没有学号一样。
正如有一个陌生人闯入时我们会问“你是什么人”一样,当一个USB设备插入主机时,,它也会问:“你是什么设备”。并接着会问,你使用什么通信协议等等。当这一些信息都被主机知道后,主机与USB设备之间就可以根据它们之间的约定进行通信。
USB的这些信息是通过描述符实现的,USB描述符主要包括:设备描述符,配置描述符,
接口描述符,端点描述符等。当一个U盘括入主机时,你立即会发现你的资源管理器里多了一个可移动磁盘,在Win2000下你还可以进一步从主机上知道它是爱国者或是朗科的。这里就有两个问题,首先主机为什么知道插入的是移动磁盘,而不是键盘或打印机等等呢?另外在Win2000下为什么还知道是哪个公司生产的呢?其实这很简单,当USB设备插入主机时,主机首先就会要求对方把它的设备描述符传回来,这些设备描述符中就包含了设备类型及制造商信息。又如传输所采用的协议是由接口描述符确定,而传输的方式则包含在端点描述符中。
USB设备分很多类:显示类,通信设备类,音频设备类,人机接口类,海量存储类.特定类的设备又可分为若干子类,每一个设备可以有一个或多个配置,配置用于定义设备的功能。配置是接口的集合,接口是指设备中哪些硬件与USB交换信息。每个与USB交换信息的硬件是一个端点。因些,接口是端点的集合。
U盘应属于海量存储类。
USB海量存储设备又包括通用海量存储子类,CDROM,Tape等,U盘实际上属于海量存储类中通用海量存储子类。通用海量存储设备实现上是基于块/扇区存储的设备。
USB组织定义了海量存储设备类的规范,这个类规范包括4个独立的子类规范。主要是指USB总线上的传输方法与存储介质的操作命令。
海量存储设备只支持一个接口,即数据接口,此接口有三个端点Bulk input ,Bulk output,中断端点
这种设备的接口采用SCSI-2的直接存取设备协议,USB设备上的介质使用与SCSI-2以相同的逻辑块方式寻址

二、 Bulk-Only传输协议
当一个U盘插入主机以后,主机会要求USB设备传回它们的描述符,当主机得到这些描述符后,即完成了设备的配置。识别出USB设备是一个支持Bulk-Only传输协议的海量存储设备。这时应可进行Bulk-Only传输方式。在此方式下USB与设备之间的数据传输都是通过Bulk-In和Bulk-Out来实现的。
在这种传输方式下,有三种类型数据在USB和设备传送,它们是命令块包(CBW),命令执行状态包(CSW)和普通数据包。CBW是主机发往设备的命令。格式如下:
其中dCBWSignature的值为43425355h,表示当前发送的是一个CBW。
DCBWDataTransferLength:表示这次CBW要传送数据长度。
BmCBWFlags:表示本次CBW是读数据还是写数所
BBWCBLength:表示命令的长度。
CBWCB:表示本次命令内容。也即是SCSI命令。
当设备从主机收到CBW块以后,它会把SCSI命令从CBW中分离出来,然后根据要求执行,执行的结果又以CSW的形式发给主机。
CSW的格式如下:
其中dCSWSignature的值为53425355h,表示当前发送的是一个CSW。
DCSWTag:必须和CBW中dCBWTag一样。
DCSWDataResie:还要传送的数据。
BCSWStatue:命令执行状态,命令正确执行时,为0。三、 SCSI命令集

在Bulk-Only的命令块包(CBW)中,有一段CBECB内容,它就是SCSI命令块描述符。其内容如下:
Operation Code:是SCSI命令操作代码。
Logical Block Address:逻辑块地址,对U盘而言应是扇区。前面已经讲过:通用海量存储设备是一个基于块/扇区存储的设备,因此在SCSI中要提供这个参数是很显然的。
transfer length:为要传送的扇区数
SCSI中直接存取类型的存储介质的传输命令有很多,如:
INQUIRY:其操作码为12H
Test Unit Ready:其操作码为00H
Format Unit:其操作码为04H
.......
这里以INQUIRY命令为例:
INQUIRY命令描述符如下:
INQUIRY的结果是U盘供电电路原理U盘供电电路故障检修U盘的结构U盘的电路结构U盘调试的主要步骤和内容USB 设备端的固件分以下几个层次:文件模块名称 主要功能
Main.c 进行各种初始化操作、寄存器设置、中断设置Fat16.c flash.c 负责按照Fat16 文件系统的组织向Flash 中写入数据或是从Flash 中读出数据Chap9.c bulk-only.c 完成不同的中断请求,Chap9 完成来自端点0 的USB 标准设备请求,Bulk-Only 完成来自批量模式端点的Mass Storage Bulk-Only 传输中断请求Isr.c 中断服务程序,负责将不同类型的中断转向一同的地方D12ci.c 函数化的D12 的命令集合,可以直接调用这些函数,而不必再自己根据手册查每个命令的代码另外,此文件中包括一些与硬盘有关的地址定义在调试的时候,从现象上来看,分成以下几个阶段性的步骤:1、USB 芯片正常工作,可以实现软连接,此时PC 机上会出现“未知设备类型”的USB 设备;2、使用他人已经高度成功的USB 通用接口,按普通USB 设备提供描述符,提供正确的VID 和PID 后,PC 能够识别设备,但要求提供设备的驱动程序;3、安装驱动程序后,调试几个端点,使其均可传输数据,用PC 端的测试程序对其进行测试,验证硬件及固件的正确性;4、按Mass StorageBulk-Only 模式提供描述符,PC 机上设备类型变成Mass Storage Device;5、响应了Bulk-Only 的Inquiry 命令,可以出现盘符了,但尚无法访问磁盘;6、提供了其他所有的UFI命令(SCSI 子集),开始读取磁盘0 扇区(BPB 区)的内容,按照FAT16 的格式格式化Flash,可以正确读取信息,可以访问盘符,列目录为空;7、创建文件时,向设备发出Write 命令,调整Flash 的读写问题,解决写某几个扇区要先保存整个簇的内容,然后擦除整簇,再回写,可以正常创建文件;8、完成最后的调试,U 盘高度完毕。在此基础上,还需要提供支持FAT16 的文件系统接口函数,比如,可以从FAT16 中读取文件,可以创建文件并将其保存到FAT16 中去。U盘维修技术常见故障维修以下故障在维修时,首先要排除USB接口损坏及PCB板虚焊、及USB延长线正常的情况下,再维修判断1、U盘插到机器上没有任何反应 维修思路:根据故障现象判断,U盘整机没有工作,而U盘工具所要具备的条件也就是我们维修的重点。无论任何方案的U盘想要工具都必须具备以下几个条件:
(1)供电,分为主控所需的供电和FLASH所需的供电,这两个是关键,而U盘电路非常的简单,如没有供电一般都是保险电感损坏或3.3V稳压块损坏,说到稳压块再这里也说一下,其有三个引脚分别是电源输入(5V)、地、电源输出(3.3),工作原理就是当输入脚输入一个5V电压时,输出脚就会输出一个稳定的3.3V。只要查到哪里是没有供电的根源,问题就会很好解决了。
(2)时钟,因主控要在一定频率下才能工作,跟FLASH通信也要*时钟信号进行传输,所以如果时钟信号没有,主控一定不会工作的。而在检查这方面电路的时候,其实时钟产生电路很简单,只需要检查晶振及其外围电路即可,因晶振怕刷而U盘小巧很容易掉在地上造成晶振损坏,只要更换相同的晶振即可。注意:晶振是无法测量的,判断其好坏最好的方法就是代换一个好的晶振来判断。
(3)主控,如果上述两个条件都正常那就是主控芯片损坏了。只要更换主控了。 2、U盘插入电脑,提示“无法识别的设备”。维修思路:对于此现象,首先的一点说明U盘的电路基本正常,而只是跟电脑通信方面有故障,而对于通信方面有以下几点要检查:
(1)U盘接口电路,此电路没有什么特别元件就是两根数据线D D-,所以在检查此电路时只要测量数据线到主控之间的线路是否正常即可,一般都在数据线与主控电路之间会串接两个小阻值的电阻,以起到保护的作用,所以要检查这两个电阻的阻值是否正常。
(2)时钟电路,因U盘与电脑进行通信要在一定的频率下进行,如果U盘的工作频率和电脑不能同步,那么系统就会认为这是一个“无法识别的设备”了。这时就要换晶振了。而实际维修中真的有很多晶振损坏的实例!
(3)主控,如果上述两点检查都正常,那就可以判断主控损坏了。 3、可以认U盘,但打开时提示“磁盘还没有格式化”但系统又无法格式化,或提示“请插入磁盘”,打开U盘里面都是乱码、容量与本身不相符等。 维修思路:对于此现象,可以判断U盘本身硬件没有太大问题,只是软件问题而以了。
解决方法:找到主控方案的修复工具搞一下就可以了。这个就要大家自己看U盘的主控是什么方案的来决定了。 U盘故障大概也就是这些主要问题了。而对于无法写文件、不存储等现象,一般都是FLASH性能不良或有坏块而引起的。大家看完之后有没有一个清晰的思路了呢。随便说明一下,U盘不同于MP3,他不存在固件之说,但有些厂家把自己的软件放到里面,低格一下就会没有的。 告诉大家一个非常简单的方法,就是在碰到主控损坏或找不到相应的修复工具时,可以用U盘套件来重新搞一个新的U盘,方法就是把故障机的FLASH拆下来,放到新的PCB板上就可以了。U盘套件包括(PCB带主控(分1.1和2.0之分)及外壳一套)23元,中维在线有出售,维修起来非常简单,做数据恢复就更方便了。

B. U盘能够永久存储信息的原理

u盘是靠闪存芯片存储信息的.闪存芯片类似内存芯片,但掉电后仍可保存数据(内存芯片掉电后数据自动消失),闪存芯片通后控制芯片进行地址寻址,一个完整的u盘包括存

存储的原理:在源极和漏极之间电流单向传导的半导体上形成贮存电子的浮动棚。浮动栅包裹着一层硅氧化膜绝缘体。它的上面是在源极和漏极之间控制传导电流的选择/控制栅。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子。

C. U盘的存储原理是什么

U盘的存储原理是:计算机把二进制数字信号转为复合二进制数字信号(加入分配、核对、堆栈等指令)读写到USB芯片适配接口,通过芯片处理信号分配给EPROM2存储芯片的相应地址存储二进制数据,实现数据的存储。

EPROM2数据存储器,其控制原理是电压控制栅晶体管的电压高低值(高低电位),栅晶体管的结电容可长时间保存电压值,也就是为什么USB断电后能保存数据的原因。

(3)u盘如何实现循环存储扩展阅读

U盘最大的优点就是:小巧便于携带、存储容量大、价格便宜、性能可靠。U盘体积很小,仅大拇指般大小,重量极轻,一般在15克左右,特别适合随身携带,我们可以把它挂在胸前、吊在钥匙串上、甚至放进钱包里。

一般的U盘容量有2G、4G、8G、16G、32G、64G(1GB已没有了,因为容量过小),除此之外还有128G、256G、512G、1T等。价格上以最常见的8GB为例,20-40元左右就能买到,16G的50元左右。闪存盘中无任何机械式装置,抗震性能极强。另外,闪存盘还具有防潮防磁、耐高低温等特性,安全可靠性很好。

闪存盘几乎不会让水或灰尘渗入,也不会被刮伤,而这些在旧式的携带式存储设备(例如光盘、软盘片)等是严重的问题。

而闪存盘所使用的固态存储设计让它们能够抵抗无意间的外力撞击。这些优点使得闪存盘非常适合用来从某地把个人数据或是工作文件携带到另一地,例如从家中到学校或是办公室,或是一般来说需要携带到并访问个人数据的各种地点。由于USB在现今的个人电脑中几乎无所不在,因而到处都可以使用闪存盘。不过,小尺寸的闪存盘也让它们常常被放错地方、忘掉或遗失。

闪存盘虽然小,但相对来说却有很大的存储容量。早期闪存盘容量较小,仅可存储16-32M文件,即便是这样,也相当于当时通用的可擦写移动存储介质软盘容量的10-20倍。随着科技的发展,U盘容量也依摩尔定律飞速猛增。

到2012年为止,4G容量U盘已基本处于淘汰的边缘,主流U盘容量发展为8-16G,相当于2-4张DVD光盘的容量。最大容量则已达到1T,相当于240余张DVD光盘的容量。

闪存盘使用USB大量存储设备的类别,这表示大多数现代的操作系统都可以在不需要另外安装驱动程序的情况下读取及写入闪存盘。

闪存盘在操作系统里面显示成区块式的逻辑单元,隐藏内部闪存所需的复杂细节。操作系统可以使用任何文件系统或是区块寻址的方式。也可以制作启动U盘来引导计算机。

与其它的闪存设备相同,闪存盘在总读取与写入次数上也有限制。中阶的闪存盘在正常使用状况下可以读取与写入数十万次,但当闪存盘变旧时,写入的动作会更耗费时间。当我们用闪存盘来运行应用程序或操作系统时,便不能不考虑这点。

有些程序开发者特别针对这个特性以及容量的限制,为闪存盘撰写了特别版本的操作系统(例如Linux)或是应用程序(例如Mozilla
Firefox)。它们通常对使用空间做优化,并且将暂存盘存储在电脑的主存中,而不是闪存盘里。

许多闪存盘支持写入保护的机制。这种在外壳上的开关可以防止电脑写入或修改磁盘上的数据。写入保护可以防止电脑病毒文件写入闪存盘,以防止该病毒的传播。没有写保护功能的闪存盘,则成了多种病毒随自动运行等功能传播的途径。

闪存盘比起机械式的磁盘来说更能容忍外力的撞击,但仍然可能因为严重的物理损坏而故障或遗失数据。在组装电脑中,错误的USB连接端口接线也可能损坏闪存盘的电路。

D. U盘是如何存储数据的

闪存(Flash Memory)是非挥发存储的一种,具有关掉电源仍可保存数据的优点,同时又可重复读写且读写速度快、单位体积内可储存最多数据量,以及低功耗特性等优点。 其存储物理机制实际上为一种新型EEPROM(电可擦除可编程只读存储)。是SCM(半导体存储器)的一种。

早期的SCM采用典型的晶体管触发器作为存储位元,加上选择、读写等电路构成存储器。现代的SCM采用超大规模集成电路工艺制成存储芯片,每个芯片中包含相当数量的存储位元,再由若干芯片构成存储器。目前SCM广泛采用的主要材料是金属氧化物场效应管(MOS),包括PMOS、NMOS、CMOS三类,尤其是NMOS和CMOS应用最广泛。

RAM(随机存取存储),是一种半导体存储器。必须在通电情况下工作,否则会丧失存储信息。RAM又分为DRAM(动态)和SRAM(静态)两种,我们现在普遍使用的PC机内存即是SDRAM(同步动态RAM),它在运行过程当中需要按一定频率进行充电(刷新)以维持信息。DDR DDR2内存也属于SDRAM。而SRAM不需要频繁刷新,成本比DRAM高,主要用在CPU集成的缓存(cache)上。

PROM(可编程ROM)则只能写入一次,写入后不能再更改。

EPROM(可擦除PROM)这种EPROM在通常工作时只能读取信息,但可以用紫外线擦除已有信息,并在专用设备上高电压写入信息。

EEPROM(电可擦除PROM),用户可以通过程序的控制进行读写操作。

闪存实际上是EEPROM的一种。一般MOS闸极(Gate)和通道的间隔为氧化层之绝缘(gate oxide),而Flash Memory的特色是在控制闸(Control gate)与通道间多了一层称为“浮闸”(floating gate)的物质。拜这层浮闸之赐,使得Flash Memory可快速完成读、写、抹除等三种基本操作模式;就算在不提供电源给存储的环境下,也能透过此浮闸,来保存数据的完整性。

Flash Memory芯片中单元格里的电子可以被带有更高电压的电子区还原为正常的1。Flash Memory采用内部闭合电路,这样不仅使电子区能够作用于整个芯片,还可以预先设定“区块”(Block)。在设定区块的同时就将芯片中的目标区域擦除干净,以备重新写入。传统的EEPROM芯片每次只能擦除一个字节,而Flash Memory每次可擦写一块或整个芯片。Flash Memory的工作速度大幅领先于传统EEPROM芯片。

MSM(磁表面存储)是用非磁性金属或塑料作基体,在其表面涂敷、电镀、沉积或溅射一层很薄的高导磁率、硬矩磁材料的磁面,用磁层的两种剩磁状态记录信息"0"和"1"。基体和磁层合称为磁记录介质。依记录介质的形状可分别称为磁卡存储器、磁带存储器、磁鼓存储器和磁盘存储器。计算机中目前广泛使用的MSM是磁盘和磁带存储器。硬盘属于MSM设备。

ODM(光盘存储)和MSM类似,也是将用于记录的薄层涂敷在基体上构成记录介质。不同的是基体的圆形薄片由热传导率很小,耐热性很强的有机玻璃制成。在记录薄层的表面再涂敷或沉积保护薄层,以保护记录面。记录薄层有非磁性材料和磁性材料两种,前者构成光盘介质,后者构成磁光盘介质。
ODM是目前辅存中记录密度最高的存储器,存储容量很大且盘片易于更换。缺点是存储速度比硬盘低一个数量级。现已生产出与硬盘速度相近的ODM。CD-ROM、DVD-ROM等都是常见的ODM。