当前位置:首页 » 服务存储 » 存储结构体系
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储结构体系

发布时间: 2023-06-13 01:53:36

A. 简述计算机三级存储体系结构

常见的三级存储体系是:Cache、主存、外存。

1.主存储器用来存放需CPU运行的程序和数据。用半导体RAM构成,常包含少部分ROM。可由CPU直接编程访问,采取随机存取方式,存储容量较大,常用字节数表示;

2.Cache位于CPU与主存之间,用来存放当前运行的程序和数据。由快速的半导体RAM构成,采取随机存取方式。存储容量较小而速度最快;

3.外存储器用来存放伏衡暂不运行,但需联机存放的程序和数据。用磁盘、光盘、磁带等构成,磁盘用于需频繁访问场合,光盘多用于提供系统软件,磁带多用于较大系统的备份。外存容量很大,以字节数表示。由于外存的存缺陪做取时间与数据所在位置有关,所以不能用统一的乱明存取周期指标来表示。

B. 什么是存储器的四级存储结构

CPU一级、二级、三级缓存+外部RAM存储器总共是四级存储。

CPU缓存到硬盘,一级比一级快,如果没CPU缓存、内存,直接让CPU读取硬盘的话,CPU会一直等硬盘慢慢地把数据传过来给它处理,这样慢死了。所以先把硬盘上准备处理的数据传到内存等待,最急着处理的就由内存传到CPU缓存里,CPU可以以最高的速度读取要处理的数据。

CPU出现于大规模集成电路时代,处理器架构设计的迭代更新以及集成电路工艺的不断提升促使其不断发展完善。从最初专用于数学计算到广泛应用于通用计算,从4位到8位、16位、32位处理器,最后到64位处理器,从各厂商互不兼容到不同指令集架构规范的出现,CPU 自诞生以来一直在飞速发展。

冯诺依曼体系结构是现代计算机的基础。在该体系结构下,程序和数据统一存储,指令和数据需要从同一存储空间存取,经由同一总线传输,无法重叠执行。根据冯诺依曼体系,CPU的工作分为以下 5 个阶段:取指令阶段、指令译码阶段、执行指令阶段、访存取数和结果写回。

C. 计算机多层次的存储体系结构包括

计算机存储器采用多层次结构的目的是________。c
a.方便保存大量数据
b.减少主机箱的体积
c.解决存储器在容量、价格和速度三者之间的矛盾
d.操作方便

D. 存储器的层次体系结构是什么样的

各存储器之间的关系
按照与CPU的接近程度,存储器分为内存储器与外存储器,简称内存与外存。内存储器又常称为主存储器(简称主存),属于主机的组成部分;外存储器又常称为辅助存储器(简称辅存),属于外部设备。CPU不能像访问内存那样,直接访问外存,外存要与CPU或I/O设备进行数据传输,必须通过内存进行。在80386以上的高档微机中,还配置了高速缓冲存储器(cache),这时内存包括主存与高速缓存两部分。对于低档微机,主存即为内存。

把存储器分为几个层次主要基于下述原因:


半导体存储器
1、合理解决速度与成本的矛盾,以得到较高的性能价格比。半导体存储器速度快,但价格高,容量不宜做得很大,因此仅用作与CPU频繁交流信息的内存储器。磁盘存储器价格较便宜,可以把容量做得很大,但存取速度较慢,因此用作存取次数较少,且需存放大量程序、原始数据(许多程序和数据是暂时不参加运算的)和运行结果的外存储器。计算机在执行某项任务时,仅将与此有关的程序和原始数据从磁盘上调入容量较小的内存,通过CPU与内存进行高速的数据处理,然后将最终结果通过内存再写入磁盘。这样的配置价格适中,综合存取速度则较快。


存储器芯片
为解决高速的CPU与速度相对较慢的主存的矛盾,还可使用高速缓存。它采用速度很快、价格更高的半导体静态存储器,甚至与微处理器做在一起,存放当前使用最频繁的指令和数据。当CPU从内存中读取指令与数据时,将同时访问高速缓存与主存。如果所需内容在高速缓存中,就能立即获取;如没有,再从主存中读取。高速缓存中的内容是根据实际情况及时更换的。这样,通过增加少量成本即可获得很高的速度。

2、使用磁盘作为外存,不仅价格便宜,可以把存储容量做得很大,而且在断电时它所存放的信息也不丢失,可以长久保存,且复制、携带都很方便。

E. 常用的存储架构有

顺序存储方法它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。
顺序存储和链接存储的基本原理
顺序存储和链接存储是数据的两种最基本的存储结构。
在顺序存储中,每个存储空间含有所存元素本身的信息,元素之间的逻辑关系是通过数组下标位置简单计算出来的线性表的顺序存储,若一个元素存储在对应数组中的下标位置为i,则它的前驱元素在对应数组中的下标位置为i-1,它的后继元素在对应数组中的下标位置为i+1。在链式存储结构中,存储结点不仅含有所存元素本身的信息,而且含有元素之间逻辑关系的信息。
数据的链式存储结构可用链接表来表示。
其中data表示值域,用来存储节点的数值部分。Pl,p2,…,Pill(1n≥1)均为指针域,每个指针域为其对应的后继元素或前驱元素所在结点(以后简称为后继结点或前驱结点)的存储位置。通过结点的指针域(又称为链域)可以访问到对应的后继结点或前驱结点,若一个结点中的某个指针域不需要指向其他结点,则令它的值为空(NULL)。
在数据的顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同;而在数据的链接存储中,由于每个元素的存储位置保存在它的前驱或后继结点中,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到,访问任一元素的时间与该元素结点在链式存储结构中的位置有关。
储存器方面的储存结构
储存系统的层次结构为了解决存储器速度与价格之间的矛盾,出现了存储器的层次结构。
程序的局部性原理
在某一段时间内,CPU频繁访问某一局部的存储器区域,而对此范围外的地址则较少访问的现象就是
程序的局部性原理。层次结构是基于程序的局部性原理的。对大量典型程序运行情况的统计分析得出的结论是:CPU对某些地址的访问在短时间间隔内出现集中分布的倾向。这有利于对存储器实现层次结构。
多级存储体系的组成
目前,大多采用三级存储结构。
即:Cache-主存-辅存,如下图:
3、多级存储系统的性能

考虑由Cache和主存构成的两级存储系统,其性能主要取决于Cache和贮存的存取周期以及访问它们的
次数。(存取周期为: Tc,Tm ;访问次数为: Nc,Nm)
(1)Cache的命中率 H= Nc / (Nc+Nm)

(2)CPU访存的平均时间 Ta= H * Tc+ (1-H) Tm
Cache-主存系统的效率
e= Tc / Ta
=1/H+(1-H)Tm/Tc
根据统计分析:Cache的命中率可以达到90%~98%
当Cache的容量为:32KB时,命中率为86%
64KB时,命中率为92%
128KB时,命中率为95%
256KB时,命中率为98%

F. 请简述网络存储体系结构有哪些,并简要说明他们的优缺点

以存储网络为中心的存储是全新的存储体系结构.它采用面向网络的存储体系结构,使 数据处理 和数据存储分离; 网络存储 体系结构包括了网络和I/O的精华,将I/O能力扩展到网络上,特别是灵活的网络 寻址 能力,远距离数据传输能力,I/O高效的原性能;通过网络连接服务器和存储资源,消除了不同存储设备和服务器之间的连接障碍;提高了数据的共享性、可用性和可扩展性、管理性。

具体参数可以参考:https://ke..com/item/%E7%BD%91%E7%BB%9C%E5%AD%98%E5%82%A8%E4%BD%93%E7%B3%BB%E7%BB%93%E6%9E%84/10985801?fr=aladdin

希望能帮到您

G. 什么是分级的存储体系结构它主要解决了什么问题

分级存储是将数据采取不同的存储方式分别存储在不同性能的存储设备上,减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。分级存储是根据数据的重要性、访问频率、保留时间、容量、性能等指标,将数据采取不同的存储方式分别存储在不同性能的存储设备上,通过分级存储管理实现数据客体在存储设备之间的自动迁移。

数据分级存储的工作原理是基于数据访问的局部性。通过将不经常访问的数据自动移到存储层次中较低的层次,释放出较高成本的存储空间给更频繁访问的数据,可以获得更好的性价比。这样,一方面可大大减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。

(7)存储结构体系扩展阅读

在分级数据存储结构中,存储设备一般有磁带库、磁盘或磁盘阵列等,而磁盘又可以根据其性能分为FC磁盘、SCSI磁盘、SATA磁盘等多种,而闪存存储介质(非易失随机访问存储器(NVRAM))也因为较高的性能可以作为分级数据存储结构中较高的一级。一般,磁盘或磁盘阵列等成本高、速度快的设备,用来存储经常访问的重要信息,而磁带库等成本较低的存储资源用来存放访问频率较低的信息。

信息生命周期管理(Information Lifecycle Management,ILM)是StorageTek公司针对不断变化的存储环境推出的先进存储管理理念,ILM试图实现根据数据在整个生命周期过程中不断变化的数据访问需求而进行数据的动态分布。

分级存储和ILM在存储体系结构上基本相同,目标也都是使不同级别的数据在给定时间和不同级别的存储资源能够更好的匹配。二者本质差别是数据分级的标准不同:前者标准为数据近期被访问的概率;后者标准为数据近期对企业的价值。

H. 简述计算机三级存储体系结构

在计算机系统中存储层次可分为高速缓冲存储器、主存储器、辅助存储器三级。高速缓冲存储器用来改善主存储器与中央处理器的速度匹配问题。辅助存储器用于扩大存储空间。

1、高速缓冲存储器

存在于主存与CPU之间的一级存储器, 由静态存储余局芯片(SRAM)组成,容量比较小但速度比主存高得多, 接近于CPU的速度。在计算机存储系统的层次结构中,是介于中央处理器和主存储器之间的高速小容量存储器。它和主存储器一起构成一级的存储器。高速缓冲存储器和主存储器之间信息的调度和传送是由硬件自动进行的。

2、主存储器(Main memory)

计算机硬件的一个重要部件,其作用是存放指令和数据,并能由中央处理器(CPU)直接随机存取。现代计算机是为了提高性能,又能兼顾合理的造价,往往采用多级存储体系。即由存储容量小,存取速度高的高速缓冲存储器,存储容量和存取速度适中的主存储器是必不可少的。

主存储器是按地址存放信息的,存取速度一般与地址无竖帆让关。32位(比特)的地址最大能表达4GB的存储器地址。这对多数应用已经足够,但对于某些特大运算量的应用和特大型数据库已显得不够,从而对64位结构提出需求。

3、外储存器

辅助存储器又称外存储器(简称外存)。指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。常见的外存储器有硬盘、软盘、光盘、U盘等。

(8)存储结构体系扩展阅读

计算机的主存储器不能同时满轿野足存取速度快、存储容量大和成本低的要求,在计算机中必须有速度由慢到快、容量由大到小的多级层次存储器,以最优的控制调度算法和合理的成本,构成具有性能可接受的存储系统。存储系统的性能在计算机中的地位日趋重要,主要原因是:

1、冯诺伊曼体系结构是建筑在存储程序概念的基础上,访存操作约占中央处理器(CPU)时间的70%左右。

2、存储管理与组织的好坏影响到整机效率。

3、现代的信息处理,如图像处理、数据库、知识库、语音识别、多媒体等对存储系统的要求很高。