当前位置:首页 » 服务存储 » 建立二叉树存储类型
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

建立二叉树存储类型

发布时间: 2023-07-08 16:15:48

❶ 二叉树的存储结构是怎样描述的

n0=(n+1)/2

设:度为i的结点数为ni,由二叉树的性质可知:

n0 = n2 + 1……………………①式

n = n0 + n1 + n2……………②式

由①式可得 n2 = n0 - 1,带入②式得:

n0 = (n + 1 - n1)/ 2

由完全二叉树性质可知:

如图,当n为偶数时,n1 = 1, n0 = n / 2

将两式合并,写作:n0 = ⌊(n+1)/2⌋(向下取整符号不能丢)

二叉树的存储结构

按照某种遍历方式对二叉树进行遍历,可以把二叉树中所有结点排列为一个线性序列。在该序列中,除第一个结点外,每个结点有且仅有一个直接前驱结点;除最后一个结点外,每个结点有且仅有一个直接后继结点。

但是,二叉树中每个结点在这个序列中的直接前驱结点和直接后继结点是什么,二叉树的存储结构中并没有反映出来,只能在对二叉树遍历的动态过程中得到这些信息。为了保留结点在某种遍历序列中直接前驱和直接后继的位置信息,可以利用二叉树的二叉链表存储结构中的那些空指针域来指示。

❷ 二叉树的顺序存储结构

二叉树的顺序存储,指的是使用顺序表(数组)存储二叉树。需要注意的是,顺序存储只适用于完全二叉树。换句话说,只有完全二叉树才可以使用顺序表存储。因此,如果我们想顺序存储普通二叉树,需要提前将普通二叉树转化为完全二叉树。
2、普通二叉树转完全二叉树的方法很简单,只需给二叉树额外添加一些节点,将其"拼凑"成完全二叉树即可。同样,存储由普通二叉树转化来的完全二叉树也是如此。

❸ 采用顺序存储方法和链式存储方法分别画出图6.1所示二叉树的存储结构。【在线等】

线性是线性,顺序是顺序,线性是逻辑结构,顺序是储存结构,两者不是一个概念。线性是指一个节点只有一个子节点,而树,或二叉树一个节点后有多个子节点,且子节点不能相互联系。

顺序存储可能会浪费空间(在非完全二叉树的时候),但是读取某个指定的节点的时候效率比较高。

链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低。

二叉树的顺序存储,寻找后代节点和祖先节点都非常方便,但对于普通的二叉树,顺序存储浪费大量的存储空间,同样也不利于节点的插入和删除。因此顺序存储一般用于存储完全二叉树。

链式存储相对顺序存储节省存储空间,插入删除节点时只需修改指针,但回寻找指定节点时很不方便。不过普通答的二叉树一般是用链式存储结构。

(3)建立二叉树存储类型扩展阅读:

(1)完全二叉树——若设二叉树的高度为h,除第h层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

(3)平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

二叉树是树的一种特殊情形,是一种更简单而且应用更加广泛的树。

❹ 数据结构 c语言版二叉树(1) 建立一棵含有n个结点的二叉树,采用二叉链表存储;

#include<stdio.h>
#include<stdlib.h>
typedef struct node *tree_pointer;
struct node{
char ch;
tree_pointer left_child,right_child;
};
tree_pointer root=NULL;
tree_pointer create(tree_pointer ptr)
{
char ch;
scanf("%c",&ch);
if(ch==' ')
ptr=NULL;
else{
ptr=(tree_pointer)malloc(sizeof(node));
ptr->ch=ch;
ptr->left_child=create(ptr->left_child);
ptr->right_child=create(ptr->right_child);
}
return ptr;
}
void preorder(tree_pointer ptr)
{
if(ptr){
printf("%c",ptr->ch);
preorder(ptr->left_child);
preorder(ptr->right_child);
}
}
void inorder(tree_pointer ptr)
{
if(ptr){
inorder(ptr->left_child);
printf("%c",ptr->ch);
inorder(ptr->right_child);
}
}
void postorder(tree_pointer ptr)
{
if(ptr){
postorder(ptr->left_child);
postorder(ptr->right_child);
printf("%c",ptr->ch);
}
}
void main()
{
printf("构建一个二叉树(结点数为n):\n");
root=create(root);
printf("前序遍历二叉树:\n");
preorder(root);
printf("\n");
printf("中序遍历二叉树:\n");
inorder(root);
printf("\n");
printf("后序遍历二叉树:\n");
postorder(root);
printf("\n");
}

❺ 二叉树的存储方式有哪些

二叉树的存储方式通常有动态存储。用结构体表示二叉树的一个节点。用数据域保持保存节点的值,用链接语保存两个孩子的指针。还有就是采用满二叉树的顺序存储方式。