当前位置:首页 » 服务存储 » 存储器技术成熟吗
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

存储器技术成熟吗

发布时间: 2023-07-08 23:04:22

⑴ 现在储存方式这么多,为什么光盘还没有被淘汰,是因为价格低廉吗

现代的科技正在快速发展,对于数据的储存方式有很多,而且都非常的便捷,但是光盘依旧是没有被淘汰,这不仅仅是因为它价格便宜,还有很多其他的原因,比如安全、不易损坏等。那让我们一起来分析一下,在现代技术下光盘的储存形式依旧没有被淘汰,到底是为什么呢?

三、不易损坏。

最后一个原因就是因为光盘不易损坏,如果我们用手机或者是U盘存储数据,那么一旦这些东西掉到水里面,我们的数据可能就会被损坏,而把数据刻在光盘上面,除非光盘被烧毁或者是磨损严重,我们的数据可能会丢失,在其他情况下,数据通常都是完好无损的,尤其是光盘的防水性非常的好,即便多次泡水,我们的数据依旧不会被破坏。

不知道你们认为用光盘存储数据还有哪些优点呢?欢迎在评论区底下留言。

⑵ 信息存储技术的发展过程

人类记录信息、存储信息方法经历了以下几大技术:
1,结绳记事;
2,文字纸张;
3,磁记录方式(磁鼓,磁带,磁盘等) 当前比较成熟,
4,半导体电记录(电路,电量或电容):ROM,RAM等;随着半导体技术的提升而不断提升、改进
5,光记录(光盘,光运算器件) 光计算和光存储也许会在不久的将来大力发展

⑶ 存储器是怎么存储东西的 到现在都不明白存储器是怎么存储的 现在都不知道为什么

硬盘是现在计算机上最常用的存储器之一。我们都知道,计算机之所以神奇,是因为它具有高速分析处理数据的能力。而这些数据都以文件的形式存储在硬盘里。不过,计算机可不像人那么聪明。在读取相应的文件时,你必须要给出相应的规则。这就是分区概念。分区从实质上说就是对硬盘的一种格式化。当我们创建分区时,就已经设置好了硬盘的各项物理参数,指定了硬盘主引导记录(即Master Boot Record,一般简称为MBR)和引导记录备份的存放位置。而对于文件系统以及其他操作系统管理硬盘所需要的信息则是通过以后的高级格式化,即Format命令来实现。

面、磁道和扇区

硬盘分区后,将会被划分为面(Side)、磁道(Track)和扇区(Sector)。需要注意的是,这些只是个虚拟的概念,并不是真正在硬盘上划轨道。先从面说起,硬盘一般是由一片或几片圆形薄膜叠加而成。我们所说,每个圆形薄膜都有两个“面”,这两个面都是用来存储数据的。按照面的多少,依次称为0面、1面、2面……由于每个面都专有一个读写磁头,也常用0头(head)、1头……称之。按照硬盘容量和规格的不同,硬盘面数(或头数)也不一定相同,少的只有2面,多的可达数十面。各面上磁道号相同的磁道合起来,称为一个柱面(Cylinder)(如图1)。(图)

上面我们提到了磁道的概念。那么究竟何为磁道呢?由于磁盘是旋转的,则连续写入的数据是排列在一个圆周上的。我们称这样的圆周为一个磁道。(如图2)如果读写磁头沿着圆形薄膜的半径方向移动一段距离,以后写入的数据又排列在另外一个磁道上。根据硬盘规格的不同,磁道数可以从几百到数千不等;一个磁道上可以容纳数KB的数据,而主机读写时往往并不需要一次读写那么多,于是,磁道又被划分成若干段,每段称为一个扇区。一个扇区一般存放512字节的数据。扇区也需要编号,同一磁道中的扇区,分别称为1扇区,2扇区……

计算机对硬盘的读写,处于效率的考虑,是以扇区为基本单位的。即使计算机只需要硬盘上存储的某个字节,也必须一次把这个字节所在的扇区中的512字节全部读入内存,再使用所需的那个字节。不过,在上文中我们也提到,硬盘上面、磁道、扇区的划分表面上是看不到任何痕迹的,虽然磁头可以根据某个磁道的应有半径来对准这个磁道,但怎样才能在首尾相连的一圈扇区中找出所需要的某一扇区呢?原来,每个扇区并不仅仅由512个字节组成的,在这些由计算机存取的数据的前、后两端,都另有一些特定的数据,这些数据构成了扇区的界限标志,标志中含有扇区的编号和其他信息。计算机就凭借着这些标志来识别扇区

硬盘的数据结构

在上文中,我们谈了数据在硬盘中的存储的一般原理。为了能更深入地了解硬盘,我们还必须对硬盘的数据结构有个简单的了解。硬盘上的数据按照其不同的特点和作用大致可分为5部分:MBR区、DBR区、FAT区、DIR区和DATA区。我们来分别介绍一下:

1.MBR区

MBR(Main Boot Record 主引导记录区)�位于整个硬盘的0磁道0柱面1扇区。不过,在总共512字节的主引导扇区中,MBR只占用了其中的446个字节,另外的64个字节交给了DPT(Disk Partition Table硬盘分区表)(见表),最后两个字节“55,AA”是分区的结束标志。这个整体构成了硬盘的主引导扇区。(图)

主引导记录中包含了硬盘的一系列参数和一段引导程序。其中的硬盘引导程序的主要作用是检查分区表是否正确并且在系统硬件完成自检以后引导具有激活标志的分区上的操作系统,并将控制权交给启动程序。MBR是由分区程序(如Fdisk.exe)所产生的,它不依赖任何操作系统,而且硬盘引导程序也是可以改变的,从而实现多系统共存。

下面,我们以一个实例让大家更直观地来了解主引导记录:

例:80 01 01 00 0B FE BF FC 3F 00 00 00 7E 86 BB 00

在这里我们可以看到,最前面的“80”是一个分区的激活标志,表示系统可引导;“01 01 00”表示分区开始的磁头号为01,开始的扇区号为01,开始的柱面号为00;“0B”表示分区的系统类型是FAT32,其他比较常用的有04(FAT16)、07(NTFS);“FE BF FC”表示分区结束的磁头号为254,分区结束的扇区号为63、分区结束的柱面号为764;“3F 00 00 00”表示首扇区的相对扇区号为63;“7E 86 BB 00”表示总扇区数为12289622。

2.DBR区

DBR(Dos Boot Record)是操作系统引导记录区的意思。它通常位于硬盘的0磁道1柱面1扇区,是操作系统可以直接访问的第一个扇区,它包括一个引导程序和一个被称为BPB(Bios Parameter Block)的本分区参数记录表。引导程序的主要任务是当MBR将系统控制权交给它时,判断本分区跟目录前两个文件是不是操作系统的引导文件(以DOS为例,即是Io.sys和Msdos.sys)。如果确定存在,就把它读入内存,并把控制权 交给该文件。BPB参数块记录着本分区的起始扇区、结束扇区、文件存储格式、硬盘介质描述符、根目录大小、FAT个数,分配单元的大小等重要参数。DBR是由高级格式化程序(即Format.com等程序)所产生的。

3.FAT区

在DBR之后的是我们比较熟悉的FAT(File Allocation Table文件分配表)区。在解释文件分配表的概念之前,我们先来谈谈簇(Cluster)的概念。文件占用磁盘空间时,基本单位不是字节而是簇。一般情况下,软盘每簇是1个扇区,硬盘每簇的扇区数与硬盘的总容量大小有关,可能是4、8、16、32、64……

同一个文件的数据并不一定完整地存放在磁盘的一个连续的区域内,而往往会分成若干段,像一条链子一样存放。这种存储方式称为文件的链式存储。由于硬盘上保存着段与段之间的连接信息(即FAT),操作系统在读取文件时,总是能够准确地找到各段的位置并正确读出。

为了实现文件的链式存储,硬盘上必须准确地记录哪些簇已经被文件占用,还必须为每个已经占用的簇指明存储后继内容的下一个簇的簇号。对一个文件的最后一簇,则要指明本簇无后继簇。这些都是由FAT表来保存的,表中有很多表项,每项记录一个簇的信息。由于FAT对于文件管理的重要性,所以FAT有一个备份,即在原FAT的后面再建一个同样的FAT。初形成的FAT中所有项都标明为“未占用”,但如果磁盘有局部损坏,那么格式化程序会检测出损坏的簇,在相应的项中标为“坏簇”,以后存文件时就不会再使用这个簇了。FAT的项数与硬盘上的总簇数相当,每一项占用的字节数也要与总簇数相适应,因为其中需要存放簇号。FAT的格式有多种,最为常见的是FAT16和FAT32。

4.DIR区

DIR(Directory)是根目录区,紧接着第二FAT表(即备份的FAT表)之后,记录着根目录下每个文件(目录)的起始单元,文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以知道文件在硬盘中的具体位置和大小了。

5.数据(DATA)区

数据区是真正意义上的数据存储的地方,位于DIR区之后,占据硬盘上的大部分数据空间。

磁盘的文件系统
经常听高手们说到FAT16、FAT32、NTFS等名词,朋友们可能隐约知道这是文件系统的意思。可是,究竟这么多文件系统分别代表什么含义呢?今天,我们就一起来学习学习:

1.什么是文件系统?
所谓文件系统,它是操作系统中借以组织、存储和命名文件的结构。磁盘或分区和它所包括的文件系统的不同是很重要的,大部分应用程序都基于文件系统进行操作,在不同种文件系统上是不能工作的。

2.文件系统大家族
常用的文件系统有很多,MS-DOS和Windows 3.x使用FAT16文件系统,默认情况下Windows 98也使用FAT16,Windows 98和Me可以同时支持FAT16、FAT32两种文件系统,Windows NT则支持FAT16、NTFS两种文件系统,Windows 2000可以支持FAT16、FAT32、NTFS三种文件系统,Linux则可以支持多种文件系统,如FAT16、FAT32、NTFS、Minix、ext、ext2、xiafs、HPFS、VFAT等,不过Linux一般都使用ext2文件系统。下面,笔者就简要介绍这些文件系统的有关情况:

(1)FAT16
FAT的全称是“File Allocation Table(文件分配表系统)”,最早于1982年开始应用于MS-DOS中。FAT文件系统主要的优点就是它可以允许多种操作系统访问,如MS-DOS、Windows 3.x、Windows 9x、Windows NT和OS/2等。这一文件系统在使用时遵循8.3命名规则(即文件名最多为8个字符,扩展名为3个字符)。

(2)VFAT
VFAT是“扩展文件分配表系统”的意思,主要应用于在Windows 95中。它对FAT16文件系统进行扩展,并提供支持长文件名,文件名可长达255个字符,VFAT仍保留有扩展名,而且支持文件日期和时间属性,为每个文件保留了文件创建日期/时间、文件最近被修改的日期/时间和文件最近被打开的日期/时间这三个日期/时间。

(3)FAT32
FAT32主要应用于Windows 98系统,它可以增强磁盘性能并增加可用磁盘空间。因为与FAT16相比,它的一个簇的大小要比FAT16小很多,所以可以节省磁盘空间。而且它支持2G以上的分区大小。朋友们从附表中可以看出FAT16与FAT32的一不同。

(4)HPFS
高性能文件系统。OS/2的高性能文件系统(HPFS)主要克服了FAT文件系统不适合于高档操作系统这一缺点,HPFS支持长文件名,比FAT文件系统有更强的纠错能力。Windows NT也支持HPFS,使得从OS/2到Windows NT的过渡更为容易。HPFS和NTFS有包括长文件名在内的许多相同特性,但使用可靠性较差。

(5)NTFS
NTFS是专用于Windows NT/2000操作系统的高级文件系统,它支持文件系统故障恢复,尤其是大存储媒体、长文件名。NTFS的主要弱点是它只能被Windows NT/2000所识别,虽然它可以读取FAT文件系统和HPFS文件系统的文件,但其文件却不能被FAT文件系统和HPFS文件系统所存取,因此兼容性方面比较成问题。

ext2
这是Linux中使用最多的一种文件系统,因为它是专门为Linux设计,拥有最快的速度和最小的CPU占用率。ext2既可以用于标准的块设备(如硬盘),也被应用在软盘等移动存储设备上。现在已经有新一代的Linux文件系统如SGI公司的XFS、ReiserFS、ext3文件系统等出现。

小结:虽然上面笔者介绍了6种文件系统,但占统治地位的却是FAT16/32、NTFS等少数几种,使用最多的当然就是FAT32啦。只要在“我的电脑”中右击某个驱动器的属性,就可以在“常规”选项中(图)看到所使用的文件系统。

明明白白识别硬盘编号
目前,电子市场上硬盘品牌最让大家熟悉的无非是IBM、昆腾(Quantum)、希捷(Seagate),迈拓(Maxtor)等“老字号”。而这些硬盘型号的编号则各不相同,令人眼花缭乱。其实,这些编号均有一定的规律,表示一些特定?的含义。一般来说,我们可以从其编号来了解硬盘的性能指标,包括接口?类型、转速、容量等。作为DIY朋友来说,只有自己真正掌握正确识别硬盘编号,在选购硬盘时,就方便得多(以致不被“黑”),至少不会被卖的人说啥是啥。以下举例说明,供朋友们参考。

一、IBM
IBM是硬盘业的巨头,其产品几乎涵盖了所有硬盘领域。而且IBM还是去年硬盘容量、价格战的始作蛹者。我们今天能够用得上经济上既便宜,而且容量又大的硬盘可都得感谢IBM。
IBM的每一个产品又分为多个系列,它的命名方式为:产品名+系列代号+接口类型+盘片尺寸+转速+容量。以Deskstar 22GXP的13.5GB硬盘为例,该硬盘的型号为:DJNA-371350,字母D代表Deskstar产品,JN代表Deskstar25GP与22GP系列,A代表ATA接口,3代表3寸盘片,7是7200转产品,最后四位数字为硬盘容量13.5GB。IBM系列代号(IDE)含义如下:
TT=Deskstar 16GP或14GXP JN=Deskstar 25GP或22GXP RV=Ultrastar 18LZX或36ZX
接口类型含义如下:A=ATA
S与U=Ultra SCSI、Ultra SCSI Wide、Ultra SCSI SCA、增强型SCSI、
增强扩展型SCSI(SCA)
C=Serial Storage Architecture连续存储体系SCSI L=光纤通道SCSI

二、MAXTOR(迈拓)
MAXTOR是韩国现代电子美国公司的一个独立子公司,以前该公司的产品也覆盖了IDE与SCSI两个方面,但由于SCSI方面的产品缺乏竟争力而最终放弃了这个高端市场从而主攻IDE硬盘,所以MAXTOR公司应该是如今硬盘厂商中最专一的了。
MAXTOR硬盘编号规则如下:首位+容量+接口类型+磁头数,MAXTOR?从钻石四代开始,其首位数字就为9,一直延续到现在,所以大家如今能在电子市场上见到的MAXTOR硬盘首位基本上都为9。另外比较特殊的是MAXTOR编号中有磁头数这一概念,因为MAXTOR硬盘是大打单碟容量的发起人,所以其硬盘的型号中要将单碟容量从磁头数中体现出来。单碟容量=2*硬盘总容量/磁头数。
现以金钻三代(DiamondMax Plus6800)10.2GB的硬盘为例说明:该硬盘?型号为91024U3,9是首位,1024是容量,U是接口类型UDMA66,3代表该硬盘有3个磁头,也就是说其中的一个盘片是单面有数据。这个单碟容量就为2*10.2/3=6.8GB。MAXTOR硬盘接口类型字母含义如:
A=PIO模式 D=UDMA33模式 U=UDMA66模式

三、SEAGATE(希捷)
希捷科技公司(Seagate Technology)是世界上最大的磁盘驱动器、磁?盘和读写磁头生产厂家,该公司是一直是IBM、COMPAQ、SONY等业界大户的硬盘供应商。希捷还保持着业界第一款10000转硬盘的记录(積架Cheetah系列SCSI)与最大容量(積架三代73GB)的记录,公司的实力由此可见一斑。但?由于希捷一直是以高端应用为主(例如SCSI硬盘),而并不是特别重视低端家用产品的开发,从而导致在DIY一族心目中的地位不如昆腾等硬盘供应商?。好在希捷公司及时注意到了这个问题,不久前投入市场的酷鱼(Barracuda)系列就一扫希捷硬盘以往在单碟容量、转速、噪音、非正常外频下工作稳?定性、综合性能上的劣势。
希捷的硬盘系列从低端到高端的产品名称分别为:U4系列、Medalist(金牌)系列、U8系列、Medalist Pro(金牌Pro)系列、Barracuda(酷鱼)系列。其中Medalist Pro与Barracuda系列是7200转的产品,其他的是5400转的产品。硬盘的型号均以ST开头,现以酷鱼10.2GB硬盘为例来说明。该硬盘的型号是:ST310220A,在ST后第一位数字是代表硬盘的尺寸,3就是该硬盘采用3寸盘片,如今其他规格的硬盘已基本上没有了,所以大家能够见到?的绝大多数硬盘该位数字均不3,3后面的1022代表的是该硬盘的格式化容量是10.22GB,最后一位数字0是代表7200转产品。这一点不要混淆与希捷以前的入门级产品Medalist ST38420A混淆。多数希捷的Medalist Pro系列开始,以结尾的产品均代表7200转硬盘,其它数字结尾(包括1、2)代表5400转的产品。位于型号最后的字母是硬盘的接口类型。希捷硬盘的接口类型字母含义如下:
A=ATA UDMA33或UDMA66 IDE接口 AG为笔记本电脑专用的ATA接口硬盘。
W为ULTRA Wide SCSI,
其数据传输率为40MB每秒 N为ULTRA Narrow SCSI,其数据传输率为20MB每秒。
而ST34501W/FC和ST19101N/FC中的FC(Fibre Channel)表示光纤通道,可提供高达每秒100MB的数据传输率,并且支持热插拔。

硬盘及接口标准的发展历史
一、硬盘的历史
说起硬盘的历史,我们不能不首先提到蓝色巨人IBM所发挥的重要作用,正是IBM发明了硬盘,并且为硬盘的发展做出了一系列重大贡献。在发明磁盘系统之前,计算机使用穿孔纸带、磁带等来存储程序与数据,这些存储方式不仅容量低、速度慢,而且有个大缺陷:它们都是顺序存储,为了读取后面的数据,必须从头开始读,无法实现随机存取数据。
在1956年9月,IBM向世界展示了第一台商用硬盘IBM 350 RAMAC(Random Access Method of Accounting and Control),这套系统的总容量只有5MB,却是使用了50个直径为24英寸的磁盘组成的庞然大物。而在1968年IBM公司又首次提出了“温彻斯特”Winchester技术。“温彻斯特”技术的精髓是:“使用密封、固定并高速旋转的镀磁盘片,磁头沿盘片径向移动,磁头磁头悬浮在高速转动的盘片上方,而不与盘片直接接触”,这便是现代硬盘的原型。在1973年IBM公司制造出第一台采用“温彻期特”技术制造的硬盘,从此硬盘技术的发展有了正确的结构基础。1979年,IBM再次发明了薄膜磁头,为进一步减小硬盘体积、增大容量、提高读写速度提供了可能。70年代末与80年代初是微型计算机的萌芽时期,包括希捷、昆腾、迈拓在内的许多着名硬盘厂商都诞生于这一段时间。1979年,IBM的两位员工Alan Shugart和Finis Conner决定要开发像5.25英寸软驱那样大小的硬盘驱动器,他们离开IBM后组建了希捷公司,次年,希捷发布了第一款适合于微型计算机使用的硬盘,容量为5MB,体积与软驱相仿。
PC时代之前的硬盘系统都具有体积大、容量小、速度慢和价格昂贵的特点,这是因为当时计算机的应用范围还太小,技术与市场之间是一种相互制约的关系,使得包括存储业在内的整个计算机产业的发展都受到了限制。 80年代末期IBM对硬盘发展的又一项重大贡献,即发明了MR(Magneto Resistive)磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度能够比以往20MB每英寸提高了数十倍。1991年IBM生产的3.5英寸的硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此硬盘容量开始进入了GB数量级的时代 。1999年9月7日,迈拓公司(Maxtor)_宣布了首块单碟容量高达10.2GB的ATA硬盘,从而把硬盘的容量引入了一个新里程碑。

二、接口标准的发展
(1)IDE和EIDE的由来
最早的IBM PC并不带有硬盘,它的BIOS及DOS 1.0操作系统也不支持任何硬盘,因为系统的内存只有16KB,就连软驱和DOS都是可选件。后来DOS 2引入了子目录系统,并添加了对“大容量”存储设备的支持,于是一些公司开始出售供IBM PC使用的硬盘系统,这些硬盘与一块控制卡、一个独立的电源被一起装在一个外置的盒子里,并通过一条电缆与插在扩展槽中的一块适配器相连,为了使用这样的硬盘,必须从软驱启动,并加载一个专用设备驱动程序。
1983年IBM公司推出了PC/XT,虽然XT仍然使用8088 CPU,但配置却要高得多,加上了一个10MB的内置硬盘,IBM把控制卡的功能集成到一块接口控制卡上,构成了我们常说的硬盘控制器。其接口控制卡上有一块ROM芯片,其中存有硬盘读写程序,直到基于80286处理器的PC/AT的推出,硬盘接口控制程序才被加入到了主板的BIOS中。
PC/XT和PC/AT机器使用的硬盘被称为MFM硬盘或ST-506/412硬盘,MFM(Modified Frequency Molation)是指一种编码方案,而ST-506/412则是希捷开发的一种硬盘接口,ST-506接口不需要任何特殊的电缆及接头,但是它支持的传输速度很低,因此到了1987年左右这种接口就基本上被淘汰了。
迈拓于1983年开发了ESDI(Enhanced Small Drive Interface)接口。这种接口把编解码器放在了硬盘本身之中,它的理论传输速度是ST-506的2~4倍。但由于成本比较高,九十年代后就逐步被淘汰掉了。
IDE(Integrated Drive Electronics)实际上是指把控制器与盘体集成在一起的硬盘驱动器,这样减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,对用户而言,硬盘安装起来也更为方便。IDE接口也叫ATA(Advanced Technology Attachment)接口。
ATA接口最初是在1986年由CDC、康柏和西部数据共同开发的,他们决定使用40芯的电缆,最早的IDE硬盘大小为5英寸,容量为40MB。ATA接口从80年代末期开始逐渐取代了其它老式接口。
80年代末期IBM发明了MR(Magneto Resistive)磁阻磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度能够比以往的20MB/in2提高数十上百倍。1991年,IBM生产的3.5英寸硬盘0663-E12使用了MR磁头,容量首次达到了1GB,从此硬盘容量开始进入了GB数量级,直到今天,大多数硬盘仍然采用MR磁头。
人们在谈论硬盘时经常讲到PIO模式和DMA模式,它们是什么呢?目前硬盘与主机进行数据交换的方式有两种,一种是通过CPU执行I/O端口指令来进行数据的读写;另外,一种是不经过CPU的DMA方式。
PIO模式即Programming Input/Output Model。这种模式使用PC I/O端口指令来传送所有的命令、状态和数据。由于驱动器中有多个缓冲区,对硬盘的读写一般采用I/O串操作指令,这种指令只需一次取指令就可以重复多次地完成I/O操作,因此,达到高的数据传输率是可能的。
DMA即Direct Memory Access。它表示数据不经过CPU,而直接在硬盘和内存之间传送。在多任务操作系统内,如OS/2、Linux、Windows NT等,当磁盘传输数据时,CPU可腾出时间来做其它事情,而在DOS/Windows3.X环境里,CPU不得不等待数据传输完毕,所以在这种情况下,DMA方式的意义并不大。
DMA方式有两种类型:第三方DMA(third-party DMA)和第一方DMA(first-party DMA)(或称总线主控DMA,Busmastering DMA)。第三方DMA通过系统主板上的DMA控制器的仲裁来获得总线和传输数据。而第一方DMA,则完全由接口卡上的逻辑电路来完成,当然这样就增加了总线主控接口的复杂性和成本。现在,所有较新的芯片组均支持总线主控DMA。
(2)SCSI接口
(Small Computer System Interface小型计算机系统接口)是一种与ATA完全不同的接口,它不是专门为硬盘设计的,而是一种总线型的系统接口,每个SCSI总线上可以连接包括SCSI控制卡在内的8个SCSI设备。SCSI的优势在于它支持多种设备,传输速率比ATA接口快得多但价格也很高,独立的总线使得它对CPU的占用率很低。 最早的SCSI是于1979年由美国的Shugart公司(Seagate希捷公司的前身)制订的,90年代初,SCSI发展到了SCSI-2,1995年推出了SCSI-3,其俗称Ultra SCSI, 1997年推出了Ultra 2 SCSI(Fast-40),其采用了LVD(Low Voltage Differential,低电平微分)传输模式,16位的Ultra2SCSI(LVD)接口的最高传输速率可达80MB/S,允许接口电缆的最长为12米,大大增加了设备的灵活性。1998年,更高数据传输率的Ultra160/m SCSI(Wide下的Fast-80)规格正式公布,其最高数据传输率为160MB/s,昆腾推出的Atlas10K和Atlas四代等产品支持Ultra3 SCSI的Ultra160/m传输模式。
SCSI硬盘具备有非常优秀的传输性能。但由于大多数的主板并不内置SCSI接口,这就使得连接SCSI硬盘必须安装相应的SCSI卡,目前关于SCSI卡有三个正式标准,SCSI-1,SCSI-2和SCSI-3,以及一些中间版本,要使SCSI硬盘获得最佳性能就必须保证SCSI卡与SCSI硬盘版本一致(目前较新生产的SCSI硬盘和SCSI卡都是向前兼容的,不一定必须版本一致)。
(3)IEEE1394:IEEE1394又称为Firewire(火线)或P1394,它是一种高速串行总线,现有的IEEE1394标准支持100Mbps、200Mbps和400Mbps的传输速率,将来会达到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作为硬盘、DVD、CD-ROM等大容量存储设备的接口。IEEE1394将来有望取代现有的SCSI总线和IDE接口,但是由于成本较高和技术上还不够成熟等原因,目前仍然只有少量使用IEEE1394接口的产品,硬盘就更少了。

⑷ 信息存储技术的信息存储技术的发展趋势

1.评价存储技术的指标
评价存储技术的指标常包括以下几种:存储密度、存取时间、存储成本、信息更新的难易、可靠性、寿命、消耗功率等。
其中有几项指标是互为相反的,没有一种存储技术能同时满足所有要求。因此,无论是纸印刷存储,还是缩微存储,磁存储,半导体存储,光盘存储都各自具备别的技术不能替代的优点。因此它们将在较长时期内并存,互为补充。
2.缩微存储、磁存储和光盘存储技术特点的比较
1)从存储容量、存储密度来看,光盘存储占有绝对优势。
2)从存取时间来看,磁存储占有优势,光盘存取的时间则较长,缩微存储的存取时间则不可比。
3)从信息更新的难易程度来讲,磁存储非常容易,而光盘存储的信息更新技术正在研制过程当中,缩微存储则不能进行信息的更新。
4)从存储信息的可靠性比较可以看出,缩微存储技术占有绝对优势,它的误码率为0,且保存期限最长。
5)缩微存储技术和磁存储技术比较成熟,缩微存储技术具有一次性投资较低的特点。
6)从信息存储技术的发展来看,光盘存储技术最有希望,随着光盘技术的改进和成熟,它的存取速度将进一步加快,成本将会进—步降低,光盘存储技术将有一个飞跃的发展。
3.信息存储技术的未来
由上面的特点比较我们可以得出结论:无论是纸印刷文献的存储,还是缩微存储、磁存储、光盘存储,它们都各自具备别的技术不能替代的长处,因此,它们将在较长时期内并存,互为补充。这是信息存储技术的一个发展趋势。
信息存储技术的另一发展趋势是各项信息存储技术的结合发展:
1)磁存储与光存储的结合——磁光存储技术。这是一种利用激光在磁光存储材料上进行信息写入和读出的技术。磁光存储技术结合了磁存储与光盘存储的优点,存储密度高,存储容量大,而且存取时间短。
2)采用缩微片和光盘两种存储媒质的复合系统。在随录随用、检索速度、影像远距离传送等方面,光盘优于缩微片,而在输入速度、复制发行、存储寿命、法律依据陆方面,缩微片又优于光盘。日本的佳能和富士公司先后推出一种采用缩微片和光盘两种存储媒质的所谓复合系统。采用复合系统的另一个优点是,原来已拥有大量缩微片的旧系统仍可继续使用,并能顺利地向新系统过渡。
3)“三合一”的存储系统,即将缩微、磁和光盘存储技术结合在一起的复合系统。柯达公司正在研究这种系统。
信息存储技术将有一个重新的比例分配是其发展的又一必然趋势,为了实现我国信息工作的现代化,我们必须采取得力的措施,来积极推动信息存储技术的这种转化。信息存储技术比例上的重新分配,也是为了更好地发挥各信息存储技术的特长,扬长避短。所谓“重新的比例分配”是:
1)传统的纸印刷文献,由于存储空间、存储条件等限制,一些利用率较低的印刷型文献将被缩微存储代替。
2)对于形像资料,为了保持图像的色彩,最好用光盘存储。当然也可以用彩色缩微摄影保存,但其效果并不十分理想。
3)为了充分利用光盘处理计算机信息的能力,可用光盘代替磁盘存储信息机构的书目信息和情报检索信息。通过光盘可以快速向用户提供检索服务,也可利用电子传输通信为远程终端提供书目信息。
4)存储计算机信息,过去都拟依靠COM技术,随着光盘技术的发展,COM技术可能被光盘代替。
5)根据光盘存储信息寿命短,但检索功能强及检索速度高的特点,可考虑将检索频率高的科技期刊、科技报告、标准和法律文献及一些词典工具书等存入光盘。根据科学信息老化规律,科技文献的引用期平均也只有10年左右,正好与光盘保存信息的寿命相当。
从长远来看,在信息存储技术领域内,今后还有大量的工作可做。有人估计,利用生物蛋白自我繁殖的功能,可以制造出极大容量的生物存储器;还可借助生物集成电路把计算机与人脑(一个极大容量的生物信息存储器)联系起来,形成新的人机系统。

⑸ iSCSI存储春天到了|手机存储

iSCSI(互联网小型计算机系统接口)是IP技术和网络快速发展的产物,是FC(光纤通道)最有力的竞争对手。iSCSI结合了业内SCSI和TCP/IP两个最通用的协议,为其实施和使用带吵举冲来了极大的便利,也大大增加了存储设备的资源利用。目前,存储厂商纷纷推出iSCSI存储设备。随着千兆以太网的成熟以及万兆以太网络的开发,iSCSI的性能不断提高,成本逐渐降低,其高性价比、通用性、无地理限制等优势获得越来越多用户的认可,必将开创网络存储的新局面。
以前,业界人士总认为,iSCSI是生不逢时。在SAN(存储区域网)架构已成为网络存储的主流的时候,iSCSI却因为速度的原因,在与光纤通道的竞争中败下阵来,只得跻身在中小企业市场。
不过风水轮流转,该到了iSCSI大展拳脚的时候了。从2006年开始,iSCSI发货量迅速增加,应用的领域也不仅仅是中小型企业市场。市场分析机构均认为,iSCSI的春天到了。

初生牛犊不怕虎

iSCSI,即internet SCSI,是IETF制订的一项标准,用于将SCSI(互联网小型计算机系统接口)数据块映射成以太网数据包。从根本上说,iSCSI协议是一种跨过IP网络来传输潜伏时间短的SCSI数据块的方法。
iSCSI使我们可以用已经熟悉和每天都在使用的以太网来构建IP存储区域网(SAN)。通过这种方法,iSCSI克服了直接连接存储的局限性,使我们可以跨不同服务器共享存储资源,并可在不停机状态下扩充存储容量。
iSCSI是一种网络通信协议,该技术能以以太网络取代现有的光纤信道,用做连结服务器及计算机系统的互联网通信协议(IP)。它最大的好处是能提供快速的网络环境,虽然速度目前还无法企及光纤网络,但以节省企业30% ~40%的成本而言,效益比非常高。
从目前来看, iSCSI SAN的优势主要有几个:一是高可用性,在服务器和存储资源之间建立起多条通道,即使一条线路断开,仍能保持系统升歼连接;二是高可扩展性,SAN采用交换机式的结构,IT管理人员不必中止应用即可完成存储容量的扩充;三是最大程度地保护存储资源投入;四是SAN能够跨平台共享硬盘和磁带设备;五是采用我们熟悉的以太网技术。
不过,在前几年,iSCSI的应用并没有像人们预期的那样增长,相反,应用推广并不理想。虽然iSCSI存储设备在几年前就相继问世,包括了EMC、HP、HDS等存储设备大厂也推出结合iSCSI/SAN/NAS的双信道协议产品,借iSCSI低成本优势,市场可望显着成长。但是不论从市场报告或者厂商观察都显示,由于SAN设备成本持续下滑、iSCSI的频宽有限、以及前者周边组件的驱动程序尚未完全到位等因素,相较于FC,iSCSI市场的成长有限。
不过可以肯定,iSCSI必然成为光纤通道(FC)的主要竞争对手,成为SAN存储区域网的主要应用技术。同时由于iSCSI内置的支持路由,可以让iSCSIinitiator访问Internet上任何一台存储设备,使得存储共享的概念无限扩大,存储连接的距离无限扩展。这一技术对于一边要面对信息高速增长,另一边却身处“数据孤岛”的众多中小企业无疑具有巨大的吸引力。
时来运转
不过,从2006年年底开始,iSCSI就时来运转。先来看看几组市场研究公司的分析与数据。
市场研究公司ESG的数据说,目前已经有超过 2万用户采用了 iSCSI。ESG统计了500名美国的IT经理,发现其中 17%企业正在企业生产环境应用 iSCSI ,另外20%计划采用这一技术。
按照IDC的统计,今天 iSCSI在外部磁盘存储领域所占的市场份额仅为3%。但是,目前iSCSI市场在以每年近3倍的速度增长,而到2010年,其市场份额将超过20%。IDC公司根据公司的全球磁盘存储收入的报告,预测在2005年到2010年之间,iSCSI市场的收入将提高75.8%,估计到了2010年,iSCSI收入将超过51亿美元,比2005年增加了30.5亿美元。
按照分析师的观点,iSCSI 技术迅速增长并进入网络存储的主流地位,源于其低成本和简单管理特性。它能以GB的速度传输存储数据,但是答改成本却比FC低很多。因为运行在万兆以太网上,它在服务器和光纤交换机上不需要适配器。另外,在部署方面,iSCSI不需要IT管理员需要特别的知识和专业技能。
低成本与易管理是驱动用户采用iSCSI的众多因素中的关键,不仅针对中小企业,而且针对大型企业。员工超过2万(含2万)的大型企业中接近20%已经部署了iSCSI。ESG说,市场发售的iSCSI存储产品开始增加,专门从事iSCSI领域的公司不断涌现,如美国Sanrad 公司、LeftHand Networks 公司、 Intransa 公司和EqualLogic公司。
一般认为,iSCSI产品大量上市的最主要驱动力在于两大软硬件厂商微软和英特尔都推出了支持iSCSI的产品。以微软为例,2004年年底Windows Storage Server 2003加入了对iSCSI技术的支持,2005年4月微软又宣布Microsoft Exchange Server 2003支持iSCSI。以iSCSI的市场被定位在中小型企业以及部门级产品而言,这些市场原本即是微软NT平台大宗使用者,iSCSI被微软无缝融入,使用户可以不必为新系统的应用和管理付出过多代价。
英特尔于2007年2月5日面向iSCSI推出了配备专用处理器的千兆以太网用适配器“PRO/1000 T IP Storage Adapter”,能够实现iSCSI 包卸载,并通过基于Intel Xscale 微架构的板上处理器获得较低的CPU 利用率,并已开始批量生产。

哪种方案最适合

到现在,不少企业已经将许多应用建立在Internet的架构之上,于是,SAN也将向基于IP网络方向发展。采用iSCSI技术组成的IP SAN可以提供和传统FC SAN相媲美的存储解决方案,而且普通服务器或PC只需要具备网卡,即可共享和使用大容量的存储空间。
假如你是一个用户,而你的公司近期打算部署一套备份存储系统,这时你有了更多的选择,可以购买数据吞吐量达到2 Gb/s左右的FC-SAN系统,也可以选择发展迅速的iSCSI SAN,那么如何选择最适合自己企业的技术方案呢?
不过,一般来说,企业在面临iSCSI SAN存储解决方案时,多半喜欢将其与传统的方案FC SAN及NAS与其做一番比较。专家对这三种方案做了一个比较,如下表所示。

无论未来用户采用光纤通道、iSCSI或者两者结合,所有存储系统客户的共同需求都是相同的,即降低成本,使得额外负担最小化,管理方式流水化以及存储系统管理的简单化。用户应该根据自己的应用需要,在考虑性能、成本、可扩展性、维护成本等方面基础上,选择合适自己的方案。

主要考虑的因素包括以下几个方面:
第一,适应性。
随着网络连接技术和信息化应用的不断发展,存储连接技术也在快速发展,在某些技术领域也做到了相互融合和借鉴。IP网络发展到今天已经十分成熟和普及,规模已经遍及全球,对于需要远程互联存储设备来说这是最好的现成资源。iSCSI协议就是在这种背景下发展起来的,iSCSI协议很好地结合了IP传输技术和SCSI传输技术的优点。从这一点看,iSCSI有着更好的发展适应性。
不过,目前存储的主要连接协议还是FC(光纤通道)协议,它是应用最广的存储连接技术。而iSCSI技术的发展前景却不容置疑。
第二,性能。
目前来看,iSCSI和FC技术都已经成熟,其发展目标主要是提升传输速度。
目前来看,FC的主流速度为2Gb/s,也有一些企业推出了4Gb/s的产品,而10Gb/s的标准也一定会推出。FC一定会向更高的传输速率迈进。
因为iSCSI协议是在TCP/IP协议之上运行SCSI协议,所以其底层的协议层都是利用现有以太网的。在硬件上兼容现在的网卡、网线、以太网交换机等设备。目前以太网的主流速度是千兆,现在已有一些用户采用万兆以太网。不过,目前其速度还无法超过FC协议。但由于iSCSI协议借鉴了SCSI协议适合大数据量传输的优势,所以在千兆以太网上的性能表现还不错。未来iSCSI超过FC是毫无悬念的。
第三,成本。
iSCSI的最大好处是能提供快速的网络环境,虽然目前其性能和带宽与光纤网络还有一些差距,但能节省企业30%~40%的成本。ISCSI成本优势的主要体现包括以下几个方面:
一是硬件购置成本低。构建iSCSI存储网络,除了存储设备外,交换机、线缆、接口卡都是标准的以太网配件,价格相对来说比较低廉。同时,iSCSI还可以在现有的网络上直接安装,并不需要更改企业的网络体系,这样可以最大程度地节约投入。
二是维护成本低。对iSCSI存储网络的管理,实际上就是对以太网设备的管理,只需花费少量的资金去培训iSCSI存储网络管理员。当iSCSI存储网络出现故障时,问题定位及解决也会因为以太网的普及而变得容易。

主流企业陆续推出产品

热衷iSCSI的存储企业既有存储领域的龙头老大,也有初出茅庐的新秀。推出产品涉及iSCSI控制卡、iSCSI交换机/网关、iSCSI存储服务器、iSCSI存储阵列等。
1.iSCSI存储系统
据 IDC的数据显示, NetApp 和 EMC在iSCSI市场上分别占据着第一和第二的位置。
IDC的数据显示,NAS存储领域的领导厂商NetApp,在2006年销售的iSCSI系统占到了市场30%份额。根据IDC 的数据,NetApp在FC网络存储 (FC SAN)和iSCSI SAN市场,无论在交付容量及营业收入方面,均处于全球领导者的地位。NetApp 是第一个提供 iSCSI 协议支持的存储系统厂商,已经在其存储系统中实现了NAS、iSCSI和FC连接的共存。在今年的早些时候,NetApp还推出了针对SMB市场的iSCSI-NAS系统――StoreVault S500。S500是一款2U系统,支持可达12个SATA硬盘驱动器,最大容量6TB,外部接口支持NAS和iSCSI。NetApp将S500定位在那些需要500GB到3TB存储、每年在存储上的花费少于2万美元并且没有专门的存储管理员的公司。S500包括NetApp用于其他磁盘系统的Data Ontap 7G操作系统,支持250个快照和RAID-DP。RAID-DP是NetApp版本的RAID 6,可以让系统承受两个驱动器故障。
之后,3月NetApp在推出满足中端市场需求的FAS3070 和 V3070之后,又推出了NetApp FAS3040 和 NetApp V3040系列中端SAN产品。这些产品对于那些不愿意将其数据中心与多个设备集群以处理不同的存储协议的用户具有一定的吸引力。通过一个FAS系统进行不同的处理,既可以降低成本,又能节省数据中心的空间和能量。最新产品采用了NetApp的多功能一体的架构,支持FC和iSCSI,对于存储由数据密集型的Oracle、SAP 和Microsoft Exchange产品创建的数据来说,是一个理想的选择。
EMC公司为其中端Clariion阵列和高端DMX存储系统增加了iSCSI支持能力。最新产品CLARiiON CX3-10将4Gb/s网络存储系统推向更低的起点,其容量可以扩展至30TB。在新系统中,同一阵列兼有光纤通道(FC)和iSCSI连接能力,实施更加灵活,可帮助用户整合存储系统。入门级用户可以用iSCSI来满足Microsoft Exchange等应用的需求,用光纤通道满足Oracle产品或Microsoft SQL Server数据仓库等高带宽应用的需求。
Hitachi则改进了其中端存储系统的性能。Hitachi的可适应存储扩展模块Adaptable Molar Storage――AMS1000,由于采用了新的多处理器技术,从而使性能提高20%。系统提供多种协议,支持iSCSI、NAS和FC SAN,用户可以混合和配比FC和SATA drives,以及RAID不同标准。
惠普向喜欢简单化的用户发布了AIO系列。AIO的全称是All in One即一体化,指的是该系列通过块级iSCSI目标、启动器支持和文件级连接(这一切都借助微软Windows存储服务器)来提供SAN和NAS功能。该设备基于Proliant DL 100 G2,配备有4个250GB SATA驱动器和1个双端口以太网接口。新的HP StorageWorks All-in-One (AiO)存储系统实现了简单的、以应用为中心的存储管理、可靠的数据保护及适中的价格。即使是在存储领域毫无经验的中小企业,也可以利用这套系统在灵活的网络存储环境里存储、共享、管理、备份和保护应用及文件数据。这款产品统一了NAS与SAN,实现了数据保护,容量从1TB可以扩展到39TB。在数据恢复方面,AiO每个卷最多可以做上百个快照,提升数据恢复的安全性。
2.iSCSI交换机
iSCSI交换机在系统中的作用跟网络中普通的交换机一样,只是起一个连接iSCSI存储服务器和iSCSI存储设备的作用。Sanrad声称,已经有超过600个用户使用其iSCSI技术。它最近推出的中端iSCSI交换机。Sanrad的 V-Switch 3400 是一款拥有3个iSCSI端口与4个FC端口的交换机。它提供热插拔电源,可以通过SNMP管理。SNMP是一个通用的图形化界面,它支持4PB存储容量,起价263美元。
以色列的一家公司SANRAD 也推出iSCSI交换机――SANRAD ISCSI V Switch 3000。该交换机能够通过以太网访问具有SCSI和光纤通道接口的存储设备,它配置于服务器等计算机和具有SCSI或光纤通道接口的存储设备之间。具有3个连接计算机的千兆位以太网端口,和4个连接存储设备的光纤通道接口(数据传输速度为2Gb/s)或Wide Ultra3 SCSI(数据传输速度为160Mb/s)端口。其特点是具有存储设备虚拟功能。
3. iSCSI控制卡
存储设备和主机都通过以太网线连接到以太网络交换机上,通过IP网络来实现SCSI协议的传输。主机与iSCSI设备之间有三种连接方式:第一,以太网卡+软件方式;第二,硬件TOE网卡实现方式;第三种是iSCSI HBA卡实现方式。
第三种方式使用iSCSI存储适配器来完成服务器中的iSCSI层和TCP/IP协议栈功能。这种方式使得服务器CPU无需考虑iSCSI以及网络配置,对服务器而言,iSCSI存储器适配器是一个HBA设备,与服务器采用何种操作系统无关。目前市场上也有相关的产品,如Adaptec 7211 iSCSI控制卡、Alacritech iSCSI HBA SES 1001、QLogic SANblade 4000系列iSCSI HBA卡等。

⑹ 存储技术发展历史

最早的外置存储器可以追溯到19世纪末。为了解决人口普查的需要,霍列瑞斯首先把穿孔纸带改造成穿孔卡片。

他把每个人所有的调查项目依次排列于一张卡片,然后根据调查结果在相应项目的位置上打孔。在以后的计算机系统里,用穿孔卡片输入数据的方法一直沿用到20世纪70年代,数据处理也发展成为电脑的主要功能之一。

2、磁带

UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。此时这个磁带长达1200英寸、包含8个磁道,每英寸可存储128bits,每秒可记录12800个字符,容量也达到史无前例的184KB。从 此之后,磁带经历了迅速发展,后来广泛应用了录音、影像领域。

3、软盘(见过这玩意的一定是80后)

1967年 IBM公司推出世界上第一张“软盘”,直径32英寸。随着技术的发展,软盘的尺寸一直在减小,容量也在不断提升,大小从8英寸,减到到5.25英寸软盘,以及到后来的3.5英寸软盘,容量却从最早的81KB到后来的1.44MB。在80-90年代3.5英寸软盘达到了巅峰。直到CD-ROM、USB存储设备出现后,软盘销量才逐渐下滑。

4、CD

CD也就是我们常说的光盘、光盘,诞生于1982年,最早用于数字音频存储。1985年,飞利浦和索尼将其引入PC,当时称之为CD-ROM(只 读),后来又发展成CD-R(可读)。因为声频CD的巨大成功,今天这种媒体的用途已经扩大到进行数据储存,目的是数据存档和传递。

5、磁盘

第一台磁盘驱动器是由IBM于1956年生产,可存储5MB数据,总共使用了50个24英寸盘片。到1973年,IBM推出第一个现代“温彻斯特”磁盘驱动器3340,使用了密封组件、润滑主轴和小质量磁头。此后磁盘的容量一度提升MB到GB再到TB。

6、DVD

数字多功能光盘,简称DVD,是一种光盘存储器。起源于上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。它们的直径多是120毫米左右。容量目前最大可到17.08GB。

7、闪存

浅谈存储器的进化历程
闪存(Flash Memory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信+息)的存储器。包含U盘、SD卡、CF卡、记忆棒等等种类。在1984年,东芝公司的发明人舛冈富士雄首先提出了快速闪存存储器(此处简称闪存)的概念。与传统电脑内存不同,闪存的特点是非易失性(也就是所存储的数据在主机掉电后不会丢失),其记录速度也非常快。Intel是世界上第一个生产闪存并将其投放市场的公司。到目前为止闪存形态多样,存储容量也不断扩展到256GB甚至更高。

随着存储器的更新换代,存储容量越来越大,读写速度也越来越快,企业级硬盘单盘容量已经达到10TB以上,目前使用的SSD固态硬盘,读速度达:3000+MB/s,写速度达:1700MB/s,用起来美滋滋啊。

⑺ 存储器的选用

存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。 1.内部存储器与外部存储器
一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。
市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。
2.引导存储器
在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。
3.配置存储器
对于现场可编程门阵列(FPGA)或片上系统(SoC),人们使用存储器来存储配置信息。这种存储器必须是非易失性EPROM、EEPROM或闪存。大多数情况下,FPGA采用SPI接口,但一些较老的器件仍采用FPGA串行接口。串行EEPROM或闪存器件最为常用,EPROM用得较少。
4.程序存储器
所有带处理器的系统都采用程序存储器,但设计工程师必须决定这个存储器是位于处理器内部还是外部。在做出了这个决策之后,设计工程师才能进一步确定存储器的容量和类型。当然有的时候,微控制器既有内部程序存储器也有外部寻址总线,此时设计工程师可以选择使用它们当中的任何一个,或者两者都使用。这就是为什么为某个应用选择最佳存储器的问题,常常由于微控制器的选择变得复杂起来,以及为什么改变存储器的规模也将导致改变微控制器的选择的原因。
如果微控制器既利用内部存储器也利用外部存储器,则内部存储器通常被用来存储不常改变的代码,而外部存储器用于存储更新比较频繁的代码和数据。设计工程师也需要考虑存储器是否将被在线重新编程或用新的可编程器件替代。对于需要重编程功能的应用,人们通常选用带有内部闪存的微控制器,但带有内部OTP或ROM和外部闪存或EEPROM的微控制器也满足这个要求。为降低成本,外部闪存可用来存储代码和数据,但在存储数据时必须小心避免意外修改代码。
在大多数嵌入式系统中,人们利用闪存存储程序以便在线升级固件。代码稳定的较老的应用系统仍可以使用ROM和OTP存储器,但由于闪存的通用性,越来越多的应用系统正转向闪存。
5.数据存储器
与程序存储器类似,数据存储器可以位于微控制器内部,或者是外部器件,但这两种情况存在一些差别。有时微控制器内部包含SRAM(易失性)和EEPROM(非易失)两种数据存储器,但有时不包含内部EEPROM,在这种情况下,当需要存储大量数据时,设计工程师可以选择外部的串行EEPROM或串行闪存器件。当然,也可以使用并行EEPROM或闪存,但通常它们只被用作程序存储器。
当需要外部高速数据存储器时,通常选择并行SRAM并使用外部串行EEPROM器件来满足对非易失性存储器的要求。一些设计还将闪存器件用作程序存储器,但保留一个扇区作为数据存储区。这种方法可以降低成本、空间并提供非易失性数据存储器。
针对非易失性存储器要求,串行EEPROM器件支持I2C、SPI或微线(Microwire)通讯总线,而串行闪存通常使用SPI总线。由于写入速度很快且带有I2C和SPI串行接口,FRAM在一些系统中得到应用。
6.易失性和非易失性存储器
存储器可分成易失性存储器或者非易失性存储器,前者在断电后将丢失数据,而后者在断电后仍可保持数据。设计工程师有时将易失性存储器与后备电池一起使用,使其表现犹如非易失性器件,但这可能比简单地使用非易失性存储器更加昂贵。然而,对要求存储器容量非常大的系统而言,带有后备电池的DRAM可能是满足设计要求且性价比很高的一种方法。
在有连续能量供给的系统中,易失性或非易失性存储器都可以使用,但必须基于断电的可能性做出最终决策。如果存储器中的信息可以在电力恢复时从另一个信源中恢复出来,则可以使用易失性存储器。
选择易失性存储器与电池一起使用的另一个原因是速度。尽管非易失存储器件可以在断电时保持数据,但写入数据(一个字节、页或扇区)的时间较长。
7.串行存储器和并行存储器
在定义了应用系统之后,微控制器的选择是决定选择串行或并行存储器的一个因素。对于较大的应用系统,微控制器通常没有足够大的内部存储器,这时必须使用外部存储器,因为外部寻址总线通常是并行的,外部的程序存储器和数据存储器也将是并行的。
较小的应用系统通常使用带有内部存储器但没有外部地址总线的微控制器。如果需要额外的数据存储器,外部串行存储器件是最佳选择。大多数情况下,这个额外的外部数据存储器是非易失性的。
根据不同的设计,引导存储器可以是串行也可以是并行的。如果微控制器没有内部存储器,并行的非易失性存储器件对大多数应用系统而言是正确的选择。但对一些高速应用,可以使用外部的非易失性串行存储器件来引导微控制器,并允许主代码存储在内部或外部高速SRAM中。
8.EEPROM与闪存
存储器技术的成熟使得RAM和ROM之间的界限变得很模糊,如今有一些类型的存储器(如EEPROM和闪存)组合了两者的特性。这些器件像RAM一样进行读写,并像ROM一样在断电时保持数据,它们都可电擦除且可编程,但各自有它们优缺点。
从软件角度看,独立的EEPROM和闪存器件是类似的,两者主要差别是EEPROM器件可以逐字节地修改,而闪存器件只支持扇区擦除以及对被擦除单元的字、页或扇区进行编程。对闪存的重新编程还需要使用SRAM,因此它要求更长的时间内有更多的器件在工作,从而需要消耗更多的电池能量。设计工程师也必须确认在修改数据时有足够容量的SRAM可用。
存储器密度是决定选择串行EEPROM或者闪存的另一个因素。市场上可用的独立串行EEPROM器件的容量在128KB或以下,独立闪存器件的容量在32KB或以上。
如果把多个器件级联在一起,可以用串行EEPROM实现高于128KB的容量。很高的擦除/写入耐久性要求促使设计工程师选择EEPROM,因为典型的串行EEPROM可擦除/写入100万次。闪存一般可擦除/写入1万次,只有少数几种器件能达到10万次。
今天,大多数闪存器件的电压范围为2.7V到3.6V。如果不要求字节寻址能力或很高的擦除/写入耐久性,在这个电压范围内的应用系统采用闪存,可以使成本相对较低。
9.EEPROM与FRAM
EEPROM和FRAM的设计参数类似,但FRAM的可读写次数非常高且写入速度较快。然而通常情况下,用户仍会选择EEPROM而不是FRAM,其主要原因是成本(FRAM较为昂贵)、质量水平和供货情况。设计工程师常常使用成本较低的串行EEPROM,除非耐久性或速度是强制性的系统要求。
DRAM和SRAM都是易失性存储器,尽管这两种类型的存储器都可以用作程序存储器和数据存储器,但SRAM主要用于数据存储器。DRAM与SRAM之间的主要差别是数据存储的寿命。只要不断电,SRAM就能保持其数据,但DRAM只有极短的数据寿命,通常为4毫秒左右。
与SRAM相比,DRAM似乎是毫无用处的,但位于微控制器内部的DRAM控制器使DRAM的性能表现与SRAM一样。DRAM控制器在数据消失之前周期性地刷新所存储的数据,所以存储器的内容可以根据需要保持长时间。
由于比特成本低,DRAM通常用作程序存储器,所以有庞大存储要求的应用可以从DRAM获益。它的最大缺点是速度慢,但计算机系统使用高速SRAM作为高速缓冲存储器来弥补DRAM的速度缺陷。
10、云储存
和传统存储相比,云存储系统具有如下优势:优异性能支持高并发、带宽饱和利用。云存储系统将控制流和数据流分离,数据访问时多个存储服务器同时对外提供服务,实现高并发访问。自动均衡负载,将不同客户端的访问负载均衡到不同的存储服务器上。系统性能随节点规模的增加呈线性增长。系统的规模越大,云存储系统的优势越明显, 没有性能瓶颈。高度可靠针对小文件采用多个数据块副本的方式实现冗余可靠,数据在不同的存储节点上具有多个块副本,任意节点发生故障,系统将自动复制数据块副本到新的存储节点上,数据不丢失,实现数据完整可靠;针对大文件采用超安存(S3)编解码算法的方式实现高度可靠,任意同时损坏多个存储节点,数据可通过超安存算法解码自动恢复。该特性可适用于对数据安全级别极高的场合,同时相对于副本冗余的可靠性实现方式大大提高了磁盘空间利用率,不到40%的磁盘冗余即可实现任意同时损坏三个存储节点而不丢失数据。元数据管理节点采用双机镜像热备份的高可用方式容错,其中一台服务器故障,可无缝自动切换到另一台服务器,服务不间断。整个系统无单点故障,硬件故障自动屏蔽。在线伸缩可以在不停止服务的情况下,动态加入新的存储节点,无需任何操作,即可实现系统容量从TB级向PB级平滑扩展;也可以摘下任意节点,系统自动缩小规模而不丢失数据,并自动将再下的节点上的数据备份到其他节点上,保证整个系统数据的冗余数。超大规模支持超大规模集群,理论容量为1024×1024×1024PB。简单通用支持POSIX接口规范,支持Windows/Linux/Mac OS X,用户当成海量磁盘使用,无需修改应用。同时系统也对外提供专用的API访问接口。智能管理一键式安装,智能化自适应管理,简单方便的监控界面,无需学习即可使用。云存储系统所有管理工作由云存储系统管理监控中心完成,使用人员无需任何专业知识便可以轻松地管理整个系统。通过专业的分布式集群监控子系统对所有节点实行无间断监控,用户通过界面可以清楚地了解到每一个节点的运行情况。 尽管我们几乎可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。

⑻ 存储器的原理是什么

存储器讲述工作原理及作用

介绍

存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。

2.按存取方式分类

(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。

(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。

(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。

3.按信息的可保存性分类

非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。

永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM。

4.按在计算机系统中的作用分

根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

能力影响

从写命令转换到读命令,在某个时间访问某个地址,以及刷新数据等操作都要求数据总线在一定时间内保持休止状态,这样就不能充分利用存储器通道。此外,宽并行总线和DRAM内核预取都经常导致不必要的大数据量存取。在指定的时间段内,存储器控制器能存取的有用数据称为有效数据速率,这很大程度上取决于系统的特定应用。有效数据速率随着时间而变化,常低于峰值数据速率。在某些系统中,有效数据速率可下降到峰值速率的10%以下。

通常,这些系统受益于那些能产生更高有效数据速率的存储器技术的变化。在CPU方面存在类似的现象,最近几年诸如AMD和 TRANSMETA等公司已经指出,在测量基于CPU的系统的性能时,时钟频率不是唯一的要素。存储器技术已经很成熟,峰值速率和有效数据速率或许并不比以前匹配的更好。尽管峰值速率依然是存储器技术最重要的参数之一,但其他结构参数也可以极大地影响存储器系统的性能。

影响有效数据速率的参数

有几类影响有效数据速率的参数,其一是导致数据总线进入若干周期的停止状态。在这类参数中,总线转换、行周期时间、CAS延时以及RAS到CAS的延时(tRCD)引发系统结构中的大部分延迟问题。

总线转换本身会在数据通道上产生非常长的停止时间。以GDDR3系统为例,该系统对存储器的开放页不断写入数据。在这期间,存储器系统的有效数据速率与其峰值速率相当。不过,假设100个时钟周期中,存储器控制器从读转换到写。由于这个转换需要6个时钟周期,有效的数据速率下降到峰值速率的 94%。在这100个时钟周期中,如果存储器控制器将总线从写转换到读的话,将会丢失更多的时钟周期。这种存储器技术在从写转换到读时需要15个空闲周期,这会将有效数据速率进一步降低到峰值速率的79%。表1显示出针几种高性能存储器技术类似的计算结果。

显然,所有的存储器技术并不相同。需要很多总线转换的系统设计师可以选用诸如XDR、RDRAM或者DDR2这些更高效的技术来提升性能。另一方面,如果系统能将处理事务分组成非常长的读写序列,那么总线转换对有效带宽的影响最小。不过,其他的增加延迟现象,例如库(bank)冲突会降低有效带宽,对性能产生负面影响。

DRAM技术要求库的页或行在存取之前开放。一旦开放,在一个最小周期时间,即行周期时间(tRC)结束之前,同一个库中的不同页不能开放。对存储器开放库的不同页存取被称为分页遗漏,这会导致与任何tRC间隔未满足部分相关的延迟。对于还没有开放足够周期以满足tRC间隙的库而言,分页遗漏被称为库冲突。而tRC决定了库冲突延迟时间的长短,在给定的DRAM上可用的库数量直接影响库冲突产生的频率。

大多数存储器技术有4个或者8个库,在数十个时钟周期具有tRC值。在随机负载情况下,那些具有8个库的内核比具有4个库的内核所发生的库冲突更少。尽管tRC与库数量之间的相互影响很复杂,但是其累计影响可用多种方法量化。

存储器读事务处理

考虑三种简单的存储器读事务处理情况。第一种情况,存储器控制器发出每个事务处理,该事务处理与前一个事务处理产生一个库冲突。控制器必须在打开一个页和打开后续页之间等待一个tRC时间,这样增加了与页循环相关的最大延迟时间。在这种情况下的有效数据速率很大程度上决定于I/O,并主要受限于DRAM内核电路。最大的库冲突频率将有效带宽削减到当前最高端存储器技术峰值的20%到30%。

在第二种情况下,每个事务处理都以随机产生的地址为目标。此时,产生库冲突的机会取决于很多因素,包括tRC和存储器内核中库数量之间的相互作用。tRC值越小,开放页循环地越快,导致库冲突的损失越小。此外,存储器技术具有的库越多,随机地址存取库冲突的机率就越小。

第三种情况,每个事务处理就是一次页命中,在开放页中寻址不同的列地址。控制器不必访问关闭页,允许完全利用总线,这样就得到一种理想的情况,即有效数据速率等于峰值速率。

第一种和第三种情况都涉及到简单的计算,随机情况受其他的特性影响,这些特性没有包括在DRAM或者存储器接口中。存储器控制器仲裁和排队会极大地改善库冲突频率,因为更有可能出现不产生冲突的事务处理,而不是那些导致库冲突的事务处理。

然而,增加存储器队列深度未必增加不同存储器技术之间的相对有效数据速率。例如,即使增加存储器控制队列深度,XDR的有效数据速率也比 GDDR3高20%。存在这种增量主要是因为XDR具有更高的库数量以及更低的tRC值。一般而言,更短的tRC间隔、更多的库数量以及更大的控制器队列能产生更高的有效带宽。

实际上,很多效率限制现象是与行存取粒度相关的问题。tRC约束本质上要求存储器控制器从新开放的行中存取一定量的数据,以确保数据管线保持充满。事实上,为保持数据总线无中断地运行,在开放一个行之后,只须读取很少量的数据,即使不需要额外的数据。

另外一种减少存储器系统有效带宽的主要特性被归类到列存取粒度范畴,它规定了每次读写操作必须传输的数据量。与之相反,行存取粒度规定每个行激活(一般指每个RAS的CAS操作)需要多少单独的读写操作。列存取粒度对有效数据速率具有不易于量化的巨大影响。因为它规定一个读或写操作中需要传输的最小数据量,列存取粒度给那些一次只需要很少数据量的系统带来了问题。例如,一个需要来自两列各8字节的16字节存取粒度系统,必须读取总共32字节以存取两个位置。因为只需要32个字节中的16个字节,系统的有效数据速率降低到峰值速率的50%。总线带宽和脉冲时间长度这两个结构参数规定了存储器系统的存取粒度。

总线带宽是指连接存储器控制器和存储器件之间的数据线数量。它设定最小的存取粒度,因为对于一个指定的存储器事务处理,每条数据线必须至少传递一个数据位。而脉冲时间长度则规定对于指定的事务处理,每条数据线必须传递的位数量。每个事务处理中的每条数据线只传一个数据位的存储技术,其脉冲时间长度为1。总的列存取粒度很简单:列存取粒度=总线宽度×脉冲时间长度。

很多系统架构仅仅通过增加DRAM器件和存储总线带宽就能增加存储系统的可用带宽。毕竟,如果4个400MHz数据速率的连接可实现 1.6GHz的总峰值带宽,那么8个连接将得到3.2GHz。增加一个DRAM器件,电路板上的连线以及ASIC的管脚就会增多,总峰值带宽相应地倍增。

首要的是,架构师希望完全利用峰值带宽,这已经达到他们通过物理设计存储器总线所能达到的最大值。具有256位甚或512位存储总线的图形控制器已并不鲜见,这种控制器需要1,000个,甚至更多的管脚。封装设计师、ASIC底层规划工程师以及电路板设计工程师不能找到采用便宜的、商业上可行的方法来对这么多信号进行布线的硅片区域。仅仅增加总线宽度来获得更高的峰值数据速率,会导致因为列存取粒度限制而降低有效带宽。

假设某个特定存储技术的脉冲时间长度等于1,对于一个存储器处理,512位宽系统的存取粒度为512位(或者64字节)。如果控制器只需要一小段数据,那么剩下的数据就被浪费掉,这就降低了系统的有效数据速率。例如,只需要存储系统32字节数据的控制器将浪费剩余的32字节,进而导致有效的数据速率等于50%的峰值速率。这些计算都假定脉冲时间长度为1。随着存储器接口数据速率增加的趋势,大多数新技术的最低脉冲时间长度都大于1。

选择技巧

存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。

选择存储器时应遵循的基本原则

1、内部存储器与外部存储器

一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。

2、引导存储器

在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。

可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。