㈠ 8086系统中的存储器为什么要采用分段结构有什么好处
8086CPU中的寄存器都是16位的,16位的地址只能访问64KB的内存。086系统中的物理地址是由20根地址总线形成的,要做到对20位地址空间进行访问,就需要两部分地址,在8086系统中,就是由段基址和偏移地址两部分构成。
这两个地址都是16位的,将这两个地址采用相加的方式组成20位地址去访问存储器。在8086系统的地址形成中,当段地址确定后,该段的寻址范围就已经确定,其容量不大于64KB。同时,通过修改段寄存器内容,可达到逻辑段在整个1MB存储空间中浮动。
各个逻辑段之间可以紧密相连,可以中间有间隔,也可以相互重叠(部分重叠,甚至完全重叠)。采用段基址和偏移地址方式组成物理地址的优点是:满足对8086系统的1MB存储空间的访问,同时在大部分指令中只要提供16位的偏移地址即可。
(1)存储器分层结构的必要性扩展阅读
把段的起始单元的物理地址除以16的结果称为段地址,它为16位,写成十六进制是4位:XXXXH。显然,段地址决定了段在lMB空间中的位置。段内各存储单元相对段的起始单元都有一个距离,称为段内偏移量。
在对内存进行操作时,段地址先确定下来,然后给出不同的段内偏移量,就可以实现段内的寻址。段地址也是可以改变的,即段在1MB空间中的位置是可变的,因而可实现1MB的全范围寻址。
由于采用了分段结构,因此可以把每一个存储单元看成是具有两种类型的地址:物理地址和逻辑地址。物理地址就是实际地址,它具有20位的地址值,它惟一地标识1MB存储空间的某一存储单元。CPU与存储器之间的信息交换都是使用这个物理地址。
逻辑地址是编程时所使用的地址,它由段地址和段内偏移量组成。逻辑地址和物理地址的关系为:物理地址=段地址16+段内偏移量。由逻辑地址形成物理地址是由总线接口部件中的电路实现的。
㈡ 计算机采用分层次存储体系结构的原因 答完整
在计算机网络技术中,网络的体系结构指的是通信系统的整体设计,它的目的是为网络硬件、软件、协议、存取控制和拓扑提供标准。现在广泛采用的是开放系统互连OSI(Open System Interconnection)的参考模型,它是用物理层、数据链路层、网络层、传送层、对话层、表示层和应用层七个层次描述网络的结构。你应该注意的是,网络体系结构的优劣将直接影响总线、接口和网络的性能。而网络体系结构的关键要素恰恰就是协议和拓扑。目前最常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。
采用分层次的结构原因:各层功能相对独立,各层因技术进步而做的改动不会影响到其他层,从而保持体 系结构的稳定性
㈢ 计算机储存器为什么要分内外存/分内外存的必要性。
内存速度快,但造价高,所以容量有限;外存速度慢,但造价便宜,可以扩展得比较大。
这两种内存是相辅相成的,外存可以保存大量待处理数据或者处理结果,内存可以利用速度快的优势,将数据从外存分小批调入处理然后再保存到外存去,外存如果容量不足还可以再保存到更便宜、尺寸更大、操作更慢的外存中去,或者从它上面读取数据。
计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。
计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。
(3)存储器分层结构的必要性扩展阅读:
以存储体(大量存储单元组成的阵列)为核心,加上必要的地址译码、读写控制电路,即为存储集成电路;再加上必要的I/O接口和一些额外的电路如存取策略管理,则形成存储芯片,比如手机中常用的存储芯片。
得益于新的IC制造或芯片封装工艺,现在已经有能力把DRAM和FLASH存储单元集成在单芯片里。存储芯片再与控制芯片及时钟、电源等必要的组件集成在电路板上构成整机,就是一个存储产品。
存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的。
㈣ 存储器的主要功能是什么为什么要把存储系统分成若干个不同层次
一、存储器的主要功能:
1、随机存取存储器(RAM)。
2、只读存储器(ROM)。
3、闪存(Flash Memory)。
4、先进先出存储器(FIFO)。
5、先进后出存储器(FILO)。
二、存储器分为若干个层次主要原因:
1、合理解决速度与成本的矛盾,以得到较高的性能价格比。
磁盘存储器价格较便宜,可以把容量做得很大,但存取速度较慢,因此用作存取次数较少,且需存放大量程序、原始数据(许多程序和数据是暂时不参加运算的)和运行结果的外存储器。
2、使用磁盘作为外存,不仅价格便宜,可以把存储容量做得很大,而且在断电时它所存放的信息也不丢失,可以长久保存,且复制、携带都很方便。
(4)存储器分层结构的必要性扩展阅读:
存储器可做处理器,未来装置有望更加轻薄短小:
有一群跨国研究团队做了实验,并真的成功运用存储器执行一般电脑芯片的运算任务,倘若技术成熟,将有望使手机与电脑等装置更加轻薄。
新加坡南洋理工大学、德国亚琛阿亨工业大学和欧洲最大的跨学科研究中心德国尤利希研究中心组成的研究团队发现,在调整算法后,存储器能如英特尔、高通等传统处理器一般,进行运算处理。
目前市面上的装置或电脑都是透过CPU从存储器提取资讯进行运算处理,以二进制0跟1来实现指令,如字母A是用“01000001”这样8位元的形式来处理或纪录。而存储器ReRAM透过不同电阻态代表0或1的数据状态储存资讯,其实还可实现更高基数的数据状态记录。
研究团队就将ReRAM原型(prototype)调整为0、1、2的三进制,透过这样的高基数运算系统可加速运算任务,并于存储器就可进行逻辑运算。也节省了处理器与存储器间数据传输的时间与功耗的消耗。
研究参与人之一、南洋理工大学资讯工程学系助理教授Chattopadhyay解释,这就像一段很长的会话却只用一个极小的翻译器来转换,是一段耗时且费力的过程,团队所做的就是增加这个小型翻译器的处理容量,使其能更有效的处理数据。
㈤ 为什么现代微机的存储系统中采用层次结构
cpu的内部
第一层:通用寄存器堆
第二层:指令与数据缓冲栈
第三层:高速缓冲存储器
第四层:主储存器(DRAM)
第五层:联机外部储存器(硬磁盘机)
第六层:脱机外部储存器(磁带、光盘存储器等)
这就是存储器的层次结构~~~ 主要体现在访问速度~~~
① 设置多个存储器并且使他们并行工作。本质:增添瓶颈部件数目,使它们并行工作,从而减缓固定瓶颈。
② 采用多级存储系统,特别是Cache技术,这是一种减轻存储器带宽对系统性能影响的最佳结构方案。本质:把瓶颈部件分为多个流水线部件,加大操作时间的重叠、提高速度,从而减缓固定瓶颈。
③ 在微处理机内部设置各种缓冲存储器,以减轻对存储器存取的压力。增加CPU中寄存器的数量,也可大大缓解对存储器的压力。本质:缓冲技术,用于减缓暂时性瓶颈。
㈥ 计算机 存储器为什么要分层 分层结构有什么好处
存储器是计算机的核心部件之一。如何以合理的价格搭建出容量和速度都满足要求的存储系统,始终是计算机体系结构设计中的关键问题之一。
计算机中有不同容量,不同速度的存储器,你怎麽办?要把它们组织管理在一起,按照一定的体系结构组织起来,
以解决存储容量、存取速度和价格之
间的矛盾。存储器一分钱一分货,亲
设计让整个存储系统速度接近M1而价格和容量接近Mn
㈦ 为什么要配置层次式存储器
为了提高系统的效率。
由于CPU的速度极快,然而CPU在执行的时候需要内存中的数据,但是内存的速度远远跟不上CPU的速度,导致CPU老是等内存,严重影响CPU的效率,所以必须加入cache来解决这一问题,cache的数据存取速度比内存快很多。
(7)存储器分层结构的必要性扩展阅读:
对于CPU而言,影响其性能的指标主要有主频、 CPU的位数以及CPU的缓存指令集。所谓CPU的主频,指的就是时钟频率,它直接的决定了CPU的性能,因此要想CPU的性能得到很好地提高,提高CPU的主频是一个很好地途径。而CPU的位数指的就是处理器能够一次性计算的浮点数的位数,通常情况下,CPU的位数越高,CPU 进行运算时候的速度就会变得越快。