当前位置:首页 » 服务存储 » 单个分子构成的存储器
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

单个分子构成的存储器

发布时间: 2023-07-27 06:35:21

A. 简述计算机三级存储体系结构

在计算机系统中存储层次可分为高速缓冲存储器、主存储器、辅助存储器三级。高速缓冲存储器用来改善主存储器与中央处理器的速度匹配问题。辅助存储器用于扩大存储空间。

1、高速缓冲存储器

存在于主存与CPU之间的一级存储器, 由静态存储余局芯片(SRAM)组成,容量比较小但速度比主存高得多, 接近于CPU的速度。在计算机存储系统的层次结构中,是介于中央处理器和主存储器之间的高速小容量存储器。它和主存储器一起构成一级的存储器。高速缓冲存储器和主存储器之间信息的调度和传送是由硬件自动进行的。

2、主存储器(Main memory)

计算机硬件的一个重要部件,其作用是存放指令和数据,并能由中央处理器(CPU)直接随机存取。现代计算机是为了提高性能,又能兼顾合理的造价,往往采用多级存储体系。即由存储容量小,存取速度高的高速缓冲存储器,存储容量和存取速度适中的主存储器是必不可少的。

主存储器是按地址存放信息的,存取速度一般与地址无竖帆让关。32位(比特)的地址最大能表达4GB的存储器地址。这对多数应用已经足够,但对于某些特大运算量的应用和特大型数据库已显得不够,从而对64位结构提出需求。

3、外储存器

辅助存储器又称外存储器(简称外存)。指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。常见的外存储器有硬盘、软盘、光盘、U盘等。

(1)单个分子构成的存储器扩展阅读

计算机的主存储器不能同时满轿野足存取速度快、存储容量大和成本低的要求,在计算机中必须有速度由慢到快、容量由大到小的多级层次存储器,以最优的控制调度算法和合理的成本,构成具有性能可接受的存储系统。存储系统的性能在计算机中的地位日趋重要,主要原因是:

1、冯诺伊曼体系结构是建筑在存储程序概念的基础上,访存操作约占中央处理器(CPU)时间的70%左右。

2、存储管理与组织的好坏影响到整机效率。

3、现代的信息处理,如图像处理、数据库、知识库、语音识别、多媒体等对存储系统的要求很高。

B. 存储器的组成部分有哪些

D、记忆部件。

构成存储器的存储介质主弊差要采用半导体器件和磁性材料。存储器中最小的存储单位就是一个双稳态半导体电路或一个CMOS晶春知体管或磁性材料的存储元,可存储一个二进制代码。

由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。存储器结构在MCS - 51系列单片机中,程序存储器和数据存储器互相独立,物理结构也不相同。



(2)单个分子构成的存储器扩展阅读:

为提高存储器的性能,通常把各种不同存储容量、存取速度和价格的存储器按层次结构组成多层存储器,并通过管理软件和辅助硬件有机组合成统一的整体,使所存放的程序和数据按层次分布在各存储器中。

主要采用三级层次结构来构成存储系统,由高速缓冲存储器Cache、主存储器和辅助存储器组成。图中自上向下容量逐渐增大,速度逐级降低,成本则逐次租森皮减少。

C. 内存储器包括些什么

内存储器
微型计算机的内存储器是由半导体器件构成的。从使用功能上分,有随机存储器 (Random Access Memory,简称 RAM),又称读写存储器;只读存储器(Read Only Memory,简称为ROM)。
1.随机存储器(Random Access Memory)
RAM有以下特点:可以读出,也可以写入。读出时并不损坏原来存储的内容,只有写入时才修改原来所存储的内容。断电后,存储内容立即消失,即具有易失性。 RAM可分为动态( Dynamic RAM)和静态(Static RAM)两大类。DRAM的特点是集成度高,主要用于大容量内存储器;SRAM的特点是存取速度快,主要用于高速缓冲存储器。
2.只读存储器(Read Only Memory)
ROM是只读存储器。顾名思义,它的特点是只能读出原有的内容,不能由用户再写入新内容。原来存储的内容是采用掩膜技术由厂家一次性写入的,并永久保存下来。它一般 用来存放专用的固定的程序和数据。不会因断电而丢失。 希望能帮到你。

D. 存储器的原理是什么

存储器讲述工作原理及作用

介绍

存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。

2.按存取方式分类

(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。

(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。

(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。

3.按信息的可保存性分类

非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。

永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM。

4.按在计算机系统中的作用分

根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

能力影响

从写命令转换到读命令,在某个时间访问某个地址,以及刷新数据等操作都要求数据总线在一定时间内保持休止状态,这样就不能充分利用存储器通道。此外,宽并行总线和DRAM内核预取都经常导致不必要的大数据量存取。在指定的时间段内,存储器控制器能存取的有用数据称为有效数据速率,这很大程度上取决于系统的特定应用。有效数据速率随着时间而变化,常低于峰值数据速率。在某些系统中,有效数据速率可下降到峰值速率的10%以下。

通常,这些系统受益于那些能产生更高有效数据速率的存储器技术的变化。在CPU方面存在类似的现象,最近几年诸如AMD和 TRANSMETA等公司已经指出,在测量基于CPU的系统的性能时,时钟频率不是唯一的要素。存储器技术已经很成熟,峰值速率和有效数据速率或许并不比以前匹配的更好。尽管峰值速率依然是存储器技术最重要的参数之一,但其他结构参数也可以极大地影响存储器系统的性能。

影响有效数据速率的参数

有几类影响有效数据速率的参数,其一是导致数据总线进入若干周期的停止状态。在这类参数中,总线转换、行周期时间、CAS延时以及RAS到CAS的延时(tRCD)引发系统结构中的大部分延迟问题。

总线转换本身会在数据通道上产生非常长的停止时间。以GDDR3系统为例,该系统对存储器的开放页不断写入数据。在这期间,存储器系统的有效数据速率与其峰值速率相当。不过,假设100个时钟周期中,存储器控制器从读转换到写。由于这个转换需要6个时钟周期,有效的数据速率下降到峰值速率的 94%。在这100个时钟周期中,如果存储器控制器将总线从写转换到读的话,将会丢失更多的时钟周期。这种存储器技术在从写转换到读时需要15个空闲周期,这会将有效数据速率进一步降低到峰值速率的79%。表1显示出针几种高性能存储器技术类似的计算结果。

显然,所有的存储器技术并不相同。需要很多总线转换的系统设计师可以选用诸如XDR、RDRAM或者DDR2这些更高效的技术来提升性能。另一方面,如果系统能将处理事务分组成非常长的读写序列,那么总线转换对有效带宽的影响最小。不过,其他的增加延迟现象,例如库(bank)冲突会降低有效带宽,对性能产生负面影响。

DRAM技术要求库的页或行在存取之前开放。一旦开放,在一个最小周期时间,即行周期时间(tRC)结束之前,同一个库中的不同页不能开放。对存储器开放库的不同页存取被称为分页遗漏,这会导致与任何tRC间隔未满足部分相关的延迟。对于还没有开放足够周期以满足tRC间隙的库而言,分页遗漏被称为库冲突。而tRC决定了库冲突延迟时间的长短,在给定的DRAM上可用的库数量直接影响库冲突产生的频率。

大多数存储器技术有4个或者8个库,在数十个时钟周期具有tRC值。在随机负载情况下,那些具有8个库的内核比具有4个库的内核所发生的库冲突更少。尽管tRC与库数量之间的相互影响很复杂,但是其累计影响可用多种方法量化。

存储器读事务处理

考虑三种简单的存储器读事务处理情况。第一种情况,存储器控制器发出每个事务处理,该事务处理与前一个事务处理产生一个库冲突。控制器必须在打开一个页和打开后续页之间等待一个tRC时间,这样增加了与页循环相关的最大延迟时间。在这种情况下的有效数据速率很大程度上决定于I/O,并主要受限于DRAM内核电路。最大的库冲突频率将有效带宽削减到当前最高端存储器技术峰值的20%到30%。

在第二种情况下,每个事务处理都以随机产生的地址为目标。此时,产生库冲突的机会取决于很多因素,包括tRC和存储器内核中库数量之间的相互作用。tRC值越小,开放页循环地越快,导致库冲突的损失越小。此外,存储器技术具有的库越多,随机地址存取库冲突的机率就越小。

第三种情况,每个事务处理就是一次页命中,在开放页中寻址不同的列地址。控制器不必访问关闭页,允许完全利用总线,这样就得到一种理想的情况,即有效数据速率等于峰值速率。

第一种和第三种情况都涉及到简单的计算,随机情况受其他的特性影响,这些特性没有包括在DRAM或者存储器接口中。存储器控制器仲裁和排队会极大地改善库冲突频率,因为更有可能出现不产生冲突的事务处理,而不是那些导致库冲突的事务处理。

然而,增加存储器队列深度未必增加不同存储器技术之间的相对有效数据速率。例如,即使增加存储器控制队列深度,XDR的有效数据速率也比 GDDR3高20%。存在这种增量主要是因为XDR具有更高的库数量以及更低的tRC值。一般而言,更短的tRC间隔、更多的库数量以及更大的控制器队列能产生更高的有效带宽。

实际上,很多效率限制现象是与行存取粒度相关的问题。tRC约束本质上要求存储器控制器从新开放的行中存取一定量的数据,以确保数据管线保持充满。事实上,为保持数据总线无中断地运行,在开放一个行之后,只须读取很少量的数据,即使不需要额外的数据。

另外一种减少存储器系统有效带宽的主要特性被归类到列存取粒度范畴,它规定了每次读写操作必须传输的数据量。与之相反,行存取粒度规定每个行激活(一般指每个RAS的CAS操作)需要多少单独的读写操作。列存取粒度对有效数据速率具有不易于量化的巨大影响。因为它规定一个读或写操作中需要传输的最小数据量,列存取粒度给那些一次只需要很少数据量的系统带来了问题。例如,一个需要来自两列各8字节的16字节存取粒度系统,必须读取总共32字节以存取两个位置。因为只需要32个字节中的16个字节,系统的有效数据速率降低到峰值速率的50%。总线带宽和脉冲时间长度这两个结构参数规定了存储器系统的存取粒度。

总线带宽是指连接存储器控制器和存储器件之间的数据线数量。它设定最小的存取粒度,因为对于一个指定的存储器事务处理,每条数据线必须至少传递一个数据位。而脉冲时间长度则规定对于指定的事务处理,每条数据线必须传递的位数量。每个事务处理中的每条数据线只传一个数据位的存储技术,其脉冲时间长度为1。总的列存取粒度很简单:列存取粒度=总线宽度×脉冲时间长度。

很多系统架构仅仅通过增加DRAM器件和存储总线带宽就能增加存储系统的可用带宽。毕竟,如果4个400MHz数据速率的连接可实现 1.6GHz的总峰值带宽,那么8个连接将得到3.2GHz。增加一个DRAM器件,电路板上的连线以及ASIC的管脚就会增多,总峰值带宽相应地倍增。

首要的是,架构师希望完全利用峰值带宽,这已经达到他们通过物理设计存储器总线所能达到的最大值。具有256位甚或512位存储总线的图形控制器已并不鲜见,这种控制器需要1,000个,甚至更多的管脚。封装设计师、ASIC底层规划工程师以及电路板设计工程师不能找到采用便宜的、商业上可行的方法来对这么多信号进行布线的硅片区域。仅仅增加总线宽度来获得更高的峰值数据速率,会导致因为列存取粒度限制而降低有效带宽。

假设某个特定存储技术的脉冲时间长度等于1,对于一个存储器处理,512位宽系统的存取粒度为512位(或者64字节)。如果控制器只需要一小段数据,那么剩下的数据就被浪费掉,这就降低了系统的有效数据速率。例如,只需要存储系统32字节数据的控制器将浪费剩余的32字节,进而导致有效的数据速率等于50%的峰值速率。这些计算都假定脉冲时间长度为1。随着存储器接口数据速率增加的趋势,大多数新技术的最低脉冲时间长度都大于1。

选择技巧

存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。

选择存储器时应遵循的基本原则

1、内部存储器与外部存储器

一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。

2、引导存储器

在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。

可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。

E. 存储器是什么意思

存储器:在电子计算机中,用来存储数据和指令等的记忆部件,叫做存储器。存储器是由一些编号的单元所组成。单元的编号叫做地址。计算机对存储器的要求是:一要存取速度快,二要存储容量大。

存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。

(5)单个分子构成的存储器扩展阅读:

构成存储器的存储介质,存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。一个存储器包含许多存储单元,每个存储单元可存放一个字节(按字节编址)。

每个存储单元的位置都有一个编号,即地址,一般用十六进制表示。一个存储器中所有存储单元可存放数据的总和称为它的存储容量。假设一个存储器的地址码由20位二进制数(即5位十六进制数)组成,则可表示2的20次方,即1M个存储单元地址。每个存储单元存放一个字节,则该存储器的存储容量为1MB。

F. 计算机中的内存储器包括什么

内存储器包括寄存器、高速缓冲存储器和主存储器。寄存器在CPU芯片的内部,高速缓冲存储器也制作在CPU芯片内,而主存储器由插在主板内存插槽中的若干内存条组成。内存的质量好坏与容量大小会影响计算机的运行速度。

只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。 内存是由内存芯片、电路板、金手指等部分组成的。


(6)单个分子构成的存储器扩展阅读:

一般常用的微型计算机的存储器有磁芯存储器和半导体存储器,微型机的内存都采用半导体存储器。

半导体存储器从使用功能上分,有随机存储器,又称读写存储器;只读存储器。

按照是否可以进行在线改写来划分,又分为不可在线改写内容的ROM,以及可在线改写内容的ROM。不可在线改写内容的ROM包括掩膜ROM、可编程ROM和可擦除可编程;可在线改写内容的ROM包括电可擦除可编程ROM和快擦除ROM。