当前位置:首页 » 服务存储 » 在树的存储中
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

在树的存储中

发布时间: 2023-08-31 16:43:09

A. 二叉树 两种存储结构的优缺点

顺序存储可能会浪费空间,但是读取某个指定的节点的时候效率比较高,链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低O(nlogn)。

在数据的顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同;而在数据的链接存储中,由于每个元素的存储位置保存在它的前驱或后继结点中,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到。


(1)在树的存储中扩展阅读:

分类:

顺序存储方法它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。

链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。

B. 完全二叉树为什么最适合顺序存储结构

顺序存储充分利用满二叉树的特性,即每层的节点数分别为1、2、4、8等等2i+1,一个深度为i的二叉树最多只能包含2i-1个节点,因此只要定义一个长度为2i-1的数组即可存储这颗二叉树。

对于普通的不是满二叉树的,那些空出来的节点对应的数组元素留空即可,因此顺序存储会造成一定的空间浪费。如果是完全二叉树,就不会有空间浪费的情况;若是只有右子树,那么会造成相当大的浪费。


二叉树算法思路:

1、如果树为空,则直接返回错。

2、如果树不为空:层序遍历二叉树。

3、如果一个结点左右孩子都不为空,则pop该节点,将其左右孩子入队列。

4、如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树。

5、如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空;则该节点之后的队列中的结点都为叶子节点;该树才是完全二叉树,否则就不是完全二叉树。

C. 数据结构--树和森林

一、 树的定义:
树(tree)是n(n>0)个节点的有限集,在任意一棵树中,(1)有且仅有一个特定的称为根(root)的节点,(2)当n>1时,其余节点可分为m(m>0)个互不相交的有限集,而每个集合本身又是一棵树,称为根的子树(subtree)。

从上面树的定义中可以看到,这是一个递归的定义,即树的定义中又用到了树的概念。

树具有下面两个特点:
(1) 树的根结点没有前驱结点,除根结点外的其他结点有且只有一个前驱结点
(2) 树中所有结点可以有0个或多个后继结点
根据这两个特点,可以看出下图表示的都不是树。

森林(forest)是m(m≥0)棵互不相交的树的集合。任何一棵树,删除了根结点就变成了森林。

二、 树的存储结构
1、 双亲表示法
树中每个结点都有唯一一个双亲结点,根据这一特性,可以用一组连续的存储空间(一维数组)存储树中的各个结点,数组中每个元素都表示树中的一个结点,数组元素为结构体类型,这个结构体类型由结点本身的数据和结点的双亲在数组中的序号组成。

树的双亲表示法对于寻找双亲和根的操作很方便,但是要求某结点的孩子结点,就需要遍历整个数组,而且也不能反映各兄弟之间的关系,因此找到某结点的兄弟也很困难。

2、 孩子表示法
按如下图所示的形式存储。主体是一个与结点个数一样大小的一维数组,数组的每个元素有两个域,一个域用于存放结点数据,另一个用于存放指针,该指针指向由该结点孩子组成的单链表的首位置。单链表的结构也由两个域组成,一个存放孩子结点在一维数组中的序号,另一个为指针域,指向下一个孩子。

孩子表示法中查找双亲很困难,适用于查找孩子的操作。

3、 双亲孩子表示法
双亲孩子表示法是将双亲表示法和孩子表示法结合起来的方法。如下图所示,将各节点的孩子结点组成单链表,用一维数组顺序存储树的结点,数组元素包括结点本身的数据,该结点的孩子结点链表的头指针,存储该结点的双亲在数组中的序号。

4、 孩子兄弟表示法
这种方法的结构体包含:每个结点的数据,指向该结点的第一个孩子结点的指针和指向下一个兄弟结点的指针。

三、 树转换为二叉树

第一步:在树中所有兄弟结点间加一条连线

第四步:调整位置

五、 二叉树转换为树、森林

七、 森林的遍历
森林的遍历分为两种:前序遍历和中序遍历
1、 前序遍历
A. 访问森林中第一棵树的根节点
B. 前序遍历第一棵树的根节点的子树
C. 前序遍历去掉第一棵树后剩余的森林

上图按照前序遍历,结果为:A B C D E F G H J I K

2、 中序遍历
A. 中序遍历第一棵树的根节点的子树
B. 访问森林中第一棵树的根结点
C. 中序遍历去掉第一棵树剩余的森林
上图按照中序遍历,结果为:B A D E F C J H K I G

D. 图的五种存储结构

图的邻接矩阵(Adjacency Matrix): 图的邻接矩阵用两个数组来表示图。一个一维数组存储图中顶点信息,另一个二维数组(一般称之为邻接矩阵)来存储图中的边或者弧的信息。从邻接矩阵中我们自然知道一个顶点的度(对于无向图)或者有向图中一个顶点的入度出度信息。

假设图G有n个顶点,则邻接矩阵是一个n*n的方阵。
1.对于如果图上的每条边不带权值来说,那么我们就用真(一般为1)和假(一般为0)来表示一个顶点到另一个顶点存不存在边。下面是一个图的邻接矩阵的定义:

邻接矩阵法实现带权值的无向图的创建如下:

按照如图输入各边(不重复)

测试程序如下:

结果可得该矩阵,证明创建树成功。 假设n个顶点e条边的创建,createGraph算法的时间复杂度为O(n+n*n+e)。如果需要创建一个有向图,那么和上面一样一个一个录入边下标和权值。

邻接矩阵这种存储结构的优缺点: 缺点是对于边数相对顶点较少的稀疏图来说会存在极大的空间浪费。假设有n个顶点,优点是对于有向完全图和无向完全图来说邻接矩阵是一种不错的存储结构,浪费的话也只浪费了n个顶点的容量。

在树的存储结构一节中我们提到对于孩子表示法的第三种:用一段连续的存储单元(数组)存储树中的所有结点,利用一个单链表来存储数组中每个结点的孩子的信息。对于图的存储结构来说,我们也可以利用这种方法实现图的存储

邻接表(Adjacency List): 这种数组与链表相结合的存储方法叫做邻接表。1.为什么不也用单链表存储图的结点信息呢?原因就是数组这种顺序存储结构读取结点信息速率快。对于顶点数组中,每个数据元素还需要存储一个指向第一个邻接顶点的指针,这样才可以查找边的信息2.图中每个顶点Vi(i > 0)的所有邻接点构成一个线性表 (在无向图中这个线性表称为Vi的边表,有向图中称为顶点作为弧尾的出边表) ,由于邻接点的不确定性,所以用链表存储,有多少个邻接点就malloc一个空间存储邻接点,这样更不会造成空间的浪费(与邻接矩阵相比来说)。3.对于邻接表中的某个顶点来说,用户关心的是这个顶点的邻接点,完全可以遍历用单链表设计成的边表或者出边表得到,所以没必要设计成双链表。

邻接表的存储结构:
假设现在有一无向图G,如下图:

从邻接表结构中,知道一个顶点的度或者判断两个顶点之间是否存在边或者求一个顶点的所有邻接顶点是很容易的。

假设现在有一有向图G,如下图:

无向图的邻接表创建示例如下:

假设在上图(无向图)中的V0V1V2V3顶点值为ABCD,则依据下面测试程序可得结果:

邻接表的优缺点: 优点是:邻接表存储图,既能够知道一个顶点的度和顶点的邻接结点的信息,并且更不会造成空间的浪费。缺点是邻接表存储有向图时,如果关心的是顶点的出度问题自然用邻接表结构,但是想了解入度需要遍历图才知道(需要考虑逆邻接表)。

十字链表(Orthogonal List) :有向图的一种存储方法,它把邻接表和逆邻接表结合起来,因此在十字链表结构中可以知道一个顶点的入度和出度情况。
重新定义顶点表的结点如下图:

现在有一有向图如下图:

则它的存储结构示意图为:

其定义如下:

十字链表是用来存储有向图的,这样可以看出一个顶点的出入度信息。对于无向图来说完全没必要用十字链表来存储。

在无向图中,因为我们关注的是顶点的信息,在考虑节约空间的情况下我们利用邻接表来存储无向图。但是如果我们关注的是边的信息,例如需要删除某条边对于邻接表来说是挺繁琐的。它需要操作两个单链表删除两个结点。因此我们仿照十字链表的方式对边表结点结构重新定义如下图:

它的邻接多重表结构为:

多重邻接表的优点:对于边的操作相比于邻接表来说更加方便。比如说我们现在需要删除(V0,V2)这条边,只需将69步骤中的指针改为nullptr即可。

边集数组(edgeset array): 边集数组是由两个数组组成,一个存储顶点信息,另一个存储边的信息,这个边数组中的每个数据元素由起点下标,终点下标,和权组成(如果边上含有权值的话)。
边数组结构如下图:

边集数组实现图的存储的优缺点:优点是对于边的操作方便快捷,操作的只是数组元素。比如说删除某条边,只需要删除一个数组元素。缺点是:对于图的顶点信息,我们只有遍历整个边数组才知道,这个费时。因此对于关注边的操作来说,边集数组更加方便。

E. 数据结构,树的常用存储方式

存入文本文件,每行:孩子节点-父节点。
这样也方便用Hadoop进行处理。

F. 一个二叉树按顺序方式存储在一个一维数组中,如图:

二叉树按照层序遍历,依次编号,按照编号的顺序,存储在连续存储单元的方式就是二叉树的顺序存储。


G. 什么是二叉树的顺序存储

二叉树的顺序存储是将二叉树的所有结点,按照一定的次序,存储到一片连续的存储单元中

二叉树的顺序存储必须将结点排成一个适当的线性序列,使得结点在这个序列中的相应位置能反映出结点之间的逻辑关系。这种结构特别适用于近似满二叉树。

在一棵具有n个结点的近似满二叉树中,当从树根起,自上层到下层,逐层从左到右给所有结点编号时,就能得到一个足以反映整个二叉树结构的线性序列。其中每个结点的编号就作为结点。

(7)在树的存储中扩展阅读:

二叉树的性质:

1、二叉树第i层上的结点数目最多为2{i-1}(i≥1)。

2、深度为k的二叉树至多有2{k}-1个结点(k≥1)。

3、包含n个结点的二叉树的高度至少为log2(n+1)。

4、在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1。

参考资料来源:网络-二叉树