‘壹’ 二叉树的存储方式有哪些
二叉树的存储方式通常有动态存储。用结构体表示二叉树的一个节点。用数据域保持保存节点的值,用链接语保存两个孩子的指针。还有就是采用满二叉树的顺序存储方式。
‘贰’ 二叉树 两种存储结构的优缺点
顺序存储可能会浪费空间,但是读取某个指定的节点的时候效率比较高,链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低O(nlogn)。
在数据的顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同;而在数据的链接存储中,由于每个元素的存储位置保存在它的前驱或后继结点中,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到。
(2)存储二叉树扩展阅读:
分类:
顺序存储方法它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。
‘叁’ 什么是二叉树的顺序存储
二叉树的顺序存储是将二叉树的所有结点,按照一定的次序,存储到一片连续的存储单元中
二叉树的顺序存储必须将结点排成一个适当的线性序列,使得结点在这个序列中的相应位置能反映出结点之间的逻辑关系。这种结构特别适用于近似满二叉树。
在一棵具有n个结点的近似满二叉树中,当从树根起,自上层到下层,逐层从左到右给所有结点编号时,就能得到一个足以反映整个二叉树结构的线性序列。其中每个结点的编号就作为结点。
(3)存储二叉树扩展阅读:
二叉树的性质:
1、二叉树第i层上的结点数目最多为2{i-1}(i≥1)。
2、深度为k的二叉树至多有2{k}-1个结点(k≥1)。
3、包含n个结点的二叉树的高度至少为log2(n+1)。
4、在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1。
参考资料来源:网络-二叉树
‘肆’ 如何将数据存储为二叉树python
(1)二叉树是有序树,即使只有一个子树,也必须区分左、右子树;
(2)二叉树的每个结点的度不能大于2,只能取0、1、2三者之一;
(3)二叉树中所有结点的形态有5种:空结点、无左右子树的结点、只有左子树的结点、只有右子树的结点和具有左右子树的结点。
‘伍’ 必须把一般树转化成二叉树后才能进行存储这句话对吗
不对的,存储树有很多种方法,不够其中的孩子兄弟法,和二叉链表法在存储结构上类似,所以可以将树转化为二叉树,但并不是说一般树转化成二叉树后才能进行存储
‘陆’ 如何存储一颗二叉树
1、顺序存储结构,用一组地址连续的存储单元由上而下由左至右的存储完全二叉树的节点元素,其他二叉树则与完全二叉树上的结点进行对照,存储在一维数组的相应分量中
2、链式存储结构,如二叉链表,三叉链表
3、线索二叉树
‘柒’ 顺序存储是二叉树常用的存储结构吗
二叉树的存储结构
二叉树是非线性结构,即每个数据结点至多只有一个前驱,但可以有多个后继。它可采用顺序存储结构和链式存储结构。
1.顺序存储结构
二叉树的顺序存储,就是用一组连续的存储单元存放二叉树中的结点。因此,必须把二叉树的所有结点安排成为一个恰当的序列,结点在这个序列中的相互位置能反映出结点之间的逻辑关系,用编号的方法从树根起,自上层至下层,每层自左至右地给所有结点编号,缺点是有可能对存储空间造成极大的浪费,在最坏的情况下,一个深度为k且只有k个结点的右单支树需要2k-1个结点存储空间。依据二叉树的性质,完全二叉树和满二叉树采用顺序存储比较合适,树中结点的序号可以唯一地反映出结点之间的逻辑关系,这样既能够最大可能地节省存储空间,又可以利用数组元素的下标值确定结点在二叉树中的位置,以及结点之间的关系。图5-5(a)是一棵完全二叉树,图5-5(b)给出的图5-5(a)所示的完全二叉树的顺序存储结构。
(a) 一棵完全二叉树 (b) 顺序存储结构
图5-5 完全二叉树的顺序存储示意图
对于一般的二叉树,如果仍按从上至下和从左到右的顺序将树中的结点顺序存储在一维数组中,则数组元素下标之间的关系不能够反映二叉树中结点之间的逻辑关系,只有增添一些并不存在的空结点,使之成为一棵完全二叉树的形式,然后再用一维数组顺序存储。如图5-6给出了一棵一般二叉树改造后的完全二叉树形态和其顺序存储状态示意图。显然,这种存储对于需增加许多空结点才能将一棵二叉树改造成为一棵完全二叉树的存储时,会造成空间的大量浪费,不宜用顺序存储结构。最坏的情况是右单支树,如图5-7 所示,一棵深度为k的右单支树,只有k个结点,却需分配2k-1个存储单元。
(a) 一棵二叉树 (b) 改造后的完全二叉树
(c) 改造后完全二叉树顺序存储状态
图5-6 一般二叉树及其顺序存储示意图
(a) 一棵右单支二叉树 (b) 改造后的右单支树对应的完全二叉树
(c) 单支树改造后完全二叉树的顺序存储状态
图5-7 右单支二叉树及其顺序存储示意图
结构5-1二叉树的顺序存储
#define Maxsize 100 //假设一维数组最多存放100个元素
typedef char Datatype; //假设二叉树元素的数据类型为字符
typedef struct
{ Datatype bt[Maxsize];
int btnum;
}Btseq;
2.链式存储结构
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。
通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。其结点结构为:
其中,data域存放某结点的数据信息;lchild与rchild分别存放指向左孩子和右孩子的指针,当左孩子或右孩子不存在时,相应指针域值为空(用符号∧或NULL表示)。利用这样的结点结构表示的二叉树的链式存储结构被称为二叉链表,如图5-8所示。
(a) 一棵二叉树 (b) 二叉链表存储结构
图5-8 二叉树的二叉链表表示示意图
为了方便访问某结点的双亲,还可以给链表结点增加一个双亲字段parent,用来指向其双亲结点。每个结点由四个域组成,其结点结构为:
这种存储结构既便于查找孩子结点,又便于查找双亲结点;但是,相对于二叉链表存储结构而言,它增加了空间开销。利用这样的结点结构表示的二叉树的链式存储结构被称为三叉链表。
图5-9给出了图5-8 (a)所示的一棵二叉树的三叉链表表示。
图5-9二叉树的三叉链表表示示意图
尽管在二叉链表中无法由结点直接找到其双亲,但由于二叉链表结构灵活,操作方便,对于一般情况的二叉树,甚至比顺序存储结构还节省空间。因此,二叉链表是最常用的二叉树存储方式。
结构5-2二叉树的链式存储
#define datatype char //定义二叉树元素的数据类型为字符
typedef struct node //定义结点由数据域,左右指针组成
{ Datatype data;
struct node *lchild,*rchild;
}Bitree;
‘捌’ 二叉树的存储结构是怎样的有哪些类型的存储结构对应的c语言描述是
楼上回答的是树的存储,不是二叉树的存储,主要如下:
1、顺序存储:适用于完全二叉树,如果根从1开始编号,则第i结点的左孩子编号为2i,右孩子为2i+1,双亲编号为(i/2)下取整,空间紧密
2、二叉链表:适用于普通二叉树,每个结点除了数据外,还有分别指向左右孩子结点的指针,存储n个结点有n+1个空指针域,存储密度小于顺序存储,但是适用范围广,缺陷是正常遍历只能从双亲向孩子,退回来一般需要借助栈(或者用递归,其实也是栈)
3、三叉链表:同样适用于普通二叉树,结点除了数据外,还有左右孩子与双亲的指针,存储密度低于二叉链表,但是可以非常方便地在二叉树中遍历,不需要其他辅助工具
‘玖’ 用一维数组存储二叉树时,总是以先序遍历存储结点。为什么是错的
总是以层次序遍历次序存储结点,这样,完全二叉树可以非常方便地找到孩子兄弟和双亲
‘拾’ 二叉树存储转换
第三层第五个节点