当前位置:首页 » 网页前端 » 单细胞生物的前端
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

单细胞生物的前端

发布时间: 2022-07-17 22:30:45

Ⅰ 地球一开始的单细胞生物是怎么来的

地球诞生在距今四十六亿年以前。一开始,地球表面处于熔融状态,火山活动特别强烈,逐渐释放出大量的气体,主要是水蒸气、氢气、一氧化碳、氨气、甲烷、硫化氢等有机物质,这种状况一直持续了很长时间,所以地球的早期发展阶段一直是缺氧的。大量的这样的有机质汇集在原始的海洋里,而火山、闪电和太阳紫外线能释放出大量的能量,上述各种物质在这些能量的作用下,逐渐形成了乙醇、脂肪、碳氢化合物、氨基酸和类似蛋白质的物质,这些物质混在一起,科学家叫做“有机汤”。在某次聚合中,“有机汤”中形成了一个核酸大分子。这个核酸分子能够自我复制。复制以后的核酸仍然携带着母体核酸的结构密码。这个密码可以将许多氨基酸分子聚合成蛋白质大分子,蛋白质在核酸外面形成了保护膜和附属结构。这就是最初的细胞和最早的生命。

Ⅱ 怎样判断生物是单细胞生物还是多细胞生物

生物圈中还有肉眼很难看见的生物,他们的身体只有一个细胞,称为单细胞生物。生物可以根据构成的细胞数目分为单细胞生物(Protozoa)和多细胞生物(Metazoa)。单细胞生物只由单个细胞组成,而且经常会聚集成为细胞集落。单细胞生物个体微小,全部生命活动在一个细胞内完成,一般生活在水中。
单细胞生物主要分有核和无核的单细胞。大肠杆菌放大10000倍有核的如草履虫就是典型的有核单细胞生物。有核单细胞生物主要由细胞核、细胞质、还有细胞器。它包括:线粒体、高尔基体、核糖体、细胞膜、这是动物型单细胞。如果是植物型单细胞比如红藻,就是细胞壁、细胞核、细胞质,它的细胞器就包括线粒体、高尔基体、核糖体、叶绿体、细胞膜。 无核的单细胞生物,虽称无核细胞,但并不是把核除掉了的细胞,而是E.H.Haeckel(1866)假定的在进化道路发展过程中存在的一种无核细胞质团,称为无核原生质团(monera)。以后P.J.vanBeneden(1875)把极体出现前一如在胚胞消失的(卵母)细胞,以及L.Auerbach(1876)对一般细胞分裂对细胞核消失的细胞团,也都应用了这一名称。
草履虫
一种身体很小、圆筒形的原生动物。最常见的是尾草履虫,体长只有80~300微米。鞭毛虫因为它身体形状从平面角度看上去像一只倒放的草鞋底而叫做草履虫。草履虫全身由一个细胞组成,身体表面包着一层膜,膜上密密地长着许多纤毛,靠纤毛的划动在水里运动。它身体的一侧有一条凹入的小沟,叫“口沟”,相当于草履虫的“嘴巴”。口沟内的密长的纤毛摆动时,能把水里的细菌和有机碎屑作为食物摆进口沟,再进入草履虫体内,供其慢慢消化吸收。残渣由一个叫肛门点的小孔排出。草履虫靠身体的外膜吸收水里的氧气,排出二氧化碳。常见的草履虫具有两个细胞核:大核主要对营养代谢起重要作用,小核主要与生殖作用有关。
酵母菌
单细胞真菌,因为能发酵糖类,也叫糖真菌。具有圆形、卵圆形、长形、矩形、哑铃状等各种形状。一般长2~3μm,宽1~10μm。营出芽生殖时,大小酵母菌连在一起,而成株状。在固体培养基上的酵母菌菌落,多数不透明,光滑、湿润、黏稠,易被挑起。酵母菌也可以在液体培养基中生长。啤酒酵母是常见的酵母菌,多用于研究有关酵母菌形态、结构、繁殖特点和代谢途径,也是发酵糖类产生乙醇和许多有机酸、酶制剂的材料。
变形虫
单细胞动物,分布很广。生活在清水池塘或在水流缓慢藻类较多的浅水中。它体表的任何部位都可形成临时性的细胞质突起,称为伪足。伪足是变形虫的临时运动器,也可以包围住食物,完成摄食的作用。痢疾类变形虫是寄生在人肠道里的变形虫,营寄生生活,能够溶解肠壁组织引起痢疾。三维成象变形虫衣藻
单细胞藻类,生活在淡水中。细胞呈卵形,有细胞壁、细胞质和细胞核;细胞质里有一个杯状的叶绿体。细胞前部偏在一侧的地方有一个红色的眼点,眼点对光的强弱很敏感。衣藻细胞的前端有两根鞭毛,能够摆动,因而衣藻可以在水中自由游动。衣藻的全身都能够吸收溶解在水中的二氧化碳和无机盐,并且能够依靠眼点的感光和鞭毛的摆动,游到光照和其他条件都适宜的地方,进行光合作用,制造有机物维持自己的生活。
眼虫
单细胞动物,细胞质内有大量卵圆形叶绿体,其中含有叶绿素,有光时可以进行光合作用,自己制造有机物。在无光的条件下,眼虫也可以通过体表吸收溶解于水中的有机物质。身体前端有储蓄泡,鞭毛从储蓄泡孔伸出体外。在鞭毛基部有一红色眼点,紧贴着眼点有一膨大部分,是能接受光线的光感受器,所以眼虫在运动中有趋光性。
疟原虫
单细胞动物,分布极广,遍及全世界,主要营寄生生活。寄生在人体的疟原虫主要有四种:间日疟原虫、三日疟原虫、恶性疟原虫和卵形疟原虫。疟原虫能引起疟疾。在我国以间日疟原虫、恶性疟原虫最为常见,由疟蚊(按蚊类)叮咬而传播,即疟原虫由寄生于疟蚊的消化道而进入人的血液,寄生于人的肝细胞、红细胞中。疟原虫对人的危害很大,它能大量破坏红细胞,使血液中的血红蛋白严重减少而造成贫血,使肝脾肿大,也能伤害脑组织,严重地影响人们的健康甚至造成死亡。

Ⅲ 什么叫单细胞动物

单细胞动物就是仅仅具有一个细胞就可以完成其全部生理活动的动物类.最直接的是草履虫.在初中而年纪的生物课里面有详细的讲解。
和其他动物的最大区别就是没有任何的组织和结构可言(因为只有一个细胞).他们的生理活动就是细胞膜凹陷产生一个空腔纳入食物,消化之后再由细胞膜产生一个球体排除排泄物.每次分裂就是产生两个独立的个体。
没有神经系统,没有反射,只有“应激性”
草履虫等单细胞动物也是自然界中降解水体中有机物的主要动力。
草履虫是研究单细胞动物最好的标本,因为他具有这类动物的全部属性。建议你去网络上再搜索一些草履虫的资料。
单细胞动物就是只有由一个细胞构成的生物个体,这种动物往往比较低级,如很多细菌就是单细胞生物.其他生物就比单细胞生物要高级的多,而且身体的各个组织和结构发育的比较完善,对外界环境适应性较强,适者生存,不适这淘汰,现在的多细胞生物都是由像单细胞这样的低等生物进化来的,也就是任何生物都具有细胞,但也有例外,病毒就没有细胞结构,是有核酸物质和蛋白质组成的外壳构成的.
当生命进化到真核细胞以后,便有了动物和植物之分。最早的动物叫原生动物,是最低等的一类动物,它的个体是由一个细胞构成的。仅管如此,“麻雀虽小却五脏俱全”,这是一个完整的生命活动体,拥有作为一个动物应具备的主要生活机能,如新陈代谢、刺激感应、运动和繁殖等,它的体内有了原始的分化,各具一定功能,形成了类器官。原生动物身体微小,一般在250 微米以下,需要在显微镜下才能看到。本门动物分布广泛,既有绝灭的,也有生活在现代的;既可以生活在水里、土里,也可以生活在动、植物身体里。根据运动“器官”的有无,本门动物一般可以划分为鞭毛虫纲、纤毛虫纲、孢子虫纲和肉足纲。让我们看看其中的几个代表性动物:眼虫 身体呈梭形能分出前后来,前端有一根鞭毛,靠其搅动能在水中游泳,它最明显的特征是有一个能感光的“眼点”,故名眼虫。它有两种生活方式:一种是寻找泥里的有机物为食;另一种依靠自己体内的叶绿素,和植物一样可进行光合作用为自己制造食物。后一种生活方式表明了在某些环境下它是植物,这说明在原始最低等动物中,动、植物之间的界线还并不明显。
有孔虫 自我保护方面要比眼虫好,体内分泌粘液粘住沙粒,在体外形成一个硬壳。壳口伸出许多丝状的肉足,生物学上称为伪足,其形状是可以变化的,当触到一块食物,伪足就包围住送进“口”吃掉,伪足还能排出废物,使虫体移动。有孔虫通常有两种生殖方式,在发育过程中交替进行,即世代交替。无性生殖是由成熟的裂殖体向外放出大量的配子母体,配子母体成熟后又大量放出带鞭毛能游动的配子,两个配子形成合子就是有性生殖,合子再发育长大成为新的裂殖体。
有孔虫在地史时期中出现过几次繁盛期,尤其在白垩纪时出现了特殊种类(如能游的有孔虫),成为地质学家们划分对比白垩纪海相地层的重要依据;白垩纪时有孔虫的数量也是极大的,甚至在白垩纪形成的岩石中都占有很高的比率,专家们管这种有大量生物参与形成的岩石叫生物礁。
纺缍虫 一种已经绝灭的动物,生活在大约100 米深的热带或亚热带海底。它有钙质壳,壳体随着虫子的长大不断增多,并随着它的演化而不断增大,从发现的化石来看,最小的不足1 毫米,而大者可达到20~30 毫米。它最早出现在早石炭世晚期,早二迭世时极盛,不仅数量丰富且种类繁多,构造也变得复杂,但到了二迭纪末期就全部绝灭了。此类动物分布时间短,演化迅速,地理分布十分广泛,更因其体形小,在二迭纪地层划分上已成为十分重要的化石门类。
以上几种化石因体形微小,在化石界中被称为微体化石。遥想那时的年
代,它们从细菌“手”中接过了生命的“接力棒”,经过漫长岁月“传”给了多细胞动物后仍不愿离去,又“护送”到了古生代,有的种类还一直“护送”到现代,似乎是害怕进化夭折,实际上,它们是一直在作鱼虾的食物。
单枪匹马,当时还能横闯天下,可现在却寸步难行了。
单细胞的动物称之为原生动物,意思是指它们生来就具备各部分分化和必要的生活机能。生命进行到多细胞动物就称后生动物,那指的是卵细胞要经过胚胎发育变形阶段才能出生的动物。后生动物范围很广,它包括二胚层、三胚层、原口动物、后口动物�6�8�6�8在本书中,这些动物都将一一讲到。

Ⅳ 单细胞生物的基本结构是什么

你的问题有问题!
单细胞包括真核细胞和原核细胞两种,这两种细胞基本结构又是不一样的.
真核细胞:分动植物,总的来说细胞壁(植物特有)、细胞膜、细胞器(很多种)、细胞核.
原核细胞:细胞壁(成分和植物不同,真核植物是纤维素和果胶.原核细胞是多肽和蛋白质)、细胞膜、细胞器(一般只有核糖体)、拟核(不是细胞核,是一段DNA).

Ⅳ 单细胞生物有哪些

单细胞生物有:

硅藻,硅藻,衣藻,眼虫,蓝藻,青霉,硅藻,曲霉

疟原虫,小球藻,变形虫,酵母菌,草履虫,太阳虫

放射虫,喇叭虫,大肠杆菌,梅毒螺旋体,嗜热酸细菌

圆褐固氮菌,螺旋菌金褐藻,阿米巴变形虫,金黄色葡萄球菌

Ⅵ 什么叫单细胞生物

答:一、单细胞生物的内涵

单细胞生物是只由单个细胞组成,而且经常会聚集成为细胞集落。

二、单细胞生物的类型

1、单细胞生物包括所有古细菌和真细菌和很多原生生物。
2、根据旧的分类法有很多动物,植物和真菌多是多细胞生物。

3、变形虫算作单细胞动物,它的一些种类却算作粘菌,带鞭毛的鞭毛虫如眼虫有时被归为单细胞藻类或者是单细胞动物。

Ⅶ 单细胞生物的特点

单细胞生物特点:

1、生物可以根据构成的细胞数目分为单细胞生物和多细胞生物。单细胞生物只由单个细胞组成,而且经常会聚集成为细胞集落。

2、地球上最早的生物大约在距今35亿年前至41亿年前形成,原核生物是最原始的生物,如细菌和蓝绿藻且是在温暖的水中发生。单细胞生物包括所有古细菌和真细菌和很多原生生物。根据旧的分类法有很多动物,植物和真菌多是单细胞生物。

3、变形虫算作单细胞动物,它的一些种类却算作粘菌,带鞭毛的鞭毛虫如眼虫有时被归为单细胞藻类或者是单细胞动物。

(7)单细胞生物的前端扩展阅读:

单细胞生物只由单个细胞组成,而且经常会聚集成为细胞集落。

地球上最早的生物大约在距今35亿年前至41亿年前形成,原核生物是最原始的生物,如细菌和蓝绿藻且是在温暖的水中发生。

单细胞生物包括所有古细菌和真细菌和很多原生生物。根据旧的分类法有很多动物,植物和真菌多是多细胞生物。变形虫算作单细胞动物,它的一些种类却算作粘菌,带鞭毛的鞭毛虫如眼虫有时被归为单细胞藻类或者是单细胞动物。

Ⅷ 关于单细胞与多细胞生物

在动物界里除了单细胞动物外,其余都是多细胞动物。从单细胞到多细胞是生物从低级向高级发展的一个重要过程,代表了生物进化史上一个极为重要的阶段。一切高等生物虽然都是多细胞的,但发展是不平衡的。动物的发展水平远远高于植物,它们进化发展的速度也远较植物为快。动物的基本特点之一是有对称的体型。两侧对称的体型不仅有利于活动,且促使身体分为前后、左右和背腹。在进化过程中,神经感官和取食器官逐渐向前端集中,形成了头部。对称体型和头部的形成是动物体复杂化的关键。一切高等动物以至于人都是在这一体型基础上发展起来的。
下面是由单细胞动物到多细胞动物的主要过渡类别及特点.
原生动物:单细胞动物在形态结构上虽然有的也较复杂,但它只是一个细胞本身的分化。它们之中虽然也有群体,但是群体中的每个个体细胞,一般还是独立生活,彼此间的联系并不密切,因此在发展上它们是处于低级的、原始阶段。
后生动物Metazoa:绝大多数多细胞动物,这和原生动物的名称是相对而言的。
中生动物(Mesozoa):认为中生动物介于原生动物和后生动物之间。有学者将原生动物、中生动物、后生动物并列为3个动物亚界。现在一般认为中生动物为动物界中的一门。中生动物是一类小型的内寄主动物。结构简单,已知约50种,分为菱形虫纲(Rhormbozoa)和直泳虫纲(Orthonecta)。
菱形虫纲(Rhormbozoa):包括双胚虫(dicyemida)和异胚虫(heterocyemida)两类。菱形虫纲的动物寄生在头足类软体动物的肾内,体长约0.5mm~10m。虫体由20—40个细胞组成,细胞数目在每个种内是恒定的。这些细胞基本上排列成双层,但又不同于高等动物的胚层。外层是单层具纤毛的体细胞,包围着中央的一个或几个延长的轴细胞。体细胞具营养的功能,轴细胞具繁殖功能。同无性生殖和有性生殖。生活史较为复杂。
直泳虫纲(Orthonecta):寄生在多种海生无脊椎动物体内(如扇形动物、纽形动物、环节动物、双壳贝类及棘皮动物)。成虫多数雌雄异体,外层亦为单层具纤毛的体细胞,体细胞中央围绕着许多生殖细胞(卵或精子)。少数种类成虫雌雄同体,其精细胞在卵细胞的前方,没有轴细胞。性成熟后雄性个体释放精子到海水中,精子进入雌性个体内与卵受精,并在雌体内发育成具纤毛的幼虫(一层纤毛细胞包围几个生殖细胞)。幼虫离开母体又感染新奇主。当幼虫侵入寄主组织,其外层具纤毛的细胞消失,生殖细胞多分裂形成多核的变形体(plasmodium)。变形体由无性的碎裂方法产生很多变形体,然后由它们发育成雌、雄个体。
近十余年来对中生动物的系统发育、亚显微结构、生理、生殖、发育、生态以及生化分类等进行了多方面的研究。目前对中生动物的系统发育关系仍存在着争议。有些学者认为它是退化的扁形动物,甚至认为可以作为一纲列入扁形动物门。还有一些学者认为中生动物是原始的种类,是由最原始的多细胞动物进化来的,或认为是早期后生动物的一个分支。近年来经生化分析表明,中生动物细胞核DNA中鸟嘌呤和胞嘧啶的含量(23%)与原生动物纤毛虫类的含量相近,而低于其它多细胞动物者,包括扁形动物者(35%~50%)。因此认为中生动物和原生动物的纤毛虫类的亲级关系较近,更可能是真正原始的多细胞动物。至于中生动物和后生动物是否各自独立地来于原生动物的祖先,或中生动物确是原始的或退化的扁虫?还不很清楚。由于中生动物有着长期的寄生历史,是动物界中极为特殊的类群,其分类地位尚难确定。
多细胞动物起源的证据
(一)古生物学方面
古代动、植物的遗体或遗迹,经过千百万年地壳的变迁或造山运动等,被埋在地层中形成了化石。已经发现在最古老的地层中化石种类世是最简单的。在太古代的地层中有大量有孔虫壳化石,而在晚近的地层中动物的化石种类也较复杂,并且能看出生物由低等向高等发展的顺序。说明最初出现单细胞动物,后来才发展出多细胞动物。
(二)形态学方面
从现有动物来看,有单细胞动物、多细胞动物,并形成了由简单到复杂、由低等到高等的序列。在原生动物鞭毛纲中有些群体鞭毛虫,如团藻,其形态与多细胞动物很相似,可推测这类动物是从单细胞动物过渡到多细胞动物的中间类型,即由单细胞动物发展成群体以后又进一步发展成多细胞动物。
(三)胚胎学方面
在胚胎发育中多细胞动物是由受精卵开始,经过卵裂、囊胚、原肠胚等一系列过程,逐渐发育成成体。多细胞动物的早期胚胎发育基本上是相似的。根据生物发生津,个体发育简短地重演了系统发展的过程,可以说明多细胞动物起源于单细胞动物,并且说明多细胞动物发展的早期所经历的过程是相似的。

三、多细胞动物起源的学说
(一) 群体学说(colonial theory) 认为后生动物来源于群体鞭毛虫,是当代动物学中最广泛接受的学说。这一学说是由赫克尔(Haeckel,1874)首次提出,后来又由梅契尼柯夫(1887)修正,海曼(Hyman,1940)又给以复兴。
1.赫克尔的原肠虫学说 认为多细胞动物最早的祖先是由类似团藻的球形群体,一面内陷形成多细胞动物的祖先。这样的祖先,因为和原肠胚很相似,有两胚层和原口,所以赫克尔称之为原肠虫(gastraea)。
2.梅契尼柯夫的吞噬虫学说(实球虫或无腔胚虫学说) 梅契尼柯夫观察了很多低等多细胞动物的胚胎发育,他发现一些较低等的种类,其原肠胚的形成主要不是由内陷的方法,而是由内移的方法形成的。同时他也观察了某些低等多细胞动物,发现它们主要是靠吞噬作用进行细胞内消化,很少为细胞外消化。由此推想最初出现的多细胞动物是进行细胞内消化,细胞外消化是后来才发展的。海契尼柯夫提出了吞噬虫学说,他认为多细胞动物的祖先是由一层细胞构成的单细胞动物的群体,后来个别细胞摄取食物后进入群体之内形成内胚层,结果就形成为二胚层的动物,起初为实心的,后来才逐渐地形成消化腔,所以梅契尼柯夫便把这种假想的多细胞动物的祖先叫做吞噬虫(phagocitella)。
这两种学说虽然在胚胎学上都有根据,但在最低等的多细胞动物中,多数是像梅契尼柯夫所说的由内移方法形成原肠胚,而赫先尔所说的内陷方法很可能是以后才出现的。所以梅氏的学说容易被学者所接受。同时梅氏的说法看来更符合机能与结构统一的原则。不能想象先有一个现成的消化腔。而后才有进行消化的机能。可能是由于在发展过程中有了消化机能,同时逐渐发展出消化腔的。
从现有的原生动物看,其中鞭毛类动物形成群体的能力较强,如果原始的单细胞动物群体进一步分化,群体细胞严密分工协作,形成统一整体,这就发展成了多细胞动物。但是单细胞动物群体多种多样,有树枝状、扁平和球形的,前二者其个体在群体中的连接一般较疏松。根据多细胞动物早期胚胎发育的形状看,球形群体(类似团藻形状)与之一致,因此,群体学说认为由球形群体鞭毛虫发展成为多细胞动物符合于生物发生律。此外,从具鞭毛的精子普遍存在于后生动物,具鞭毛的体细胞在低等的后生动物间也常存在,特别是在海绵和腔肠动物,这些也可作为支持鞭毛虫是后生动物的祖先的证据。梅契尼柯夫所说的吞噬虫,很像腔面动物的浮浪幼虫,它被称为浮浪幼虫样的祖先(planuloid ancestor)。低等后生动物是从这样一种自由游泳浮浪幼虫样的祖先发展的。根据这种学说,腔肠动物为原始辐射对称,可以推断它直接来源于浮浪幼虫样的祖先。扁虫两侧对称是后来发生的。
3.Barnes(1987)认为,团藻样动物虽被作为鞭毛虫群体祖先的原型,但是这些具有似植物细胞的自养有机体不可能是后生动物的祖先,超微结构的证据表明,领鞭毛虫(choanflagellates)原生动物更可能是后生动物的祖先。领鞭毛虫有些是单体的,有些是群体的。
4.Otto Butshli(1883)扁囊胚虫(Plakula)学说,认为原始的后生动物是两侧对称的有两胚层的扁的动物,称此动物为扁囊胚虫。根据Butshli的看法,扁囊胚虫通过腹面细胞层的蠕动、爬行、摄食,最后该动物背腹细胞层分开成为中空的,这样逐渐地腹面的营养细胞内陷形成消化腔。同时产生了内外胚层,形成了两胚层动物。这里所提的扁囊胚虫与现存的扁盘动物丝盘虫(trichoplax)是相似的。有些学者认为丝盘虫是扁囊胚虫现存种类的证据。
(二)合胞体学说(syncytial theory)
这一学说主要是由 Hadzi(1953)和 Harsan(1977)提出的,认为多细胞动物来源于多核纤毛虫的原始类群。后生动物的祖先开始是合胞体结构,即多核的细胞,后来每个核获得一部分细胞质和细胞膜形成了多细胞结构。由于有些纤毛虫倾向于两侧对称,所以合胞体学说主张后生动物的祖先是两侧对称的,并由其发展为无肠类扁虫,认为无肠类扁虫是现在生存的最原始的后生动物。对该学说,持反对意见者较多,因为任何动物类群的胚胎发育都未出现过多核体分化成多细胞的现象,实际上无肠类合胞体是在典型的胚胎细胞分裂之后出现的次生现象。最主要的反对意见是不同意将无肠类扁虫视为最原始的后生动物。体型的进化是从辐射对称到两侧对称,如果认为无肠类扁虫两侧对称是原始的,那么腔项动物的辐射对称倒成为次生的,这显然与已揭明的进化过程是相违背的。
(三)共生学说(Symbiosis theory)
认为不同种的原生生物共生在一起,发属成为多细胞动物。这一学说存在一系列的遗传学问题,因为不同遗传基础的单细胞生物如何聚在一起形成能繁殖的多细胞动物,这在遗传学上是难以解释的。

Ⅸ 单细胞生物的特点是什么,常见的单细胞生物有什么

单细胞生物的特点:1.只有一个细胞构成,所有生命活动都在一个细胞内完成
2.个体微小
3.生活在水中
常见的单细胞生物:衣藻、草履虫、酵母菌、变形虫、眼虫、疟原虫

Ⅹ 单细胞生物结构

单细胞生物包含了原核生物和真核生物,原核细胞和真核细胞结构有统一性和差异性,统一性表现在都有细胞膜,细胞质,都有核糖体,都已DNA做遗传物质,不同处在于原核细胞没有以核膜为界限的细胞核,只有核糖体等。