Ⅰ 数字存储示波器的工作原理是怎样的
数字存储示波器的工作原理:输入的电压信号经耦合电路后送至前端放大器,前端放大器将信号放大,以提高示波器的灵敏度和动态范围。放大器输出的信号由取样/保持电路进行取样,并由A/D转换器数字化,经过A/D转换后,信号变成了数字形式存入存储器中,微处理器对存储器中的数字化信号波形进行相应的处理,并显示在显示屏上。
数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。 目前高端数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势。
Ⅱ 示波器原理与使用
示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。
基本作用
用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测
基本原理
波形显示
由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。
如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。
如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。
如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线(如图5-6所示)。由图5-6所示可见,在时间t=0的瞬间,信号电压为Vo(零值),锯齿波电压为V0′(负值),荧光屏上光点在坐标原点左面,位移的距离正比于电压V0′;在时间t=1的瞬间,交流电压为V1(正值),锯齿波电压为V1′(负值),荧光屏上光点在坐标的第Ⅱ象限中。同理,在时间t=2,t=3,…,t=8的瞬间,荧光屏上光点分别位于2,3,…,8点。在t=8瞬间,锯齿波电压由最大正值V8′跳变到最大负V0′,因而荧光屏上的光点也从8点极其迅速地向左移到起始位置0点。以后,在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。
由上述可见,为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关
SHS1000
系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。
双线示波
在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。
双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下、左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。
双踪示波
双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍的应用。
Ⅲ 有用过隔离通道的示波器,由此我可以获得什么好处
有时候示波器测量存在电势差的电路系统往往是危险的,这种危险可能来源于设备内部的短路,也可能来自电势本身。作为技术人员或者电子工程师,我们经常会遇到这样的一些测量的困难,比如测量三相电,亦或测量市电供电的被测体,其地线连接着电源,而同时示波器的各个通道也是共地的,并且连接着电源。那当我用示波器测试信号的时候,我该如何接地来避免短路呢?
Ⅳ 示波器的隔离是什么意思啊
隔离示波器,通道和通道之间,每条通道相互单独隔离,同时与其它非隔离器件隔离。隔离示波器往往搭配专门设计的无源探头,这种探头在BNC扣上的连接是绝缘的,用以防止发生触电。隔离示波器是隔离示波器的前端电路和AD及后面的采集系统,比较适合低压,对信号的精度比较好,失真度低。
Ⅳ 示波器的工作原理
示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。
而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。
一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。
模拟示波器是属于早期的示波器,主要基于阴极射线管(也叫显像管,曾广泛应用于早期的电视机、显示器)打出的电子束通过水平偏转和垂直偏转系统,打在屏幕的荧光物质上显示波形。
③ARM处理器控制FPGA调节ADC模数转换器采样率,示波器软件上表现为调节时基,由于存储深度为固定值,采样率 = 存储深度 ÷ 波形记录时长,通常时基设置的改变是通过改变采样率来实现的。因此厂家标注的采样率往往是在特定时基设置之下才有效的,在大时基下受存储深度的影响,采样率不得不降低。ADC模数转换器和RAM高速存储器影响着示波器的另外两大指标:采样率和存储深度。
④接下去,由FPGA驱动ADC同步采样,ADC将采集到的数据进行二进制数据化并写入高速缓存。存储器缓存即存储深度,一般存储器的大小是示波器标识存储深度大小的四倍,因为FPGA无法控制示波器的触发,因此采集的信号必定先是标识存储深度的2倍,然后再来根据触发筛选其中的一段波形,所以示波器可以看到触发位置之前的波形。又由于示波器在筛选之前采集的波形的时候,采集不能停,否则就会导致波形捕获率太低,因此同时还需要继续采集同样长度的采样点,如此反复,这样一来就是四倍了。
⑤收到触发指令后,存储器再把数据交给ARM处理器处理
⑥ARM处理器将数据处理后通过显示接口将数据输出至显示屏展示给使用者。通过计算,示波器还能模仿出类似模拟示波器的多级辉度显示,以及数字示波器特有的色温显示效果,余晖显示效果。
⑦示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,要注意这里的存储完全不同于存储深度的高速存缓,大多数示波器采用外部存储器如U盘,SD卡,电脑等,现在一些现代化的示波器会内置大存储可以直接保存在示波器里。
这个过程中,②③④都是并行处理的。
由于数字示波器处理速度的制约,所以它并不能保证被测信号的波形能连续不断地实时显示在屏幕上,显示的两个波形之间会有波形数据丢失,也即所说的死区时间,这也是数字示波器相比较于模拟示波器的最大缺点了。不过,随着示波器运算能力的增强,波形捕获率的不断上升,这一缺点也在被慢慢弥补。
Ⅵ 拆解2010版普源1102E示波器,哪位大侠知道模拟前端指的是哪几块电路 帮我圈起来
模拟前端电路就在信号输入BNC接口后面。
Ⅶ 示波器有哪几部分电路组成各部分电路起什么作用
主要是三部分电路:首先得有电子枪,从阴极向阳极发射电子束;其次是两路扫描控制电路,一路控制水平扫描,一路控制竖直扫描。
Ⅷ 示波器的组成及各部分的作用
示波器的组成及各部分的作用:1、显示电路。显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。(1)电子枪。电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向
荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。(2)偏转系统。示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用下射向荧光屏的指定位置。如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。(3)荧光屏。荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。涂有不同荧光物质的荧光屏,在受电子冲击时将显示出不同的颜色和不同的余辉时间,通常供观察一般信号波形用的是发绿光的,属中余辉示波管,供观察非周期性及低频信号用的是发橙黄色光的,属长余辉示波管;供照相用的示波器中,一般都采用发蓝色的短余辉示波管。2、Y轴放大电路。由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。3、X轴放大电路。由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。4、扫描同步电路。扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。5、电源供给电路。电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。由示波器的原理功能可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。
北京智创翔和科技有限公司是专业从事仪器仪表及工控设备为主的公司,公司TBS1202B示波器设计用于支持广泛的监视和分析活动,具有多种功能,如 34 种自动测量、 200 MHz 的带宽、极限测试、数据记录、双通道频率计数器、波形趋势和 2 GS/s 采样速率。
Ⅸ 我要做一个简易数字示波器,那输入波形信号的幅度范围和什么有关
这么跟你说吧:
先做一个假设,假设你的ADC的输入范围是0~2V
1.如果不经过衰减直接将外部信号输入ADC,那么输入信号的幅度范围便是0~2V
2.但示波器的前端一般都有放大电路和衰减电路,所以才有那么多的档位,但经任一档位后信号最终被送入ADC时一般应为0~2V的幅度范围,假如你的前端只有衰减电路且衰减电路的最大衰减比例为10:1,那么输入信号的幅度范围即是0~20V
如果你要看一台示波器的信号幅度输入范围则这样:
调节示波器垂直档至最大观察是多少,假如为5V,再观察垂直方向上有几个格,假如有8个,那么这台示波器能测量的幅度范围即是5X8=40V,当然一般情况下各厂家的示波器都设有保护电路,你若超出40V也不一定能把示波器烧毁,它们一般能在短时间内承受400V (DC+AC Peak)
Ⅹ 示波器由哪几个电路组成各部分电路起什么作用
现在TEK示波器都已经数字化,由前段放大部分,电源部分,显示部分,中央处理部分几部分组成.模拟示波器组成不一样.已经淘汰,所以我就不回答了