当前位置:首页 » 网页前端 » 射频前端2020
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

射频前端2020

发布时间: 2023-05-13 02:31:51

‘壹’ 什么是射频前端

射频前端是射频收发器和天线之间的一系列组件,主要包括功率放大器(PA)、天线开关(Switch)、滤波器(Filter)、双工器(Duplexer和Diplexer)和低噪声放大器(LNA)等,直接影响着手机的信号收发。

其中:

1、功率放大器(PA)用于实现发射通道的射频信号放大;

2、天线开关(Switch)用于实现射频信号接收与发射的切换、不同频段间的切换;

3、滤波器(Filter)用于保留特定频段内的信号,而将特定频段外的信号滤除;

4、双工器(Duplexer和Diplexer)用于将发射和接收信号的隔离,保证接收和发射在共用同一天线的情况下能正常工作;

5、低噪声放大器(LNA)用于实现接收通道的射频信号放大。

(1)射频前端2020扩展阅读:

一、射频前端的作用:

射频前端芯片是移动智能终端产品的核心组成部分,追求低功耗、高性能、低成本是其技术升级的主要驱动力,也是芯片设计研发的主要方向。

射频前端芯片与处理器芯片不同,后者依靠不断缩小制程实现技术升级,而作为模拟电路中应用于高频领域的一个重要分支,射频电路的技术升级主要依靠新设计、新工艺和新材料的结合。

二、射频前端的材料:

行业中普遍采用的器件材料和工艺平台包括 RF CMOS、SOI、砷化镓、锗硅以及压电材料等,逐渐出现的新材料工艺还有氮化镓、微机电系统等,行业中的各参与者需在不同应用背景下,寻求材料、器件和工艺的最佳组合,以提高射频前端芯片产品的性能。

三、射频前端的成本:

一款终端往往需要支持多个频段,这种频段的增加直接导致射频前端设计复杂度的提升,往往方寸之间就要容纳上百个元器件。特别是千兆级网络的来临,多载波、高阶的调制、4x4 MIMO等技术的融入令前端设计复杂度直线提升,复杂度的提升直接意味着成本的增加,并在手机BOM成本中占有越来愈高比例,足见其重要性。

‘贰’ 5G手机,开启新一轮换机盛宴

5G网络作为第五代移动通信网络,其峰值理论传输速度可达每秒数十Gb,这比4G网络的传输速度快了数百倍。美国研究公司StrategyAnalytics预测5G智能手机出货量将从2019年的200万增加到2025年的15亿,年复合增长率为201%。

中国4G智能手机出货量市场份额2014年初为10%,仅仅用了两年左右市场份额就就达到了90%,5G的采用率也将和4G类似,在中国会迅速提升。

随着物联网、AR和VR等技术的诞生和发展,对移动网络的要求更高,5G将采用NR技术,传输速率高达10Gps,比4G快达100倍、而且具有低延时、低功耗的特点。我国5G预计按照2019年预商用,2020年规模商用的规划逐步实施。

目前,已有多家手机厂商跟进5G步伐,发布了5G手机时间计划。7月23日OPPO官方宣布Reno5G版正式获得中国5G终端电信设备进网许可证,Reno5G版目前已三证在手,具备了5G手机商用的能力。此前,华为6月26日官方宣布华为Mate20X获得中国首张5G终端电信设备进网许可证,这标志着国产5G手机上市步伐加快,5G商用将进一步提速。6月份工信部向包括三大运营商和中国广电在内的四家企业也都正式发放5G牌照,上游运营商和下游手机厂商的5G进展情况均超预期。

5G的到来也将改变手机零组件的创新和升级。例如毫米波带来的应用将有可能使得滤波器和终端系统侧的天线结构数量变多,陶瓷和玻璃机壳在5G通信以及无线充电上优势明显,被动元件的需求量提升等。



目前根据运营商计划资本支出估算,在2019年中国预计将会建设超10万台宏基站的准备,而5G宏基站的总建设量预计将会在500万台左右,同时配备约为900万台的微基站,建设总量将会远远超过4G时代的基站建设力度!



5G手机与4G手机相比,在硬件上最大的区别之一在于5G基带芯片,目前高通、华为、三星、联发科、紫光展锐等巨头厂商纷纷加入5G芯片阵营的角逐,英特尔则在与苹果“分手”后,宣布退出手机5G基带芯片市场,而苹果仍积极自研5G基带芯片,摆脱受制于人的局面。

基带芯片主要玩家:

5G芯片发布时间:

中国的厂商紧跟5G的步伐,2018年2月25日,在巴塞罗纳举行的MWC展会上,华为正式发布了旗下首款5G商用芯片——Balong5G01,符合5g标准R15规范,支持Sub6GHz中低频,以及28GHz高频毫米波,兼容2g/3g/4g网络。联发科也公布了其5g基带芯片产品HelioM70,符合5g标准R15规范,最快下行速率可达5gbps,兼容2g/3g/4g网络。

2019年1月24日,华为在其北京研究所举办了华为5G发布会暨MWC2019预沟通会,会上发布了巴龙5000基带芯片。麒麟980搭配巴龙5000,正式成为首个提供5G功能的正式商用移动平台。

在今年的MWC2019大展上,紫光展锐重磅发布了5G通信技术平台“马卡鲁”及其首款5G基带芯片“春藤510”,迈入全球5G第一梯队。春藤510基带采用台积电12nm制程工艺,支持多项5G关键技术,单芯片统一支持2G/3G/4G/5G多种通讯模式,符合最新的3GPPR15标准规范,支持Sub-6GHz频段、100MHz带宽,是一款高集成、高性能、低功耗的5G基带芯片。并且,春藤510可同时支持5GSA独立组网、NSA非独立组网两种组网方式。

根据紫光展锐官方说法,春藤510的高速传输速率可为各类AR/VR/4K/8K高清在线视频、AR/VR网络 游戏 等大流量应用提供支持,而且架构灵活,可支持智能手机、家用CPE、MiFi、物联网终端等产品形态和应用场景。紫光展锐7月18日宣布,已与华为完成5G互通测试,达到1.38Gbps的下载速率。

射频前端芯片包括射频开关、射频低噪声放大器、射频功率放大器、双工器、射频滤波器等芯片。射频开关用于实现射频信号接收与发射的切换、不同频段间的切换;射频低噪声放大器用于实现接收通道的射频信号放大;射频功率放大器用于实现发射通道的射频信号放大;射频滤波器用于保留特定频段内的信号,而将特定频段外的信号滤除;双工器用于将发射和接收信号的隔离,保证接收和发射在共用同一天线的情况下能正常工作。

根据法国市场研究与战略咨询公司YoleDevelopment的统计,2G制式智能手机中射频前端芯片的价值为0.9美元,3G制式智能手机中大幅上升到3.4美元,支持区域性4G制式的智能手机中射频前端芯片的价值已经达到6.15美元,高端LTE智能手机中为15.30美元,是2G制式智能手机中射频前端芯片的17倍。因此,在4G制式智能手机不断渗透的背景下,射频前端芯片行业的市场规模将持续快速增长。

随着5G商业化的逐步临近,现在已经形成的初步共识认为,5G标准下现有的移动通信、物联网通信标准将进行统一,因此未来在统一标准下射频前端芯片产品的应用领域会被进一步放大。同时,5G下单个智能手机的射频前端芯片价值亦将继续上升。

根据QYRElectronicsResearchCenter的统计,从2011年至2018年全球射频前端市场规模以年复合增长率13.10%的速度增长,2018年达149.10亿美元。受到5G网络商业化建设的影响,自2020年起,全球射频前端市场将迎来快速增长。2018年至2023年全球射频前端市场规模预计将以年复合增长率16.00%持续高速增长,2023年接近313.10亿美元。

5G三大核心创新驱动是AI、物联网、智能驾驶,从人产生数据到接入设备自动产生数据,数据呈指数级别增长!智能驾驶智能安防对数据样本进行训练推断、物联网对感应数据进行处理等大幅催生内存性能与存储需求,所有数据都需要采集、存储、计算、传输,数据为王,存储器比重将大幅提升。

从全球集成电路市场结构来看,全球半导体贸易组织统计2018年全球集成电路市场规模达4015.81亿美元,相较于本轮景气周期起点2016年增长了1249亿美元。而存储器2018年市场规模达1651.10亿美元,相较2016年增长了883亿美元,占增量比重达71%,是本轮景气周期的主要推手。

随着5G时代的逐渐逼近,物联网的快速发展促进着存储器需求的持续增长。数据表明,中国消耗全球20%的DRAM及25%的NAND,中国存储市场发展潜力巨大,各芯片制造商也在抓住存储器市场商机,积极布局,促进国产芯片的不断发展。

尽管成长空间巨大,我国存储器市场却一直面临着一个尴尬的局面——进口依赖大。回归到现实,中国发展存储产业并不容易,由于技术门槛高、投资规模巨大、高端人才稀缺,作为尖端产业,中国存储器企业与世界巨头相比还有较大的差距。

长江存储是国内三大存储器项目之一(另外二者为福建晋华、合肥长鑫),是国内实现存储芯片国产化率提升的重点支持项目,是目前国内投资规模、规划产能最高的存储器项目,处于稳步爬坡过程。

包括长江存储在内的存储器/代工厂将于2019-2020年 陆续进入设备采购与搬入的高峰阶段,而国内设备厂商已经在多个核心设备细分领域实现拓展。

5G不仅是4G基础上的一个提升,而是移动通信技术的一场革命,在各方面的表现上相比今天的网络,都会有数量级方面的提升。

5G的主要通信技术是Massive MIMO技术,通过使用多个发射和接收天线在单个无线信道上同时发送和接收多个数据流的多天线技术,用于提高移动设备带宽、增加数据吞吐。

3G时代使用了单用户MIMO技术,4G时代使用了多用户MIMO技术是 ,而5G时代使用的是大规模MIMO技术。

2013年以前,单机天线数量较少,包括通信主天线、无线、收音机、GPS、蓝牙等,此后随着智能手机功能的延展,单机的天线数量大幅增加,按用途分大致可分为通讯天线、WiFi天线及NFC天线三种天线模组。

5G对于天线设计是一个巨大的挑战,因为新频段的增加会带来天线的增多。正常的5G手机将会包含11根天线,其中:5G NR会做4x4 MIMO,因此会有4根天线,LTE也会有4根天线,同时Wi-Fi中需要做2x2 MIMO,这又会需要两根天线,再加上GPS L5天线,总共11根。典型4G手机天线数量2~4支,因此市场空间提升较大。

‘叁’ 手机射频测试国内外现状、水平和发展趋势

射频器件是无线连接的核心,是实现信号发送和接收的基础零件,有着广泛的应用。随着5G的到来,射频器件的需求将大幅增加,预计到2025年射频前端市场规模有望突破258亿美元。快速增长的市场让行业看到了机会,新的射频公司在不断地涌现出来,尤其是在国内,打造自主射频供应链就成为很多厂商的追求,但纵观现状,似乎差距还是很明显。不过,若通过提升设计能力,辅助调试工作来提升射频性能,国内射频产业还有很大的成长空间。

射频器件是无线连接的核心,是实现信号发送和接收的基础零件,有着广泛的应用。射频前端芯片包括射频开关、射频低噪声放大器、射频功率放大器、双工器、射频滤波器等芯片。

5G带来量价齐升

5G的引入,使得已经很复杂的射频前端变得更加复杂,随着射频前端的价格压力增加,这种现象可能会加剧。预计5G发展到成熟阶段,全网通的手机射频前端的Filters数量会从70余个增加为100余个,Switches数量亦会由10余个增为超30个,使得最终射频模组的成本持续增加。从2G时代的约3美元,增加到3G时代的8美元、4G时代的28美元,预计在5G时代,射频模组的成本会超过40美元。

市场规模不断扩大

在LTE时代,射频前端市场的增长来自于载波聚合和MIMO技术。5G要求增加频段,实现双重连接,下行方向过渡到4 x 4 MIMO,上行方向发展到2 x 2
MIMO,这将促进射频前端市场增长。此外,伴随着5G的商业化,现在已经形成的初步共识认为,5G标准下现有的移动通信、物联网通信标准将进行统一,因为未来在统一标准下射频前端芯片产品的应用领域会被进一步放大。

根据Yole数据,2018年全球射频前端市场规模为150亿美元。5G射频前端物料成本价从4G的28美元提升至40美元,以假设2020年5G手机出货量占比为13%来测算,2020年射频前端市场规模预计达到160亿美元;到2025年预计达到258亿美元,2018-2025年的复合年增长率为8%。

市场被四大厂商垄断

美日欧厂商长期垄断射频市场。射频前端领域设计及制造工艺复杂、门槛极高,现阶段射频前端市场主要集中在Skyworks、Broadcom、Murata、Qorvo四大IDM厂商,占据了超过九成的市场份额。此外,高通在LNA领域已经足够强大,通过整合TDK
EPCOS的滤波器业务,大有赶超Qorvo之势。

滤波器和PA是重头戏

射频器件包括射频开关和LNA,射频PA,滤波器,天线Tuner和毫米波FEM等。射频前端中价值量占比最高的是滤波器,其次是功率放大器,占比分别约为53%和33%,其余期间包括开关、谐波器、低噪声放大器等,合计占比约为14%。

数据表明,滤波器和PA是射频器件的重头戏,其中PA负责发射通道的信号放大,滤波器负责发射机接收信号的滤波。对于通信设备而言,没有PA,信号覆盖就会成为很大的问题;没有滤波器的设备更是相当于一块砖头,通信设备上通常安装30-40个滤波器就是为了避免干扰,让设备实现正常通信。

滤波器——国产突破尚待时日

目前,滤波器市场也被国外厂商所瓜分。传统SAW滤波器市场的主要供应商为Murata、TDK、太阳诱电等几家日本厂商,总计占据了全球市场份额的80%以上。BAW滤波器市场被博通(Broadcom)和Qorvo垄断。安华高和博通并购重组后,博通拥有了最具竞争力的产品组合,其推出的BAW滤波器目前在高端智能手机应用市场中占据统治地位。

PA——国产化有望突破

手机频段持续增加,PA的数量也随之增加。4G多模多频手机所需PA芯片5-7颗,预计5G时代手机内的PA或多达16颗。4G时代,功率放大器材料主要以GaAs为主,而未来更高频段的功率放大器将以GaN材料为主。当前PA市场主要被IDM巨头垄断,前三大厂商Skyworks、Qorvo、Broadcom合计占有超90%的市场份额。

目前国产PA厂商也在积极地介入这一市场,国内厂商大多采用“Fabless+Foundary”的产业模式,主攻芯片设计,且产品主要集中在中低端市场,同质化现象比较严重。出于供应链安全角度的考虑,华为海思的射频前端团队于2018年成立,目前研发进展顺利,首款PA模组Hi6D03已在Mate
20X上出现,预计海思将成为未来PA市场的重要力量。

产业链完整 国内厂商奋起直追

4G到5G的演进过程中,射频器件的复杂度逐渐提升,产品在设计、工艺和材料等方面都将发生递进式的变化。国产射频器件替代空间大,但困难也大。目前国内射频芯片产业链已经基本成熟,从设计到晶圆代工,再到封测,已经形成完整的产业链。从国际竞争力来讲,国内的射频设计水平还处在中低端。

PA和开关厂商,射频芯片产品销售额加起来大约5亿美金,大陆射频芯片厂商销售额大约3亿美金。全球PA和开关射频产品需求金额大约60亿美金。可见,国内厂商依然在起步阶段,市场话语权有限;滤波器方面,国内厂商销售总额不到1亿美金,全球市场需求在90亿美金。即以后通过提升设计能力,辅助调试工作来提升射频性能,国内射频产业还有很大的成长空间。

以上数据来源于前瞻产业研究院《中国射频器件行业战略规划和企业战略咨询报告》。

‘肆’ 射频前端模组,看这一篇就够了

姓名:刘轩     学号:19020100412   学院:电子工程学院

转自:https://zhuanlan.hu.com/p/297965743

【嵌牛导读】射频前端模组技术介绍

【嵌牛鼻子】射频前端  滤波器  

【嵌牛提问】中国企业如何克服“拿来主义”,快速迭代发展?

【嵌牛正文】

射频前端(RFFE, Radio Frequency Front-End)芯片是实现手机及各类移动终端通信功能的核心元器件,全球市场超过百亿美金级别。过去10年本土手机的全面崛起,为本土射频前端产业的发展奠定了坚实的产业基础;而5G在中国的率先商用化,以及全球贸易环境的变化,又给本土射频行业加了两捆柴火。射频前端芯片产业在我国也已经有了15年以上的发展历史,创新和创业活动非常活跃,各类企业数十家,也是市场和资本高度关注的领域。本文作者有幸在射频芯片行业从业11年,从2G时代做到今天的5G,也在外企、民企、国企都工作过,直接开发并大量量产过射频的每一类型产品。这篇文章总结了作者与一些行业朋友近些年的讨论,尝试对射频模组产品的技术市场及商业逻辑进行梳理。同时,本土射频发展了十余年,竞争是行业主线,合作与友谊是非常稀缺的资源。本文将会重点分享“模组化”的相关知识,也是希望更多的本土厂商去通过“合作”分享模组化的巨大机遇。

引言

根据魏少军教授在“2020全球CEO峰会”的《人间正道是沧桑-关于大变局下的战略定力》主题演讲,统计得出对中国市场依赖度最高(依营收占比计算)的美国公司,如下图。我们可以看到SKYWORKS、Qualcomm、Qorvo、Broadcom这四家美国射频巨头(其中SKYWORKS和Qorvo以射频业务为主;Qualcomm和Broadcom包含了射频业务)恰好占据了排行榜前4名。

射频前端的国际情况

射频前端技术主要集中在滤波器(Filter)、功率放大器(PA, Power Amplifier)、低噪声放大器(Low Noise Amplifier)、开关(RF Switch)。目前全球射频市场由引言提到的四家美国射频公司Skyworks、Qualcomm、Qorvo、Broadcom与日本Murata这五大射频巨头寡占。

五家射频巨头在PA与LNA等市场占有率超过九成。滤波器方面,则分为声表面波(SAW, Surface Acoustic Wave)与体表面波(BAW, Bulk Acoustic Wave)滤波两种主要技术。目前,SAW滤波器市场由Murata占据一半,Skyworks约10%,Qorvo约4%,其余则被太阳诱电、TDK等大厂瓜分。BAW滤波器的市场则由美国企业占据9成市场。

由此可见,射频前端是巨大的市场,能容纳5家国际巨头持续发展。国际巨头的技术跨度大,模组化能力强;模组化产品是国际竞争的主赛道。每家巨头都拥有BAW技术或其替代方案。

射频前端的国内情况

关于射频前端的国内情况有很多文章都曾提到,这里不赘述,只给几个共识比较多的结论:

1.本土公司普遍以分立器件为主要方向;分立器件是当前本土竞争的主赛道。2.本土公司缺乏先进滤波器技术及产品,模组化能力普遍不强。

5G模组化挑战及机遇的来源

PCB布线空间及射频调试时间的挑战,下沉到了入门级手机,打通了国产模组芯片的迭代升级路径。

射频模组芯片,不是一个新生的产品系列。事实上,射频模组芯片的使用几乎与LTE商业化同时发生。过去10年内,各种复杂的射频模组已经普遍应用在了各品牌的旗舰手机中;与此同时,在大量的入门级手机上,分立器件的方案也完全能够满足各方面的要求。因此在过去10年就出现了泾渭分明的两个市场:旗舰机型用模组方案;入门机型用分立方案。模组方案要求“高集成度和高性能”,因而价格也很高;而分立方案要求“中低集成度和中等性能”,售价相对而言就低不少。两种方案之间存在巨大的技术和市场差异,我们可以把这个称作4G时代的“模组鸿沟”。

4G时代的“模组鸿沟”

5G的到来,彻底改变了这个状况。

相比于4G入门级手机的2~4根天线,5G入门级手机的天线数目增加到了8~12根;需要支持的频段及频段组合也在4G的基础上显着增加。大家知道,射频元器件的数目,与天线数目及频段强相关,这就意味着射频元器件的数目出现了急剧地增长。与此同时,由于结构设计的要求,5G手机留给射频前端的PCB面积是无法增加的,因此分立方案的面积大大超过了可用的PCB面积。这是空间带来的约束。

还有一个挑战,来自于调试时间。4G使用分立器件方案的射频调试时间,一般在一周以内。随着5G射频复杂度的显着提升,假设使用分立方案,可能会带来3~5倍的调试时间增加;从成本上来讲,还需要消耗更贵的5G测试设备、熟悉5G测试的工程师资源。如果使用模组,大部分的调试已经在模组设计过程中在内部实现了,调试工作量将更多地移到软件端,因此调试效率大大提升。这是时间带来的约束。

时间和空间的约束,强烈而普遍。因此在入门级5G手机中,就天然出现了对“中低性能和高集成度”模组的需求,与旗舰手机的“中高性能和高集成度”模组形成了管脚统一。既然都需要高集成度的模组,只是指标要求不一样,这样国产的模组芯片就可以从“中低性能”(5G入门级手机)向“中高性能”(5G旗舰手机)迭代演进。因此,“模组鸿沟”便被填平了。

任何事情都是两面的。“模组鸿沟”被填平以后,分立市场的空间也出现了风险;对专长于分立芯片的本土企业来讲,也需要巨大的资源和力量去在模组产品中找到自身的位置;如果不能突破,就会在不远的未来进入到瓶颈阶段。

在5G的早期阶段,目前市场上也出现了一种混合方案,即用分立器件和模组混搭的方案。这个方案的出现,有很多客观的原因,其中就包括历史上形成的“模组鸿沟”。这种方案是妥协的产物,牺牲了一些关键指标,而且面积上也做了让步。如果没有专注做国产化模组的芯片公司,就不会有优秀的国产模组芯片;如果没有优秀的国产模组芯片,模组方案的价格永远高高在上。

滤波器技术简要分类

BAW 滤波器: 即体声波滤波器。具有插入损耗小、带外衰减大等优点,同时对温度变化不敏感,BAW滤波器的尺寸大小会随着频率升高而缩小,因此尤其适用于1.7GHz以上的中高频通信,在5G与sub-6G的应用中有明显优势。

SAW滤波器: 即声表面波滤波器。采用石英晶体、铌酸锂、压电陶瓷等压电材料,利用其压电效应和表面波传播的物理特性而制成的一种滤波专用器件。SAW滤波器具有性能稳定、使用方便、频带宽等优点,是频率在1.6GHz以下的应用主流。但存在插入损耗大、处理高频率信号时发热问题严重等缺点,因此在处理1.6GHz以上的高频信号时适用性较差。

LC型滤波器: 即电感电容型滤波器。LC滤波器一般是由滤波电容、电抗和电阻适当组合而成,电感与电容一起组成LC滤波电路。

射频模组简要分类

射频前端模组是将射频开关、低噪声放大器、滤波器、双工器、功率放大器等两种或者两种以上的分立器件集成为一个模组,从而提高集成度和性能,并使体积小型化。根据集成方式的不同,主集天线射频链路可分为:FEMiD(集成射频开关、滤波器和双工器)、PAMiD(集成多模式多频带PA和FEMiD)、LPAMiD(LNA、集成多模式多频带PA和FEMiD)等;分集天线射频链路可分为:DiFEM(集成射频开关和滤波器)、LFEM(集成射频开关、低噪声放大器和滤波器)等。

主集天线射频链路

分集天线射频链路

射频前端的“价值密度”

既然5G手机PCB面积是受限制的资源,同时我们需要在5G手机内“挤入”更多的射频功能器件,因此我们评价每一类型射频器件时,需要建立一个参数来进行统一描述,作为反映其价值与PCB占用面积的综合指标。

ValueDensity=(平均销售价格ASP)/(芯片封装大小)

接下来,我们使用VD值这个工具,分别分析一下滤波器、功率放大器、射频模组三类产品的情况。

1. 滤波器的VD值

首先说明一点,由于通常情况下滤波器还需要外部的匹配电路,实际的VD值比器件的VD值还要再低一些。我们先忽略这个因素。根据以上的数据,我们可以得到一些结论:从LTCC到四工器,VD值持续增加,从1.2到10.0,增加比较快速。

2. 功率放大器的VD值

根据以上数据,也可以看到: a) 从2G到4G,VD值从0.6增加到了1.5。b) 4G向CAT1演进的小型化产品,以及向HPUE或者Phase5N演进的大功率PA,VD值增加到了2附近。

3. 射频模组的VD值

根据以上数据,可以观察到: a) 接收模组普遍的VD值在5附近;b) 接收模组中的小封装H/M/L LFEM,VD值非常突出,大于10;c) 发射模组(除FEMiD以外),VD值在4~6之间;d) FEMiD具有发射模组最高的VD值。因此当FEMiD与VD值较低的MMMB PA混搭时,也能达到合理的PCB布图效率。

表格汇总的同时,我们也增加了技术国产化率和市场国产化率的参考数据。一般来讲,市场国产化率较低的、或者技术国产化率远远超过国产化率数字的细分品类,VD值会虚高一些。在本土相应产品市占率提高以后,未来还会有比较明显的降价空间。

射频发射模组的五重山

发射1: PA与LC型滤波器的集成,主要应用在3GHz~6GHz的新增5G频段,典型的产品是n77、n79的PAMiF或者LPAMiF。这些新频段的5GPA设计非常有挑战,但由于新频段频谱相对比较“干净”,所以对滤波器的要求不高,因此LC型的滤波器(IPD、LTCC)就能胜任。综合来看,这类产品属于有挑战但不复杂的产品,其技术和成本均由PA绝对掌控。

发射2: PA与BAW(或高性能SAW)的集成,典型产品是n41的PAMiF或者Wi-Fi的iFEM类产品,频段在2.4GHz附近。这类产品的频段属于常见频段,PA部分的技术规格有一定挑战但并不高。由于工作在了2.4GHz附近,频段非常拥挤,典型的产品内需要集成高性能的BAW滤波器来实现共存。这类产品由于滤波器的功能并不复杂,PA仍有技术控制力;但在成本方面,滤波器可能超过了PA。综合来讲,这类产品属于有挑战但不复杂的产品,PA有一定的控制力。

发射3: LowBand发射模组。LB (L)PAMiD通常集成了1GHz以下的4G/5G频段(例如B5、B8、B26、B20、B28等等),包括高性能功率放大器以及若干低频的双工器;在不同的方案里,还可能集成GSM850/900及DCS/PCS的2GPA,以进一步提高集成度。低频的双工器通常需要使用TC-SAW技术来实现,以达到最佳的系统指标。根据系统方案的需要,如果在LB PAMiD的基础上再集成低噪声放大器(LNA),这类产品就叫做LB LPAMiD。可以看到,这类产品的复杂度已经比较高:PA方面,需要集成高性能的4G/5GPA,有时候还需要集成大功率的2GPA Core;滤波器方面,通常需要3~5颗使用晶圆级封装(WLP)的TC-SAW双工器。总成本的角度来看(假设需要集成2GPA),PA/LNA部分和滤波器部分占比基本相当。LB (L)PAMiD是需要有相对比较平衡的技术能力,因此第三级台阶出现在了PA和Filter的交界处。

发射4: FEMiD。这类产品通常包含了从低频到高频的各类滤波器/双工器/多工器,以及主通路的天线开关;并不集成PA。FEMiD产品通常需要集成LTCC、SAW、TC-SAW、BAW(或性能相当的I.H.PSAW)和SOI开关。村田公司定义了这类产品,并且过去近8年的时间内,占据了该市场的绝对主导权。三星、华为等手机大厂,曾经或正在大量使用这类产品在其中高端手机中。如前文所述,有竞争力的PAMiD供应商主要集中在北美地区;出于供应链多样化的考虑,一些出货量非常大的手机型号,就可能考虑使用MMMB(Multi-Mode Multi-Band) PA加FEMiD的架构。MMMB PA的合格供应商广泛分布在北美、中国、韩国,而日本村田的FEMiD产能非常巨大(主要表现在LTCC和SAW)。又如前文所述,FEMiD的VD值非常高,整体方案的空间利用率也在合理范围内。

发射5: M/H (L)PAMiD。这类产品是射频前端最高市场价值也是综合难度最大的领域,是射频前端细分市场的巅峰。M/H通常覆盖的频率范围是1.5GHz~3.0GHz。这个频段范围,是移动通信的黄金频段。最早的4个FDDLTE 频段Band1/2/3/4在这个范围内,最早的4个TDD LTE频段B34/39/40/41在这个范围内,TDS-CDMA的全部商用频段在这个范围内,最早商用的载波聚合方案(Carrier Aggregation)也出现在这个范围(由B1+B3四工器实现),GPS、Wi-Fi 2.4G、Bluetooth等重要的非蜂窝网通信也都工作在这个范围。可以想象,这段频率范围最大的特点就是“拥挤”和“干扰”,也恰恰是高性能BAW滤波器发挥本领的广阔舞台。由于这个频率范围商用时间较长,该频率范围内的PA技术相对比较成熟,核心的挑战来自于滤波器件。

先解释一下为什么这段频率是移动通信的黄金频率。在很长的发展过程中,移动通信的驱动力来自移动终端的普及率,而移动终端普及的核心挑战在于终端的性能和成本。过高的频率,例如3GHz以上、10GHz以上,半导体晶体管的特性下降很快,很难做出高性能;而过低的频率,例如800MHz以下、300MHz以下,需要天线的尺寸会非常巨大,同时用来做射频匹配的电感值和电容值也会很大,在终端尺寸的约束下,超低频段的射频性能很难达到系统指标。简而言之,从有源器件(晶体管)的性能角度出发,希望频率低一些;从无源器件(电容电感和天线)的性能角度出发,希望频率高一些。有源器件与无源器件从本质上的冲突,到应用端的折衷,再到模组内的融合,恰如两股强大的冷暖洋流,在人类最波澜壮阔的移动通信主航道上,相汇于1.5~3GHz的频段,形成了终端射频最复杂也最有价值的黄金渔场:M/HB (L)PAMiD。多么地美妙!

这类高端产品的市场,目前主要由美商Broadcom、Qorvo、RF360等厂商占据。下图是Qorvo公司在其官方公众号上提供的芯片开盖分析。可以看到,该类产品包含10颗以上的BAW,2~3颗的GaAs HBT,以及3~5颗SOI和1颗CMOS控制器,具有射频产品最高的技术复杂度。该类产品通常需要集成四工器或者五/六工器这类超高VD值的器件。

M/H LPAMiD开盖图

射频接收模组的五重山

接收模组的五重山模型,如上图所述。

接收1: 使用RF-SOI工艺在单颗die上实现了射频Switch和LNA。虽然仅仅是单颗die,但从功能上也属于复合功能的射频模组芯片。这类产品主要的技术是RF-SOI,在4G和5G都有一些应用。

接收2 :使用RF-SOI工艺实现LNA和Switch的功能,然后与一颗LC型(IPD或者LTCC)的滤波器芯片实现封装集成。LC型滤波器适合3~6GHz大带宽、低抑制的要求,适用于5G NR部分的n77/n79频段。这类产品也是SOI技术主导,主要应用在5G。

接收3: 从接收3往上走,接收模组开始需要集成若干SAW滤波器,集成度越来越高。通常需要集成单刀多掷(SPnT)或者双刀多掷(DPnT)的SOI开关,以及若干通路支持载波聚合(CA)的SAW滤波器。封装方式上,由于“接收3”的集成程度还不极限,因此有多种可能的路径。其中国际厂商的产品主要以WLP技术为主,除了在可靠度及产品厚度方面有优势,主要还是可以在更高集成度的其他产品中进行复用。

接收4: 这类产品叫做MIMO M/H LFEM。主要是针对M/H Band的频段(例如B1/3/39/40/41/7)应用了MIMO技术,增加通信速率,在一些中高端手机是属于入网强制要求。看起来通信业对M/H这个黄金频段果然是真爱啊。技术角度出发,这类产品以RF-SOI技术实现的LNA加Switch为基础,再集成4~6个通路的M/H高性能SAW滤波器。国际厂商在这些频段已经开始普遍使用TC-SAW的技术,以达到最好的整体性能。

接收5: 接收芯片的最高复杂度,就是H/M/L的LFEM。这类产品以非常小的尺寸,实现了10~15路频段的滤波(SAW Filter)、通路切换(RF-Switch)以及信号增强(LNA),具有超高的Value Density值(10左右),在5G项目上能帮助客户极大地压缩Rx部分占用的PCB面积,把宝贵的面积用在发射/天线等部分,提升整体性能。这类产品需要的综合技能最高,也基本必须要用WLP形式的先进封装方式才能满足尺寸、可靠度、良率的要求。

总结

1.射频模组的核心要求是多种元器件的小型化及模组集成。

2.无论是发射模组还是接收模组,纯5G的模组是困难但不复杂,最有挑战也最具价值的是4G/5G同时支持的高复杂度模组。

‘伍’ E拆解:虽然荣耀50没有了麒麟芯片,但国产射频脱颖而出

荣耀50系列是荣耀独立后的首款数字系列,需要面临的困难是可想而知的,荣耀50系列的首销成功,也证明了荣耀的号召力依然在。拆解没有了麒麟芯片的荣耀50,对eWisetech来说也是必然的。那么高销量下的荣耀50系列在拆解后又会给大家呈现怎样的答卷呢?

本次拆解的是8GB +128GB版本。拆解设备均从电商平台购入,文内对拆解分析内容均基于该设备。

关机取出卡托,卡托上套有硅胶圈。后盖与内支撑通过胶固定,经过热风枪加热,再利用吸盘和撬片打开后盖。在后盖对应NFC线圈位置贴有石墨片用于散热。摄像头盖板通过胶固定在后盖上,正面贴有泡棉用于保护镜头。

顶部主板盖和底部扬声器通过螺丝固定。在主板盖和扬声器上都贴有石墨片,并且石墨片都延伸至电池位置,有利于散热。主板盖上有胶固定的NFC线圈、闪光灯板。再取下扬声器上的弹片板。注意后置摄像头模组有塑料框架固定。

取下主板、副板、前后摄像头模组和同轴线。主板正面处理器&内存位置处涂有散热硅脂用于散热,副板USB接口处还套有硅胶套起到一定的防尘作用。

电池通过塑料胶纸固定。根据提拉把手指示便可拆解。然后依次取下按键软板、传感器板、主副板连接软板、听筒和指纹识别传感器软板。

6.57英寸的维信诺OLED屏幕与内支撑通过胶固定,胶粘面积较大,加热屏幕,通过撬片和吸盘打开屏幕。在内支撑正面有大面积石墨片,并未发现液冷管。

拆解总结: 荣耀50整机共采用23颗螺丝固定,采用比较常见的三段式结构。拆解难度中等,可还原性强。SIM卡托和USB接口采用硅胶圈保护,能起到一定的防尘作用。整机采用导热硅脂+石墨的方式进行散热,并未发现液冷管,在散热方面有所欠缺。

E分析栏目前期说到随着5G时代的到来,越来越多国产芯片厂商的进入打破了国外垄断的局面。在缺少了麒麟芯片的荣耀50中,我们还能发现哪些国产芯片呢?首先来看看主板标注的IC。

主板正面主要IC:

1:Qualcomm-QPM5541-射频功放芯片

2:Qualcomm-QPM5577-射频功放芯片

3:TI-BQ25970-快充芯片

4:Qualcomm-WCD9370-音频编解码器芯片

5:Qualcomm-SM7325-高通骁龙778G处理器芯片

6:Micron-8GB内存+128GB闪存芯片

7:Qualcomm-PM7325B-电源管理芯片

8:Qualcomm-WCN6750-WiFi/BT芯片

主板背面主要IC:

1:NXP-SN100T-NFC控制芯片

2:Qualcomm-PM7350C-电源管理芯片

3:Qualcomm- PM7325-电源管理芯片

4:Qualcomm- SDR735-射频收发芯片

5:Qualcomm- QDM3301-射频前端模块芯片

6:Qualcomm-QFM2340-射频前端模块芯

7:OnMicro-OM9902-11-射频功放芯片

8:OnMicro-OM9901-11-射频功放芯片

通过主板标注我们可以发现,本次荣耀50整机没有采用麒麟芯片。在射频芯片中除了与处理器配套的高通外,还有两颗来自 国产厂商昂瑞微的射频功放芯片——OM9901-11与OM9902-11。

OM9901-11为2G频段设计,低频段支持GSM850/EGSM900,高频段支持DCS1800/PCS1900频段。OM9902-11支持3G/4G/5G NR 频段。

这是eWiseTech工程师首次在手机中发现该厂商的芯片, OM9901和OM9902是昂瑞微在2020年推出的5G Sub-3GHz Phase5N解决方案。昂瑞微更是拥有完整的PA/FEM产品线系列,其产品覆盖2G、3G、4G、5G Phase5N、L-PAMID和L-PAMIF全系列。 并且也是国内首家同时拥有大规模量产的CMOS PA和GaAs PA技术的厂商。

早在2020年底, 昂瑞微的Phase5N射频前端模组已经在多家手机厂商和ODM方案商实现量产。 而这次荣耀50的采用,是昂瑞微首次打入荣耀的供应链。国产厂商为荣耀50这样的畅销机型供货,也从侧面证明了其实力不容小觑。

#国产芯片# #荣耀50#

‘陆’ 解析下一代WiFi 802.11ax 射频技术的先进之处

【嵌牛导读】:802.11ax又称为“高效率无线标准”(High-EfficiencyWireless,HEW),旨在实现一项极具挑战性的目标:将用户密集环境中的每位用户平均传输率提升至4倍以上。这项全新标准着重于机制的实作,以期在人潮众多的环境下,为更多使用者提供一致且稳定的数据流(平均传输率)。

【嵌牛鼻子】:WIFI 802.11ax 射频技术

【嵌牛提问】:802.11ax具体是什么,是怎样运作的,又什么优点

【嵌牛正文】:2013年推出的802.11ac标准不仅可在单一空间串流中实现近866Mbit/s的链接速度,还能提供更宽的通道(160MHz)以及更高的调变阶次(256-QAM)。只要使用8个空间串流(标准指定的数量上限),此一技术将可成就高达6.97Gbit/s的理论速度值。只是,正如同法拉利只能在管制赛道上发挥实力一样,除非您身处射频实验室,否则很难使用到7Gbit/s的高速无线网络。在现实世界中,每当使用者试图在繁忙的机场航厦中使用公共Wi-Fi查看电子邮件,往往会因牛步般的网络速度而备感挫折。

IEEE 802.11无线LAN标准的最新修正802.11ax将能有效解决此一问题。802.11ax又称为“高效率无线标准”(HEW),旨在实现一项极具挑战性的目标: 将用户密集环境中的每位用户平均传输率提升至4倍以上。

强化高密度使用情境网络表现

高效率无线标准具有下列重要功能:

.向下兼容于802.11a/b/g/n/ac。

.将火车站、机场等高人口密度地点的每位用户平均传输率提升4倍。

.数据速率和信道宽度与802.11ac相似,但可搭配1024-QAM提供新的调变和编码组合(MCS 10和11)。

.透过MU-MIMO和正交频分多任务存取(OFDMA)技术,进行指定的下链和上链多用户作业。

.提供四倍大的OFDM FFT、更窄的子载波间距(密度为4倍)以及更长的符码时间(4倍),进而改善多路径衰减环境以及室外的稳固性和性能。

.改善流量和通道存取情形。

.电源管理更为出色,可带来更长效的电池续航力。

高效率无线标准也可满足下列目标应用的需求:

.行动数据卸除:在2020年,每个月产生的Wi-Fi卸除流量将来到38.1Exabyte,并持续超越每月的行动流量(30.6EB)预估值。此一数字相当于每分钟在这些网络中移动超过6,000部蓝光电影。

.具备众多存取点,且有高密度用户持有异质装置的环境(机场Wi-Fi≠家用Wi-Fi)。

.室外或混合室外的环境。

现有Wi-Fi机制不利高密度传输

802.11通讯协议采用了载波感测多路存取(CSMA)方式,在此一方式中,无线基地台(STA)会先感测通道,而且只会在感测到通道闲置时进行传输,借此尝试避免冲突(图1)。如果任一STA听到有其他STA存在,就会在再次收听前等候一段时间,以待对方停止传输并释放通道。当STA可进行传输时,将会传输完整的封包数据。

Wi-Fi

STA可借由RTS/CTS封包来调停共享媒体的存取。存取点(AP)每次只会将一个CTS封包发给一个STA,而对方则会将完整的框架送回AP。接着,STA会等候AP用来告知封包已正确接收的确认封包(ACK)。如果STA没有及时收到ACK,就会假设封包与其他传输产生冲突,并进入二进制指数轮询期间。在轮询计数到期后,STA将试图存取媒体并重新传输封包。

此空闲通道评估和冲突预防通讯协议虽有助于将信道平均分配给冲突网域中的所有参与者,但如果参与者数量过于庞大,分配效率会随之下降;多个AP服务区域重迭,则是造成网络效率不彰的另一原因。图2中的某位使用者(使用者1)隶属于左侧的基本服务组(BSS,一组与AP产生关联的无线客户端)。使用者1会与自身BSS内的其他用户一同竞争媒体存取权,接着再与其AP交换数据。不过,这位使用者仍然可以听到来自右侧重迭BSS的流量。

在这个案例中,来自OBSS的流量会触发用户1的轮询程序,导致用户必须历经更长的等待才能得到传输机会,进而大幅拉低他们的平均数据传输率。

第三个有待考虑的因素则为较宽通道的共享。举例来说,北美地区的802.11ac只有一个可用的160MHz通道,而欧洲则有两个(图3)。

使用较少的通道规划密集的涵盖范围变得十分困难,而此一现象也迫使网络管理员必须重复使用附近基地台中的信道。如果没有注意且刻意进行电源管理,使用者将会遇到同通道干扰,除了会减损性能之外,还会将通道较宽的既定优势一笔勾销。在调变和编码模式(MCS)8、9、10和11以最高数据速率传送数据时,特别容易遇到低讯噪比的情况,因此格外容易使网络性能受到影响。此外,在现有的802.11

网络实作中,如果20MHz信道与80MHz信道重迭,不仅会造成80MHz通道无法使用,用户也会以较窄的通道进行传输。也就是说,在高密度网络中实作802.11ac的通道共享,将损及80MHz通道的优势,并以20MHz通道进行传输。

802.11ax PHY变更

802.11ax标准在物理层导入了多项大幅变更。然而,它依旧可向下兼容于802.11a/b/g/n与ac装置。正因如此,802.11ax

STA能与旧有STA进行数据传送和接收,旧有客户端也能解调和译码802.11ax封包表头档(虽然不是整个802.11ax封包),并于802.11ax

STA传输期间进行轮询。表1显示此一标准修正最重要的变更以及与现行802.11ac的对照。

请注意,802.11ax标准将在2.4GHz和5GHz频带运作。此规格定义了4倍大的FFT,以及数量更多的子载波。不过,802.11ax也涵盖了一项重大变更:将子载波间距缩减到先前802.11标准的四分之一,以保留现有的通道带宽(图4)。

OFDM符码持续期间和循环前缀区段(Cyclic

Prefix,

CP)也提高4倍,一边维持与802.11ac相同的原始链接数据速率,一边提升室内/室外和混合式环境的效率及稳固性。不过,ax标准会于室内环境中指定1024-QAM和较低的循环式前置区段比,以利实现最高的数据速率。

波束成形

802.11ax将采用与802.11ac相似的明确波束成形程序。在这个程序中,波束成形器会使用Null数据封包启动信道探测程序,而波束成形接收端则会测量通道,并使用波束成形反馈架构(当中包含压缩的反馈矩阵)做出回应。波束成形器将使用这项信息来运算信道矩阵H。随后,波束成形接收端就能使用这个通道矩阵,将射频能量运用在每位使用者身上。

多用户作业:MU-MIMO与OFDMA

802.11ax标准采用了两种作业模式,分别是单一使用者与多使用者。在单一用户序列模式中,只要无线STA一取得媒体存取权,就会每次进行一个数据传送和接收作业。在多用户模式下,可同步进行多个非AP STA作业。标准会将此一模式进一步划分成下链和上链多使用者。

.下链多使用者是指由AP同时提供给多个相关无线STA的数据。现有的802.11ac已具备这项功能。

.上链多使用者则涉及同时从多个STA传输数据至AP。这是802.11ax标准的新功能,且不存在于任何旧版Wi-Fi标准中。

在多用户作业模式中,标准也会指定两种方式来为特定区域内更多用户进行多任务:多使用者MIMO(MU-MIMO)和正交频分多任务存取(OFDMA)。无论为上述何种方式,AP都会充当多用户作业内的中央控制器,这点与LTE基地台用来控制多使用者多任务的方式相似。此外,802.11axAP也可将MU-MIMO和OFDMA作业结合在一起。

在MU-MIMO方面,802.11ax装置会效法802.11ac实作,使用波束成形技术将封包同步导向位于不同空间的使用者。换言之,AP将为每位用户计算通道矩阵,然后将同步波束导向不同用户,而每道波束都会包含适用于所属目标用户的特定封包。802.11ax每次最多可传送8个多使用者MIMO传输,远高于802.11ac的4个。此外,每个MU-MIMO传输都具备专属的MCS以及不同数量的空间串流。打个比方,使用MU-MIMO空间多任务时,AP的角色就等同于以太网络交换器,能减少自大型计算机网络至单一端口的网域冲突。

MU-MIMO上链导向提供了一项新功能:AP将透过触发讯框的方式启动来自每个STA的同步上链传输。当多使用者的响应与自身的封包一致时,AP就会将通道矩阵套用至已接收的波束,并区分每道上链波束包含的信息。另外,如图5所示,AP也能启动上链多使用者传输,以接收来自所有参与STA的波束成形反馈信息。

在MU-OFMDA部分,为了让相同通道带宽的更多用户进行多任务,802.11ax标准采用了4G行动技术领域中的正交频分多任务存取(OFDMA)。802.11ax标准以802.11ac所用的正交频分多任务(OFDM)数字调变架构为基础,会将特定子载波集进一步指派给个别使用者。这表示它会使用数量已预先定义的子载波,将现有的802.11通道(20、40、80和160MHz宽)画分成较小的子通道。此外,802.11ax标准也仿效现代化的LTE专有名词,将最小的子信道称为“资源单位”(RU),而当中至少包含26个子载波。

AP会根据多使用者的流量需求来判断如何配置信道,持续指派下链中所有可用的RU。它可能会将整个信道一次配置给一名用户,如同现行的802.11ac,也有可能将通道进行分配,以便同时服务多使用者(图6)。

在使用者密集环境中,许多使用者通常会透过成效不彰的方式争取使用通道的机会,现在,OFDMA机制会同时为多使用者提供较小(但专属)的子通道,进而改善每位用户平均传输率。图7说明了802.11ax系统如何使用不同大小的RU进行通道多任务。请注意,最小的通道可在每20MHz的带宽中容纳多达9名使用者。

表2显示当802.11ax AP和STA协调进行MU-OFDMA作业时,可享有分频多任务存取的使用者人数。

多用户上链作业

为了协调上链MU-MIMO或上链OFDMA传输,AP会将一个触发讯框传送给所有使用者。这个讯框会指出每位使用者的空间串流数量和/或OFDMA配置(频率和RU大小)。此外,当中也会包含功率控制信息,好让个别用户可以调高或调低其传输功率,进而平衡AP自所有上链使用者接收到的功率,同时改善较远节点的讯框接收情况。AP也会指示所有使用者何时可以开始和结束传输。如同图8所示,AP会传送多使用者上链触发讯框,告知所有使用者何时可以一起开始传输,以及所属讯框的持续时间,以确保彼此能够同时结束传输。一旦AP收到了所有使用者的讯框,就会回传区块ACK以结束作业。

802.11ax的主要设计目标之一,就是在使用者密集的环境中提供4倍以上的单一使用者传输率。为了实现此一目标,这项标准的设计人员指定802.11ax装置必须支持下链和上链MU-MIMO作业、MU-OFDMA作业,或是同时支持两者,以应对规模更大的同时用户数量。

802.11ax MAC机制变更

为了改善密集部署情境中的系统层级性能以及频谱资源的使用效率,802.11ax标准实作了空间重复使用技术。STA可以识别来自重迭基本服务组(BSS)的信号,并根据这项信息来做出媒体竞争和干扰管理决策。

当正在主动收听媒体的STA侦测到802.11ax讯框时,它就会检查BSS色彩位(ColorBit)或MAC表头文件中的MAC地址。如果所侦测的协议数据单元(PPDU)中的BSS色彩与所关联AP已发表的色彩相同,STA就会将该讯框视为Intra-BSS讯框。

然而,如果所侦测讯框的BSS色彩不同,STA就会将该框架视为来自重迭BSS的Inter-BSS框架。在这之后,只有在需要STA验证框架是否来自Inter-BSS期间,STA才将媒体当成忙碌中(BUSY)。不过,这段期间不会超过指定的讯框酬载时间。

尽管标准仍需定义某些机制来忽略来自重迭BSS的流量,在实作上,则可包含提高Inter-BSS讯框的空闲信道评估信号侦测(SD)门坎值,并同时降低Intra-BSS流量的门坎(图9)。如此一来,来自邻近BSS 的流量就不会造成不必要的通道存取竞争。

当802.11ax STA使用色码架构的CCA规则时,它们也允许搭配传输功率控制来一同调整OBSS信号侦测门坎。这项调整可望改善系统层级性能以及频谱资源的使用效率。除此之外,802.11ax STA也可调整CCA参数,例如能量侦测层级和信号侦测层级。

除了使用CCA来判断目前通道是否为闲置或忙碌中,802.11标准也采用了网络配置矢量(NAV),这个时间机制会保持未来流量的预测,以供STA指出紧接在目前讯框后的讯框需要多少时间。NAV可做为虚拟载波感测,用来为802.11通讯协议作业至关重要的讯框确保媒体预约(例如控制框架以及RTS/CTS交换后的数据和ACK)。

负责开发高效率无线标准的802.11工作团队可能会在802.11ax标准中包含多个NAV字段,也就是采用两个不同的NAV。同时拥有Intra-BSSNAV和Inter-BSS NAV不仅可协助STA预测自身BSS内的流量,还能让它们在得知重迭流量状态时自由传输(图10)。

透过目标唤醒时间省电

802.11axAP可以和参与其中的STA协调目标唤醒时间(TWT)功能的使用,以定义让个别基地台存取媒体的特定时间或一组时间。STA和AP会交换信息,而当中将包含预计的活动持续时间。如此一来,AP就可控制需要存取媒体的STA间的竞争和重迭情况。802.11axSTA可以使用TWT来降低能量损耗,在自身的TWT来临之前进入睡眠状态。另外,AP还可另外设定排程并将TWT值提供给STA,这样一来,双方之间就不需要存在个别的TWT协议。本标准将此程序称为“广播TWT作业”(图11)。

802.11ax带来六大测试挑战

由于导入许多先进射频技术与访问控制机制,802.11ax系统的测试与设计验证将面临六大挑战,分别出现在误差矢量幅度(EMV)、频率错误、STA功率控制、存取点接收器灵敏度、上链带内散射与MIMO测试上。

更严格的EVM规定

现在802.11ax会托管1024-QAM的相关支持。此外,子载波之间的间隔只有78.125kHz。这意味着802.11ax装置需要相位噪声性能更出色的振荡器,以及线性能力更优异的射频前端。而测量待测物(DUT)动作的测试仪器则会要求其EVM噪声水平应远低于DUT。

表3列出了802.11ax兼容装置所应符合的EVM等级。

绝对与相对频率错误

OFDMA系统对频率和频率偏移有着极高的磁化率。因此,802.11ax多使用者OFDMA性能需要极为密切的频率同步化和频率偏移修正。此要求将确保所有STA都能在所配置的子频道中运作,并将频谱泄漏的情况减至最低。此外,这项严格的时序需求也可确保所有STA都将同时进行传输,以响应AP的MU触发讯框。

以4G LTE系统来说,基站会利用GPS授时频率来同步所有相关装置。然而,802.11ax AP不仅与这项优势无缘,还需要使用内建的振荡器充当维护系统同步化的参考依据。之后,STA会自AP的触发讯框撷取偏移信息,并据此调整内部的频率和频率参考。

802.11ax装置的频率和频率偏移测试将涉及下列测试:

.绝对频率错误:DUT会传送802.11ax讯框,而测试仪器则会使用标准参考来测量频率和频率偏移。结果将与目前802.11ac规格的所述数据相似,限制约为±20ppm。

.相对频率错误:这将测试不属于AP的STA参与上链多用户传输以链接AP频率的能力。测试程序包含两个步骤。首先,测试仪器会将触发框架传送给DUT。

DUT将依照取自于触发讯框的频率和频率信息进行自适应。接着,DUT会使用已修正频率的框架做出回应,而测试仪器则会测量这些框架的频率错误。在载波频率偏移和时序补偿完成后,这些限制将密切维持在相对于AP触发讯框仅不到350 Hz和±0.4微秒的程度(图12)。

STA功率控制

与降低频率和频率错误需求一样,AP于上链多使用者传输期间接收的功率,不应出现多个使用者之间功率差异过大的情况。因此,AP必须控制每个独立STA的传输功率。AP可以使用触发讯框,并于当中包含各STA的传输功率信息。开发人员只需使用与频率错误测试相似的两步骤程序,即可完成这项功能的测试。

存取点接收器灵敏度

鉴于AP会充作频率和频率参考之用,测试802.11ax AP的接收器灵敏度成为一大挑战。正因如此,测试仪器需要在传送封包至AP之前锁定AP,以利封包错误率灵敏度测试的进行。

在传送触发讯框以启动AP之后,测试仪器会配合AP调整自身的频率和频率,然后透过使用预期设定的封包(数量已预先定义)回应AP DUT。

802.11ax采用的相对频率错误限制相当严格,这也正是难题所在。测试仪器需要自AP传送的触发讯框撷取极为精确的频率和频率信息。仪器可能需要针对多个触发框架执行这项计算,以确保频率和频率同步化顺畅无碍。因此,这项程序可能会大幅延误测试程序的进度。

若要加快测试程序的脚步,其中一个可行的解决方案便是让AP汇出其频率参考,好让测试设备能据此锁定自身频率。如此即可跳过根据触发讯框进行的初期同步化程序,并缩短AP接收器灵敏度测试的所需时间。

上链带内散射

在STA以MU-OFDMA模式运作期间,它们会使用由AP决定的RU配置来上传数据至AP。也就是说,STA只会使用通道的一部分。802.11ax标准可能会指定上链带内散射测试,以描述和测量在传输器只使用部分频率配置期间所发生的散射(图13)。

多使用者和更高阶次的MIMO

若在MIMO作业中使用多达8个天线测试802.11ax装置,其结果可能会与个别及连续测试每个信号链大不相同。举例来说,来自各个天线的信号可能会对彼此造成负面干扰,并影响到功率和EVM性能,进而对传输率带来负面且显着的影响。

测试仪器需要支持每个信号链的局部振荡器亚毫微秒同步化,以确保多个通道的相位微调和MIMO性能不会发生问题。

应对802.11ax新挑战

802.11ax可将密集环境的每位用户平均数据传输率提升4倍,而MU-MIMO和MU-OFDMA等形式在内的多使用者技术,则是促成此一效率的最大幕后功臣之一。针对人口密集环境做出的此一频谱使用改善,可望以前所未见的速度推广802.11ax的采用。然而,此一功能的实作也会为负责实现上述工程奇迹的科学家、工程师和技术人员带来全新的挑战。

‘柒’ 什么叫射频前端(无线电方面);个人理解主要指信号的接收能力如天线增益、射频放大、输入衰减等,请问对么

我理解的是靠近天线部分的是射频前端,包括发射通路和接收通路。
发射通路东西不多,功率放大、滤波之类的。
一般讲得比较多的是接收通路,包括低噪声放大器(LNA)、滤波器等器件,包括增益、灵敏度、射频接收带宽等指标,要根据产品特点进行设计,目的是保证有用的射频信号能完整不失真地从空间拾取出来并输送给后级的变频、中频放大等电路。

‘捌’ 催生万亿市场的5G,将引爆哪些巨变

“速度,其实是5G最无聊的应用。”北京邮电大学的何同学,在他制作了一个火遍全网的5G主题视频后,以这句话做结。

5G对我们而言,是个熟悉而又陌生的词汇,而此时,作为“毛衣战”的焦点技术,5G以更猛烈的方式闯入人们的视野之中。5G到底是什么?将会带来哪些影响与改变?

5G即第五代移动通信技术。移动通信技术滥觞于20世纪70年代,随着第一代到第五代的峰值速率的不断提升,其应用场景也发生了巨变。

第一代移动通信技术主要用于模拟语音传输,彼时的我们在用大哥大交流;

第二代用于数字语音传输并且能够承担少量低速的数据要求,我们能够打电话、发短信、简单浏览网页;

第三代则要求承担更为高速的数字语音传输,我们进一步能够浏览大多数网页,开始玩社交软件、玩手游,但看视频仍有些勉为其难;

第四代要求能够具备更为多样的业务传输能力,我们可以顺畅地视频通话,还能玩转短视频。

那么,接下来的5G又将开辟出一个怎样的天地呢?

根据东方证券研究所对移动通信技术演进历程的梳理,5G或将实现万物互联的目标。

IMT-2020(5G)推进组《5G概念白皮书》中预计,5G主要在连续广域覆盖、热点高容量、低功耗大连接和低时延高可靠四个技术场景中得到应用,其中前两项所针对的是移动互联网的业务诉求,而后两项则是满足未来物联网的市场需求。

根据同花顺iFinD终端产业链显示,整个5G产业全景呈现出“ 网络规划设计->无限射频配套->基站主设备与传输->网络工程与优化->5G终端->5G应用 ”的链路,大致可分为接入网、承载网和核心网。接入网中基站是核心,主要任务是完成通信数据的租碰收发;承载网位于接入网和交换机之间的,用于传送各种语音和数据业务的网络,通常以光纤作为传输媒介;核心网主要作用是对承载网传送过来的数据进行管理、将传送过来的数据连接到不同的网络上。

太平洋证券5G系列报告中,将5G商用划分为三个阶段,结合上图的5G产业链,我们大致可以梳理出如下受益时序:

第一阶段,5G商用初期,运营商将开展大规模网络建设。在这一阶段,设备制造商将是5G的主要受益者;

第二阶段,5G商用中期,换机潮预计将来临,来自用户的终此空端设备支出和电信服务支出有望获得快速增长。这一阶段,终端设备厂家及其产业链受益明显;

第三阶段,进入5G商用中后期,随着5G终端和网络的持续渗透,与5G相关的信息服务业将迎来爆发式增长。这一阶段,互联网企业将笑傲整个5G产业链。

从产业链的各个细分环弊扒谈节来看:

一、 基站端:天线、PCB等环节价值凸显

根据东方证券的测算,5G基站投资总额约在9000亿元。大规模阵列天线(Massive MIMO)是提升频谱效率的关键技术,基站架构的升级、基站的建设等直接提升了天线、PCB等产业链环节的价值。此外超密组网技术的引入,使小基站数量在5G时代有望显着增长,国内小基站供应商预计将在未来几年明显受益。

二、射频前端:5G需求引发产业性变革

Yole预计,受益5G,射频前端市场规模有望从2016年101.1亿美元增长到2022年的227.8亿美元,6年复合增速14.5%。其中,滤波器6年复合增速达到了21%。太平洋证券5G相关研究报告指出,5G对手机射频模块的变革在于:(1)5G增加的新频段直接提升了射频器件的需求;(2)毫米波的引入使适用于高频的BAW滤波器需求明显增加;(3)MIMO技术升级带来了天线及相关器件需求;(4)5G的高频通信使射频制作工艺从目前的GaAs升级到了GaN。

三、 核心网及传输网:通信设备、光模块和光纤需求最盛

在5G规模商用前期,运营商将开展大规模网络建设,其中,设备投资占比最大。中国信通院预计,到2020年仅国内市场,电信运营商在5G网络设备商的投资将超过2200亿元,全球市场更是数倍于此的投资,5G建设将给系统设备商带来新的发展机会。此外,5G承载网络各层设备之间主要通过光纤实现信号传输,光模块是其中实现光电信号转换的关键,因而光纤与光模块的需求也“应声上涨”。

根据中国信通院的估算,5G在2020、2025和2030年的直接产出分别是4840亿元、3.3万亿和6.3万亿元,十年的年均复合增速为29%;期间的间接产出则分别为1.2、6.3、10.6万亿元,年均复合增长率为24%。带来万亿市场的同时,5G应用将引爆的生活场景化变革,同样也是值得期待的。

沉浸式体验更“沉浸”

在现实中,我们可以通过VR(虚拟现实)眼镜、头盔或其他传感器,做到人在家中,却能现场体验千里之外的 旅游 景点、演唱会、博物馆。但很多时候难免会产生眩晕感,这在一定程度上是因为时延,即系统监测到人体动作并反映到VR视野中时,会存在延迟。

而相比当前4G大约70ms的时延,5G数据传输的延迟将不超过1毫秒,可以有效解决数据时延带来的眩晕感。与此同时,5G高带宽、高速率特性,可以有效解决VR内容的传输问题,推动其大规模应用。

也许在不久之后的5G时代,我们置身于战场之中,目之所视、耳之所听、手之所触,均是“真实场景”,每开一次枪、投一次蓝、射一次门,不再是点击鼠标或触屏,而是要通过自己的手和脚来“出招”。

自动驾驶或将成为现实

在4G时代,过长的延时,会让无人驾驶的 汽车 和飞机在遇到突发情况时,可能来不及反应而酿成事故,这一担心,在5G时代将无限减少。

V2X是自动驾驶的关键。V2X无线通信是 汽车 制造商和无线生态系统针对 汽车 和道路联网提出的新型通信技术。V2X利用网络和其他物体为 汽车 提供距离更长的非视距视图以及云计算能力,从而对光探测和测距等自动驾驶功能形成补充。

而5G是V2X联网的基础,依靠5G的低时延、高可靠、高速率、安全性等优势,可以有效提升对车联网信息及时准确采集、处理、传播、利用、安全能力,有助于车与车、车与人、车与路的信息互通与高效协同。5G的商用可以加速自动驾驶的到来。

万物互联

现在的智能家居已经逐渐开始流行。我们可以通过手机、SIRI、智能音箱等控制一些家用电器,而在5G时代,这或许是最原始的状态。

未来,可能每个物件上都会有一个或若干个芯片,用于收集信息、传输信息或接受指令。 我们可以追踪每一个苹果、猕猴桃的生长情况,可以精确知道自己的快递到了哪里。

到超市买东西,不再需要收银员,我们拿了东西直接出门就行了,芯片会自动把购买信息传给中央处理系统,在你的账户里扣掉相应的金额。

看病不必去挂号排队,远程医疗应用快速普及,患者(特别是边远地区患者)在家即可进行诊断、治疗和咨询。

也许当整个世界步入5G时代之后,更多的行业乃至 社会 的变革将席卷而来,无论是现在所能预料的还是无法预料的,都在昭示着,5G,比4G多出的1G,将是革命性的。

‘玖’ 不支持5G的华为P50,关键技术落后,国产自给率很低

7月29日,已经延后数月的华为P50系列手机正式发布。

有一个问题大家很关心,麒麟9000明明是一个集成了5G基带芯片的SoC,怎么华为P50 Pro竟然不支持5G网络,这是什么原因?

这里的关键就是:射频芯片。

2020年,国外媒体通过拆解华为P40发现,虽然这款手机有相当高的国产化率,但是手机的射频元器件仍依赖于高通、Qorvo、Skyworks等美国公司,相当于是“卡住了华为的脖子”。

像是全球第一款5G射频芯片,便是由美国公司Qorvo设计、研发出来的。

没错,射频芯片,是目前国内与国外仍然存在巨大差距的关键技术领域之一。

而且,虽然后来他们获得了向华为的供货许可,但这是有限度的供货许可,5G射频芯片仍处在限制当中。

射频芯片,简单理解,是一个连接手机基带与手机天线之间的关键元器件,主要负责处理无线信息的发送与接收,包含:滤波器、功率放大器、射频开关、低噪声放大器等重要组件,被称作“模拟芯片皇冠上的明珠”。

预计在今年,高通射频芯片的收入,可能会达总收入的8%,且会在未来持续保持增长。

到了2022年,射频前端芯片模块的市场规模有望达到227亿美元,而且随着物联网的飞速发展,到了2025年,射频芯片市场规模会进一步扩大,达到258亿美元。

目前,美、日公司已经高度垄断了全球射频芯片市场,总体份额占比达到80%以上,而国产射频芯片的份额,现在仍不足10%,国产自给率可以说相当低。

这里面不仅有技术实力的差距,更重要的是:射频芯片属于“十年磨一剑”的重要技术,国外巨头已经投入了十几年的研发力量,建立起相当高的专利壁垒,导致我国企业无法在短时间内完成对国外巨头的赶超。

当然,起步晚并不意味着没有好消息。

在今年2月,国产射频前端芯片首次进入了5G手机供应链,这是国产射频前端芯片近两年来最大的进步,但具体的性能表现,仍与国外巨头存在巨大差距。

最后,认识短板最大的好处,在于能够知道该往什么方向努力。既然国内射频芯片的短板,已经成为摆上台面的关键问题,那么接下来的努力、奋斗、攻关就有了清晰的方向,成绩便也指日可待。

‘拾’ 苹果搞自研,供应链遭殃!这些半导体厂商或最危险

近期,苹果自研射频和基带芯片的相关传闻频上热搜,自A系列芯片尝到了自研甜头以来,苹果这只万亿“巨兽”似乎已经在自研这条道路上步步逼近。5G射频芯片、处理器芯片和基带芯片是手机中非常重要的芯片。苹果自研芯片决心已定,对全球半导体供应链和市场会有那些影响呢?我们国内相关半导体厂商又有何启发?

近期,中国台湾《经济日报》的报道上了热搜,其内容为:台积电获得了苹果iPhone 14所有5G射频(RF)芯片订单,取代了三星。

根据笔者仔细研究,很多媒体误以为是苹果自研了5G射频芯片,甚至是把高通的基带(X60、X65)芯片与传闻联系起来。但实际情况是,苹果目前5G射频(RF)芯片供应商 依然是高通/博通为主, 只不过是代工厂根据苹果要求由原来三星更换为台积电,原因也很简单,台积电的射频(RF)芯片(N6 RF)工艺相较于三星优势明显(芯片面积减少33%,逻辑密度提升217%,同时能效大涨66%)。

一直以来,高通的骁龙系列芯片和射频大部分都由三星代工,两者之间合作由来已久,此次是大客户苹果要求旗下供应商(高通)更换代工厂。看起来似乎小事一件,为啥依旧会引起业界关注?

根源还是在于苹果自身,近年来先后在SOC芯片(A/M/H系列)、 显示屏驱动IC、GPU、指纹辨识IC及 电源管理IC等用上自家产品。巨头“翻身”,骤然间便引发供应链的大变局,很难不引发大家的“焦虑”。

虽然此次有误传,但是“无风不起浪”,根据芯八哥之前 《复盘苹果3万亿市值投资版图》 梳理,至少在2008年前后苹果便积极布局芯片自研,从目前最新的信息来看,未来两三年内包括射频芯片(部分)、基带芯片在内的苹果最新自研产品应该逐步面世。

为啥苹果会执着于芯片自研呢?简单来讲主要有以下方面原因:

一是为达到良好的软硬件匹配,打造一体化生态体验。 长久以来,优秀的体验一直是苹果核心的竞争力之一。通过自研,可以把控自家产品升级与软件的匹配,不再依赖于第三方芯片设计公司。

二是掌控核心产品话语权,完善自身的供应链生态。 发展至今,芯片部门已经逐渐成为苹果内部最有价值的资产之一。依托自研可以掌控核心芯片的供应链话语权,强化对于产品供应链管理。这方面,苹果手机受限于高通基带,双方“积怨已久”。

总结来讲苹果自研芯片的核心目的在于减少对外部芯片设计公司的依赖。那么,长远来看对于其供应链的厂商又会有那些笑歼冲击呢?

从苹果供应链来看,其核心供枝升销应商主要是国外厂商为主。目前苹果基带芯片主要供应商是高通,英特尔基带业务在“出师不利”后已解散并出售给苹果。射频芯片方面主要依赖于博通和Skyworks(思佳讯)。

苹果手机核心供应商情况

结合ifixit对iPhone 13系列拆解图显示,苹果射频前端模块主要来自博通/Skyworks(思佳讯)及高通(RF),外挂的5G基带芯片来自高通。总的来看,目前苹果自制芯片除了核心的处理器之外,还包括电源管理IC、显示屏驱动IC、GPU、基频芯片、指纹辨识IC及3D体感IC等。可以看出, 近十年来从A系列芯片到M系列,苹果的造芯实力越来越强,且排它感也越来越迫切

苹果13 PRO拆机图

苹果作为 众多的芯片制造商的“大金主”,根据不完全数据统计, 博通和Skyworks对于苹果依赖性较高,苹果收入占比分别达到20%、60% 。苹果基带虽然近年来占高通比重猛游不断下降,但目前依旧有10%左右的占比。

射频芯片方面,根据苹果与厂商签订的协议显示, 博通和苹果在2020年初达成的150亿美元无线组件供应协议,将在2023年到期。可以预估大概2023年苹果最新的自研射频产品将会有小批量的量产。和目前电源管理IC一样,苹果前期可能会部分替代,自研和第三方产品短期内并存。

基带芯片方面, 应该是苹果当前自研需求最迫切的产品 。这几年由于英特尔基带“不给力”,苹果不得不与高通和解。此外,由于高通基带使用外挂式,对于苹果看重的功耗也造成了巨大影响。可以说, 基带是苹果最大的“阿喀琉斯之踵” 。在收购英特尔基带部门后,结合其自身的研发积淀,根据供应链反馈信息,由台积电代工的苹果自研基带在2023年将会实现量产。

综上,随着苹果在射频及基带领域自研加速,一旦成功对于Skyworks的影响将是致命性的,博通和高通虽不致命也会“伤筋动骨”。

当前,就上面我们提及的射频芯片和基带芯片方面,国内企业在这一块市场影响力相对较弱,主要市场被国外巨头厂商垄断,但由苹果带头的自研风潮对于国内厂商的影响却也不能忽视。

首先,市场格局来看,芯片厂商“此消彼长”之下国内市场将成为主战场,一定程度上会压缩国内厂商的市场空间。

就射频前端芯片市场来看,以Skyworks(24%)、Qorvo(21%)、Avago(博通)(20%)、村田(20%)为代表的四大巨头垄断了整体市场,市场集中度较高。

射频前端主要由滤波器、PA、LNA、天线等形成模组,滤波器和PA市场份额占比超86%,是主要是构成部分。同样,苹果核心供应商博通、Skyworks及Qorvo市场占比相对较大。以海思、卓胜微及韦尔股份有一定布局,但在性能上仍存在较大的提升空间。

基带方面,在海思业务受阻、 苹果回归高通基带后, 高通在全球基带市场的占比基本呈现一家独大的格局 ,尤其在5G基带市场份额超过70%。

整体而言,随着以苹果、三星为代表的手机巨头厂商不断加强自研力度,未来国外头部厂商重心将逐渐转向国内终端品牌厂商。从终端市场来看,以智能手机为代表的终端产品国产厂商占据了一定市场份额, 这对于国产供应链厂商而言既是机遇也是巨大挑战

其次,对于国内手机厂商而言,苹果、华为的成功已证明了“得芯者得天下”,小米、OV乃至于联想等电脑、手机领域终端公司都企图走自研芯片这一条路,未来国内芯片产业有望“百花齐放”。当然,芯八哥 《“为芯”三年五百亿,下一个海思or小米?》 曾盘点过造芯之路的难度,笔者认为短期内,国内终端厂商或许会以投资、参股等战略合作方式进行布局,叠加贸易战因素,国内相关供应链厂商或将从中获取较大利好。

最后,对于国内芯片供应商而已, 一味的依赖于巨头, 如果没有培养自己核心技术意识,“寄人篱下”的被动命运最终将“反噬”自身 。前车之鉴中:英国GPU设计商Imagination“重组卖身”、国内欧菲光“元气大伤”、台湾触控屏幕生产商胜华 科技 破产清算。后事之师有:高通技术傍身“不动如山”、欣旺达多元化发展“重整旗鼓”。

当前,时代的巨浪时刻在“翻涌”,PC和移动芯片“巨头+巨头”模式已然走远,IoT和智能 汽车 时代的碎片化和强应用驱动下, 科技 巨头“造芯” 正“吞噬”上下游的一切。对于供应链厂商而言,没有自身核心竞争力, 居安思危,覆灭也许就在顷刻之间。

#曝台积电得苹果所有5G射频芯片订单# #苹果# #芯片#