① “国金研究”电子2021年度策略(上)
国金证券研究所
创新技术与企业服务研究中心
樊志远团队
投资建议
预测2021年疫情影响因素减弱,叠加5G手机渗透率加快,全球智能手机有望增长10.4%至13.58亿台,其中5G手机5.44亿台,渗透率40%,5G射频前端迎来快速增长期。被动元件有望在手机、智能 汽车 及IOT拉动下迎来量价齐升。摄像头光学创新将持续升级,三摄、四摄快速渗透,后置激光雷达摄像头有望迎来新应用,多品牌机型搭载潜望式摄像头。除智能手机外,以TWS耳机、智能手表、AR/VR为代表的智能可穿戴设备持续技术创新,有望继续保持高速增长。电动 汽车 快速发展,功率IGBT迎来发展良机。5G+AI,迎来智能安防大时代。
2021年投资方向
5G智能手机产业链: 2021年全球有望迎来5G换机大年,5G射频前端迎来快速增长期,预测2025年全球射频前端市场达到254亿美元,2020-2025复合年均增长率11%,其中5G开关、Tuner、LNA及射频模组大幅增长。被动元件经历了2018年涨价周期、2019年去库存周期,2020年疫情影响,2021年有望迎来量价齐升。苹果iPhone有望迎来全球超10亿存量用户的换机热潮,预测2021年销量将达2.35亿台。
智能可穿戴产业链: 远程办公、在线教育、家庭 娱乐 等激发了智能可穿戴设备和智能耳戴式的需求,预计2020年出货量将以32%的速度大幅增长,2021年智能手机配件即可穿戴设备和TWS耳机的出货量将分别超过2亿台和3.5亿台。苹果Airpods Pro带动了TWS耳机向降噪方向发展,产业链价值量积极提升。苹果推出AirPods MAX,有望激发头戴式耳机的需求, 预计2020-2022年苹果AirPods出货量将达到0.9、1.15、1.4亿套。预测2020年AR/VR市场全球出货量将超过400万台,规模将达到120.7亿美元,同比增长43.8%,全球市场规模在2020-2024的5年预测期内将达到54.0%的复合年增长率。
功率半导体-需求增长+涨价+国产替代: 受疫情影响,2020年上半年功率半导体需求不佳,但是三季度之后,受到5G电源、智能手机、快充、工业、电动 汽车 及IOT设备等拉动,需求上升明显,部分产品出现了缺货涨价的情况。我们研判功率半导体 需求向好,预计2021年全球功率半导体市场规模为396亿美元,同比增长8.1%。新能源 汽车 快速发展,IGBT行业迎来发展良机,2020年,48V轻混 汽车 需要增加90美元功率半导体,电动 汽车 或者混动需要增加330美元功率半导体,预计 汽车 电动化用IGBT模块2018年至2023年复合年增长率为23.5%。
摄像头光学持续创新: 苹果推出了后置激光雷达摄像头,未来有望搭载潜望式摄像头,三星、小米、OV也在积极推进潜望式,像素不断提升,7P镜头放量。三摄、四摄渗透率加快,虽有疫情影响,2020年1-10月中国新增激活智能手机中三摄、四摄的渗透率分别为38.9%(2019年为25.5%)、36.9%(2019年为9.8%),提升明显。预计2020~2022年智能手机摄像头数量为48、56、63亿颗,需求量同比增速分别为8%、16%、13%。
推荐组合:立讯精密、歌尔股份、欣旺达、卓胜微、斯达半导
风险提示
手机及可穿戴等电子产品销量低于预期,5G手机渗透不达预期,新冠疫情影响。
一、智能手机:2021年销量增长,5G快速渗透
1.1 预测2021年智能手机增长10.4%,iPhone有望增长17.5%
预测2020年全球智能手机下滑10.2%。2020年,新冠疫情在全球蔓延,抑制了智能手机需求,上半年出货量大幅下滑,一季度出货量2.95亿台,同比下滑13.49%,二季度出货量2.84亿台,同比下滑14.2%,三季度出货量3.66亿台,下滑5.7%,下滑幅度有所收窄,预测2020年全球智能手机12.3亿台,同比下滑10.2%。
预测2021年智能手机增长10.4%。2021年全球疫情趋缓后,全球智能手机有望在5G换机拉动下需求恢复,预测2021年出货量13.58亿台,同比增长10.4%。
预测2021年iPhone销量增长17.5%。 2020年,苹果通过降价促销,推出iPhone SE2机型及iPhone12全系列支持5G等措施,虽然有疫情的影响,但是iPhone仍取得了不错的销量,预测今年iPhone销量2.0亿台,我们认为,苹果iPhone全球有超过10亿的存量用户,2021年有望迎来换机大年,销量有望达到2.35亿台,同比增长17.5%。
1.2 全球5G手机2021年有望达到5.44亿台,渗透率40%
预测2020、2021年全球5G智能手机将分别达到2.78、5.44亿台。 2020年,全球新冠疫情的蔓延,影响了智能手机的销量,也影响了5G的进程,但是5G智能手机仍然呈现了快速渗透的势头,Canalys预测2020年全球5G智能手机将达到2.78亿台,其中大中华区占比62%,达到1.72亿台,中国5G手机发展速度明显高于全球,北美和欧洲中东非洲两大地区紧随其后。预测2021年全球5G智能手机将达到5.44亿台,渗透率达到40%。
2020年大中华区5G手机出货量全球占比62%。 5G智能手机快速渗透,Canalys预测2020年全球5G智能手机将达到2.78亿台,其中大中华区占比62%,达到1.72亿台,中国5G手机发展速度明显高于全球,北美和欧洲中东非洲两大地区紧随其后,分别占比15%及11%。
400美元以下机型占大中华区出货量的近60%。 中国市场庞大的需求和快速制造的反应能力,迅速将5G智能手机的成本下降,其他国家或地区可以享受到更实惠的5G智能手机。预计到2021年,中国市场的5G智能手机出货量中近60%的价格不到400美元,未来12个月中国的5G手机出货占整体市场出货的渗透率将达到83%。
中国5G手机渗透率快速提升。 根据国金证券研究创新中心监测数据,2020年,中国智能手机激活量5G渗透率逐步提升,2020年11月,单月激活量5G手机渗透率高达67%。
1.3 ASP提升带动毛利率回升,公司业绩快速增长
1.3.1 5G射频前端芯片量价大幅提升。
射频前端芯片是智能手机的核心,承载最主要的通信功能,随着通信技术的不断发展,手机射频功能不断增加,射频前端芯片呈现了量价齐升的良好发展态势。根据 Yole统计,2G 制式智能手机中射频前端芯片的价值为 0.9 美元,而其在 3G 制式智能手机中的价值大幅上升到 3.4 美元;4G 技术普及后,射频前端芯片在支持区域性 4G 制式的智能手机中的价值已经达到 6.15 美元,在高端 4G 智能手机中价值达到 15.30 美元,是 2G 制式智能手机中射频前端芯片价值的 17 倍;目前 5G手机射频前端芯片的价值量是 4G 制式下的2~3倍。同时,随着 5G 支持频段数量的增加,所需的射频前端芯片数量将大幅增长。因此,为了满足 5G 应用下的需求,单部智能手机的射频前端芯片的数量与价值将继续上升。
1.3.2 5G时代射频前端迎来快速增长。
5G渗透率提升增加射频封测和SiP需求。5G手机相比4G手机支持频段数量增加,同时考虑到5G手机将继续兼容4G、3G 、2G标准,因此5G手机的射频前端相比4G复杂程度将大大提高。yole预测,全球射频前端市场将由2019年的152亿美元增长到2025年的253.98亿美元,2020-2025复合年均增长率11%。
分立射频开关2020-2025复合年均增长率11%。 5G手机需要新增大量的射频开关,从4G手机的10个增加到5G的20-30个,2019年射频开关市场规模约4.46亿美元,预计至2025年,市场规模将增长至8.28亿美元。
天线Tuners 2020-2025年复合年均增长率10%。天线设计挑战增多,天线调谐用量增加。 ①4G时代由于全面屏的推广,摄像头增多等,使得天线净空变小,天线设计难度增长效率变低,需要越来越多的调谐开关提升天线性能。②5G给天线设计带来更多的挑战,从4G开始到现在的5G,MIMO逐渐增加,频段也越来越多,这就带来天线的增加,在Sub-6Ghz的时候,需要8到10个天线,但到了毫米波时代,手机天线会增加到10到12根甚至更多,在天线数量增加的同时,留给天线的空间却越来越小,需要类似孔径调谐(Aperture Tuning)、阻抗调谐(Impedance Matching)和更小的天线解决方案和低损耗的调谐来解决。2019年天线Tuners 市场规模约5.69亿美元,预计至2025年,市场规模将增长至10.11亿美元。
分立低噪声放大器2020-2025复合年均增长率11%。 LNA主要是用于接收信号时进行小信号放大,以便降低到收发器的线路上的SNR。3G/4G时,有部分LNA是集成在射频收发里面的,没有单独的LNA,因此LNA市场空间较小,由于5G Sub-6 GHz更严高的要求,主频段通信被要求具有LNA,新增接收通路需要更多的LNA。2019年低噪声放大器市场规模约3.98亿美元,预计至2025年,市场规模将增长至7.84亿美元。
5G模组化趋势明显,FEM模组及PA模组增长快速。 随着射频前端模块技术的成熟以及市场的需求,场中主要的射频前端都开始向模块化方向发展,双工器、天线开关等几大模块开始被集成到射频前端中。伴随着5G时代的来临,即便是模组化程度最高的PAMiD也正在持续进行着整合。Qorvo认为,下一步有望将低噪声放大器(LNA)集成到PAMiD中,是推动射频前端模块继续发展的重要动力之一。主要原因在于随着5G 商业化落地,智能手机中天线和射频通路的数量将显着增多,对射频低噪声放大器的数量需求会迅速增加,而手机PCB却没有更多的空间。在这种情况下,从PAMiD到L-PAMiD,射频前端模块可以实现更小尺寸(节省面积达35-40mm2),支持更多功能。 FEM模组202-0-2023年复合年均增长率13%。 2019年FEM市场规模约25.77亿美元,预计至2025年,市场规模将增长至45.72亿美元。 PA模组2020-2023年复合年均增长率11.0%。 2019年PA模组市场规模约53.76亿美元,预计至2025年,市场规模将增长至89.31亿美元。
毫米波AiP模组迎来发展机遇,2020-2025复合年均增长率53%。 2019年三星毫米波机型采用AiP模组,2020年苹果毫米波版本也采用了AiP模组,未来随着毫米波机型的增多,AiP将从2019年的0.6亿美元增长到2025年的14.3亿美元。
1.3.3 射频前端美日企业占据主导地位,卓胜微大有可为
在射频前端领域,美国及日本企业占据了较高的市场份额,2019年,Broadcom位居第一,全球市占率20%,其次是日本Murata,市占率19%,前五家公司合计占比87%。
中国在射频前端领域起步较晚,发展较为薄弱,但是以卓胜微、唯捷创芯、无锡好达、慧智微、国民飞骧为代表的中国射频前端企业正在快速发展。
卓胜微在开关、LNA、Tuner产品在三星、小米、OPPO、vivo份额迅速提升,同时5G产品也取得了突破,5G产品占比逐渐提升,销售收入及利润大幅增长,2020年1-9月,公司实现营收19.7亿元,同比增长100%,实现利润7.18亿元,同比增长122%。目前公司重点向模组市场进军,重点推进DiFEM(分集接收模组,集成射频开关和滤波器)、LFEM(分集接收模组,集成射频开关、低噪声放大器和滤波器)、LNA Bank(分集接收模组,集成多个射频低噪声放大器)、WiFiFEM(WiFi 前端模组,集成 WiFi PA、射频开关、低噪声放大器)等模组产品,目前进展情况较好,已在三星、小米、OPPO等客户推广应用,未来公司还将推出更多的模组化产品,具有较好的国产替代机会。
智能手机产业链投资建议: 我们认为,2021年全球智能手机将迎来5G换机大年,看好核心受益公司: 立讯精密、领益智造、欣旺达、鹏鼎控股、蓝思 科技 、卓胜微。
二、智能手机拍摄技术持续升级,2021年产业链有望快速增长
2.1 数量:摄像头升级加速,三摄/四摄快速渗透
摄像头是智能手机创新最大的细分模块。 近几年,终端厂商的创新方向主要是5G、摄像头、屏幕三大领域。摄像头是其中最重要的一个方向,数量上从单摄、双摄、三摄、四摄再到五摄,功能上从单一的像素提升发展成大光圈、超广角、潜望式长焦、电影摄像头、TOF等特色镜头的引入,摄像头是智能手机行业最具投资前景的环节。
2020年三摄、四摄渗透率快速提升。 根据国金证券研究创新中心的数据,2019年国内新增激活的智能手机中,单摄、双摄、三摄、四摄的渗透率分别为8.2%、56.5%、25.5%、9.8%;2020年1-10月国内新增激活的智能手机中,单摄、双摄、三摄、四摄的渗透率分别为4.4%、19.8%、38.9%、36.9%。我们预计,全球多摄渗透率较国内会低,但是整体趋势非常确定,三摄正在快速往中低端机型渗透,而四摄则正在成为高端机型的标配。
2019年中国启动5G商用,此前市场普遍预期2020年5G换机潮将推动全球智能手机恢复增长,但由于疫情影响、预计2020年换机需求将推迟至2021年。得益于“迟到的”5G换机需求,预计2021年全球智能手机需求将恢复增长。我们预计2020年智能手机出货量下滑10.2%,2021年、2022年智能手机同增10.4%、3.8%。叠加三摄、四摄渗透率快速提升,预计2020~2022年智能手机摄像头数量为48、56、63亿颗,需求量同比增速分别为8%、16%、13%。
摄像头数量多少是极限? 从目前时间点来看,三摄+TOF是未来智能手机后置摄像头的主流方案;而四摄+TOF是旗舰机型后置摄像头的标配方案,双摄+TOF是前置摄像头的标配方案。因此,未来单部手机的摄像头平均数量会达到6-7颗。
2.2 规格升级一:2020年48/64M成为标配,推动7P镜头放量
像素升级仍是终端厂的主流卖点。像素对于普通消费者仍然是摄像头最为直观的性能。2019年11月,小米发布新机CC9系列,采用后置五摄(108M超高清镜头+20M像素超广角摄像头+12M像素人像镜头+5M像素超长焦镜头+微距镜头)以及前置单摄,手机摄像头像素首次达到1亿像素,同时配备8P镜头(尊享版)。
2020年,随着64M像素在旗舰主摄的渗透,7P镜头的出货量将会快速放量。苹果今年发布的新机型iPhone 12 Pro Max首次使用了7P镜头,全景模式下像素最高能够达到63M。
2020年40M以上像素占比持续快速增长。 根据国金证券数据创新中心的数据,2020年1月国内智能手机主摄40M以上的机型激活量占比为60.4%,2020年10月这一数据已经达到74.8%,增长快速。
2.3 规格升级二:潜望式摄像头加速渗透
潜望式摄像头是智能手机高倍“光学变焦”必经之路。 现在智能手机“光学变焦”主要还是依靠2-3个定焦镜头的配合,其中最为重要的长焦镜头。变焦倍数越高,长焦摄像头的高度越高,智能手机的厚度不足以支持高倍长焦摄像头的高度,而潜望式摄像头是解决这个问题最为直接有效的方法。
组成上,潜望式摄像头模组与常规摄像头模组差异不多,均含有感光芯片、镜头组、红外滤光片、音圈马达, 潜望式摄像头较常规摄像头多一到两个光线转向元件。 光线转向单元包括棱镜外壳、棱镜、棱镜座、支承轴套、支承轴、支承卡座。
结构上,潜望式摄像头则与常规摄像头模组由比较明显的差异,潜望式镜头镜片与智能手机平面垂直放置,而常规摄像头镜头镜片则是与平面平行放置,因此潜望式摄像头为镜头组提供更长的空间选择。潜望式摄像头在智能手机中结构的差异实现了更高的摄像头模组高度。
潜望式还有两大升级方向。 1)十倍以上光学变焦,此处需要用到玻塑混合镜头;2)大尺寸CMOS推动两次转向潜望式,此处需要用到两颗玻璃转向棱镜。
多家手机厂今年旗舰机均有配备潜望式摄像头。考虑目前潜望式摄像头模组价格较高,仅高端机配备潜望式摄像头,预计伴随未来产品良率提升、成本降低,有望往中端机渗透。
2.4 规格升级三:TOF摄像头爆发可期
3D摄像头作为三维信息的采集入口,必将成为智能手机的标配。相对于3D结构光,TOF具有结构简单,理论成本低,远距离精度高等优势,且3D结构光的专利苹果公司布局非常完善安卓手机厂商方案落后iPhone大约1-2年,因此安卓手机更加倾向于采用TOF方案,目前华为,OV都已经推出TOF机型。市场通常认为前置摄像头宜采用短距离精度更高的结构光方案,而后置适合远距离精度更高的TOF方案,但是综合考虑成本、专利、以及TOF传感器精度的提升,TOF有希望在安卓市场往前置摄像头渗透。
AR内容将成为TOF的有力推手,TOF市场爆发可期。 随着5G的到来,AR/VR被认为是最有可能推出爆款内容的一大方向。作为三维信息的入口,在眼镜硬件推出之前,我们认为手机+TOF将是实现AR内容的硬件端,相对成本低且消费者更加容易接受。2020年苹果iPad Pro、iPhone 12 Pro Max均已搭载TOF摄像头。
CIS芯片: 韦尔股份、格科微;
光学镜头: 舜宇光学 科技 、 瑞声 科技 、联创电子; 棱镜、滤光片: 蓝特光学、水晶光电;
摄像头模组: 舜宇光学 科技 、 丘钛 科技 。
三、5G时代,可穿戴设备迎来发展新机遇
5G时代,电子设备承载的数据量成倍增加,智能手机一个数据入口已经无法满足铺天盖地的信息量,因此近两年来可穿戴设备逐渐成为智能手机分流信息的重要设备,主要设备包括无线耳机、智能手表、手环和智能眼镜等。
疫情激发可穿戴设备需求增长。 Canalys预测,2021年可穿戴设备和TWS耳机的出货量将分别超过2亿台和3.5亿台。新冠疫情在全球范围内加剧,远程办公、电话会议、在线教育、家庭 娱乐 等激发了智能可穿戴设备和智能耳戴式设备的需求,Canalys预计2020年出货量将以32%的速度大幅增长。
3.1 TWS继续保持高增长,产业链积极受益
预测2020年全球TWS耳机2.3亿副。 根据 Counterpoint Research 统计数据,2016 年全球 TWS 耳机出货量仅为 918万副,2018 年则达到 4,600 万副,年均复合增长率为 124%。预计 2020 年 TWS耳机出货量将跃升至 2.3 亿副,全球 TWS 耳机市场规模将达到 270 亿美金,预测2021年全球TWS耳机出货量将达到3.5亿副,同比增长52%。
2019年Airpods占据TWS半壁江山。 2019年TWS蓝牙耳机出货量排名中,苹果占据了绝对的主力,小米、三星、华为等手机厂商悉数上榜,从索尼、亚马逊等智能硬件老牌强者手中夺走了不小的市场份额。
主动降噪成热门,TWS向智能化、多功能化演进
主动降噪TWS耳机大幅增长。 2019年苹果推出带Airpods Pro,带动了TWS耳机主动降噪的热潮,IDC报告指出,上半年中国无线耳机市场出货量为4,256万台,同比增长 24%。其中真无线耳机占比64%,同比增长49%。其中,带主动降噪功能的真无线耳机占比为30%,同比增长122%。报告认为,随着各大厂在旗舰产品配备主动降噪功能,未来主动降噪占比功能将快速提升。随着技术发展和成本下降,越来越多中小厂商将开始用主动降噪方案。
TWS将兼具智能化与 健康 监测功能。 随着TWS技术和智能化的发展,TWS智能耳机将在无线连接、语音交互、智能降噪、 健康 监测和听力增强/保护等领域发挥重要的作用,不只是智能手机的标配,甚至未来成为人体器官中不可缺失的部分。而降噪、听力保护、智能翻译、 健康 监测、骨传导+骨声纹、防丢等将是TWS耳机关键技术趋势。
苹果推出Airpods MAX,有望激发头戴式耳机需求。 AirPods Max将AirPods的体验带到了具有高保真音效的包耳式设计中。该耳机结合了定制声学设计、H1芯片和软件以支持计算音频,通过自适应均衡、主动降噪、通透模式和空间音频为用户带来不一样的聆听体验。为了抵消外部声波,AirPods Max共用了6个外向式麦克风检测环境噪声,用两个内向麦克风感知用户正在聆听的内容,从而实现主动降噪。另外,在打电话时,波束成形的麦克风可以将用户的语音从背景噪声中分离,以确保通话质量。我们认为Airpods MAX在智能化、降噪及音质方面具有较好的优势,有望引领头戴式耳机的发展,带动整个行业的需求。
我们预计2020年Airpods二代及Pro销量有望达到9000万副,未来将继续保持较好的增长态势,预测2021年销量1.15亿副,同比增长28%,2022年销量1.4亿副。预测AirPods MAX 2021年销量有望达到150万台,2024年有望达到500万台。
TWS耳机ODM/EMS厂主要有立讯精密、歌尔股份等,TWS耳机芯片龙头 恒玄 科技 已成功登陆科创板,还有像 紫建电子 等TWS产业链优秀公司正在谋求上市。
3. 2 智能眼镜渐行渐近,2020年全球市场规模达到120亿美元
智能眼镜分为VR、AR和MR眼镜。 首先,简单解释一下虚拟现实(Virtual Reality,VR)、增强现实(Augmented Reality,AR)和混合现实(Mixed Reality,MR)的区别。通俗来讲,VR是把真实物体放入虚拟环境,AR是把虚拟物体放入真实环境,MR一般理解和AR类似,但是有很大的区别就是MR需要把真实环境通过摄像头进行三维重建,再加入虚拟物体,进而可实现多人交互。从技术范畴来讲,VR是一种极端的AR情景,是AR的真子集;从应用层面来讲,VR更加偏向 娱乐 性,如VR 游戏 等,但是AR和MR可同时具备 娱乐 性和应用性, 因此AR和MR被认为在未来具有更好的发展前景。
预测2020年AR/VR同比增长43.8%。 全球新冠疫情的全球蔓延给增强与虚拟现实(AR/VR)带了机遇和挑战,IDC预测2020年AR/VR市场全球出货量将超过400万台,支出规模将达到120.7亿美元,同比增长43.8%,全球总支出规模在2020-2024的5年预测期内将达到54.0%的复合年增长率(CAGR),呈现出较好的发展趋势。
中国AR/VR需求全球占比55%。 预测2020年中国市场在AR/VR相关产品和服务的支出总量占据了全球超过一半的市场份额(约为55%),较疫情前显着增加。而中国的总体市场规模将于2020年底达到66亿美元左右,较2019年同比增长72.1%,在规模及涨幅方面均超越美国和日本,位列全球首位。预测中国市场的5年(2020-2024)CAGR也将保持在大约47.1%的水平。
消费者是第一大需求市场。 预测2020年消费者需求占比52%、分销与服务占比17.6%、金融占比15.1%、其他还有基础设施、制造与资源及公共部门等。预测消费者支出规模在2020-2024的五年预测期内均大于其他行业。从增速角度来看,金融行业展现出了较大的市场发展潜力,五年(2020-2024)CAGR有望达到74.5%。
VR/AR 游戏 渗透率逐步提升,但占比仍较低。 根据Steam 游戏 平台的数据,过去一年VR 游戏 玩家占比Steam总玩家的比例从2019年11月的1%提升至2020年10月的1.76%,呈现稳步上升趋势,而VR应用数量也从相应的3349款提升至4322款,无论是硬件还是应用端,VR 游戏 呈现稳步向上趋势,但是整体来看,渗透率仍然较低。
Oculus2020年10月在Steam 游戏 平台占比达到47.8%。 2020年10月份,在Stem平台,Oculus品牌市场占比达到47.80%,上升趋势明显,其次是HTC,占比25%,Valve占比17%,呈现了较好的提升态势。
Oculus发布Quest 2,获得市场青睐。 Oculus Quest是2020年第三季度最畅销的VR头戴设备,随着Quest 2的发布,销量还将激增。该设备在第三季度售出了16.1万台,但如果零售数字统计完,销量会更高。需求的增加,价格的降低和节日礼物,都将使Quest 2的销售量大大超过发布时的原始水平。此外,随着Facebook现在不再使用Rift S,预计许多潜在的Oculus PC头戴设备买家将转向Quest2。该设备2021年销量预计将达到300万台。
苹果积极布局AR/VR,未来有望推出爆款产品。 苹果在积极布局AR/VR,并陆续公布了多项AR/VR专利,iPhone12 Pro及iPhone12 Pro MAX搭载了LiDAR激光雷达技术。LiDAR将允许iPhone12 Pro更快启动AR应用,并迅速构建一个房间的映射以添加更多细节。苹果在iOS 14中的很多AR更新都涉及利用liDAR将虚拟对象隐藏在真实对象后面(遮挡),以及将虚拟对象放置在更复杂的房间映射中,如桌子或椅子之上。
智能手表也在快速发展,2019年全球销量约6263万台,拓璞产业预测至2022年将达到1.13亿台。Apple Watch在2020年第三季度的总出货量达到1180万台,比2019年第三季度的680万台增长了近75%。
5G时代,智能可穿戴设备迎来新一轮发展良机, 看好TWS、VR/AR、智能手表产业链龙头公司: 歌尔股份、立讯精密、恒玄 科技 、舜宇光学、紫建电子。
② 催生万亿市场的5G,将引爆哪些巨变
“速度,其实是5G最无聊的应用。”北京邮电大学的何同学,在他制作了一个火遍全网的5G主题视频后,以这句话做结。
5G对我们而言,是个熟悉而又陌生的词汇,而此时,作为“毛衣战”的焦点技术,5G以更猛烈的方式闯入人们的视野之中。5G到底是什么?将会带来哪些影响与改变?
5G即第五代移动通信技术。移动通信技术滥觞于20世纪70年代,随着第一代到第五代的峰值速率的不断提升,其应用场景也发生了巨变。
第一代移动通信技术主要用于模拟语音传输,彼时的我们在用大哥大交流;
第二代用于数字语音传输并且能够承担少量低速的数据要求,我们能够打电话、发短信、简单浏览网页;
第三代则要求承担更为高速的数字语音传输,我们进一步能够浏览大多数网页,开始玩社交软件、玩手游,但看视频仍有些勉为其难;
第四代要求能够具备更为多样的业务传输能力,我们可以顺畅地视频通话,还能玩转短视频。
那么,接下来的5G又将开辟出一个怎样的天地呢?
根据东方证券研究所对移动通信技术演进历程的梳理,5G或将实现万物互联的目标。
IMT-2020(5G)推进组《5G概念白皮书》中预计,5G主要在连续广域覆盖、热点高容量、低功耗大连接和低时延高可靠四个技术场景中得到应用,其中前两项所针对的是移动互联网的业务诉求,而后两项则是满足未来物联网的市场需求。
根据同花顺iFinD终端产业链显示,整个5G产业全景呈现出“ 网络规划设计->无限射频配套->基站主设备与传输->网络工程与优化->5G终端->5G应用 ”的链路,大致可分为接入网、承载网和核心网。接入网中基站是核心,主要任务是完成通信数据的租碰收发;承载网位于接入网和交换机之间的,用于传送各种语音和数据业务的网络,通常以光纤作为传输媒介;核心网主要作用是对承载网传送过来的数据进行管理、将传送过来的数据连接到不同的网络上。
太平洋证券5G系列报告中,将5G商用划分为三个阶段,结合上图的5G产业链,我们大致可以梳理出如下受益时序:
第一阶段,5G商用初期,运营商将开展大规模网络建设。在这一阶段,设备制造商将是5G的主要受益者;
第二阶段,5G商用中期,换机潮预计将来临,来自用户的终此空端设备支出和电信服务支出有望获得快速增长。这一阶段,终端设备厂家及其产业链受益明显;
第三阶段,进入5G商用中后期,随着5G终端和网络的持续渗透,与5G相关的信息服务业将迎来爆发式增长。这一阶段,互联网企业将笑傲整个5G产业链。
从产业链的各个细分环弊扒谈节来看:
一、 基站端:天线、PCB等环节价值凸显
根据东方证券的测算,5G基站投资总额约在9000亿元。大规模阵列天线(Massive MIMO)是提升频谱效率的关键技术,基站架构的升级、基站的建设等直接提升了天线、PCB等产业链环节的价值。此外超密组网技术的引入,使小基站数量在5G时代有望显着增长,国内小基站供应商预计将在未来几年明显受益。
二、射频前端:5G需求引发产业性变革
Yole预计,受益5G,射频前端市场规模有望从2016年101.1亿美元增长到2022年的227.8亿美元,6年复合增速14.5%。其中,滤波器6年复合增速达到了21%。太平洋证券5G相关研究报告指出,5G对手机射频模块的变革在于:(1)5G增加的新频段直接提升了射频器件的需求;(2)毫米波的引入使适用于高频的BAW滤波器需求明显增加;(3)MIMO技术升级带来了天线及相关器件需求;(4)5G的高频通信使射频制作工艺从目前的GaAs升级到了GaN。
三、 核心网及传输网:通信设备、光模块和光纤需求最盛
在5G规模商用前期,运营商将开展大规模网络建设,其中,设备投资占比最大。中国信通院预计,到2020年仅国内市场,电信运营商在5G网络设备商的投资将超过2200亿元,全球市场更是数倍于此的投资,5G建设将给系统设备商带来新的发展机会。此外,5G承载网络各层设备之间主要通过光纤实现信号传输,光模块是其中实现光电信号转换的关键,因而光纤与光模块的需求也“应声上涨”。
根据中国信通院的估算,5G在2020、2025和2030年的直接产出分别是4840亿元、3.3万亿和6.3万亿元,十年的年均复合增速为29%;期间的间接产出则分别为1.2、6.3、10.6万亿元,年均复合增长率为24%。带来万亿市场的同时,5G应用将引爆的生活场景化变革,同样也是值得期待的。
沉浸式体验更“沉浸”
在现实中,我们可以通过VR(虚拟现实)眼镜、头盔或其他传感器,做到人在家中,却能现场体验千里之外的 旅游 景点、演唱会、博物馆。但很多时候难免会产生眩晕感,这在一定程度上是因为时延,即系统监测到人体动作并反映到VR视野中时,会存在延迟。
而相比当前4G大约70ms的时延,5G数据传输的延迟将不超过1毫秒,可以有效解决数据时延带来的眩晕感。与此同时,5G高带宽、高速率特性,可以有效解决VR内容的传输问题,推动其大规模应用。
也许在不久之后的5G时代,我们置身于战场之中,目之所视、耳之所听、手之所触,均是“真实场景”,每开一次枪、投一次蓝、射一次门,不再是点击鼠标或触屏,而是要通过自己的手和脚来“出招”。
自动驾驶或将成为现实
在4G时代,过长的延时,会让无人驾驶的 汽车 和飞机在遇到突发情况时,可能来不及反应而酿成事故,这一担心,在5G时代将无限减少。
V2X是自动驾驶的关键。V2X无线通信是 汽车 制造商和无线生态系统针对 汽车 和道路联网提出的新型通信技术。V2X利用网络和其他物体为 汽车 提供距离更长的非视距视图以及云计算能力,从而对光探测和测距等自动驾驶功能形成补充。
而5G是V2X联网的基础,依靠5G的低时延、高可靠、高速率、安全性等优势,可以有效提升对车联网信息及时准确采集、处理、传播、利用、安全能力,有助于车与车、车与人、车与路的信息互通与高效协同。5G的商用可以加速自动驾驶的到来。
万物互联
现在的智能家居已经逐渐开始流行。我们可以通过手机、SIRI、智能音箱等控制一些家用电器,而在5G时代,这或许是最原始的状态。
未来,可能每个物件上都会有一个或若干个芯片,用于收集信息、传输信息或接受指令。 我们可以追踪每一个苹果、猕猴桃的生长情况,可以精确知道自己的快递到了哪里。
到超市买东西,不再需要收银员,我们拿了东西直接出门就行了,芯片会自动把购买信息传给中央处理系统,在你的账户里扣掉相应的金额。
看病不必去挂号排队,远程医疗应用快速普及,患者(特别是边远地区患者)在家即可进行诊断、治疗和咨询。
也许当整个世界步入5G时代之后,更多的行业乃至 社会 的变革将席卷而来,无论是现在所能预料的还是无法预料的,都在昭示着,5G,比4G多出的1G,将是革命性的。
③ 咋回事有5G芯片,华为却造不出5G手机了
前年苹果iPhone11发布时,没有5G功能,引来了国产机的群嘲。
苹果为何不推出5G手机?大家都说这是因为苹果没有5G芯片。而到iPhone12时,有了5G功能,这是因为iPhone12找高通买到了X55基带芯片,这是一款5G芯片,所以iPhone12有了5G功能。
所以在很多人的印象中, 5G芯片=5G手机 ,只要有了5G芯片,推出5G手机就不是问题了。
但事实上真是如此么?其实并不是的,近日华为P50就告诉大家,有了5G芯片也未必能够推出5G手机。
使用高通骁龙888的P50就不说了,毕竟高通有可能阉割5G功能。但在P50 Pro中,使用的是麒麟9000芯片,这是一颗5G芯片,华为曾将它用在P40、Mate40、MateX2上面,这三款手机都是5G手机。
但偏偏P50 Pro就变成了4G手机了,而余承东也确认了这一点,表示我们虽然有5G芯片,却只能当4G芯片用,从华为官网的参数来看,不管是P50,还是P50 Pro,全系都是4G全网通,这又是什么原因呢?
其实在2019年的时候,卢伟冰就表示过,5G手机与4G手机相比,不只是一颗芯片的不同,而是整个5G手机多了几十上百颗元件。
而这几十上百颗元件中,最重要的是5G射频前端,这个器件负责5G信号的传输,没有5G射频前端,手机连不上5G网络。
比如我们熟悉的5G频段,什么N78、N28、N79、N1、N3、N41、N40等等,均是需要5G射频前端将信号进行转换才行的。
而在今年4月份,美国针对华为的禁令执行第四轮,任何使用美国技术的与5G相关的半导体产品,在没有获得许可证的情况下,都不允许卖给华为。
而5G射频前端中的大部分原件,华为海思搞定了,但关键元件滤波器没有搞定,又买不到,于是使用了麒麟9000的华为P50 Pro手机也只能使用4G功能,因为4G芯片没有受限。
对此,不知道大家是什么感觉?P50是一款机皇式的安卓手机,但在失去了5G功能之后,不管是实用性,还是对消费者的吸引力肯定是要大打折扣了。
更重要的是,这样的4G手机卖得多了,会延缓整个国内5G的普及进程,还会对华为、三大运营商的5G基站建设,造成一种负影响,但华为却又不推不行,真的是矛盾得很。
④ 5g杀到,射频前端的需要怎样的工艺和技术
不久前,中国华为公司主推的PolarCode(极化码)方案,成为5G控制信道eMBB场景编码方案。消息一出,在网络上就炸开了锅,甚至有媒体用“华为碾压高通,拿下5G时代”来形容这次胜利。那么,媒体报道是否名副其实,除了编码之外,5G还有哪些关键技术呢?▲5G通信到底是什么5G,顾名思义是第五代通信技术,3GPP定义了5G三大场景:增强型移动宽带(eMBB,EnhanceMobileBroadband),按照计划能够在人口密集区为用户提供1Gbps用户体验速率和10Gbps峰值速率,在流量热点区域,可实现每平方公里数十Tbps的流量密度。海量物联网通信(mMTC,),不仅能够将医疗仪器、家用电器和手持通讯终端等全部连接在一起,还能面向智慧城市、环境监测、智能农业、森林防火等以传感和数据采集为目标的应用场景,并提供具备超千亿网络连接的支持能力。低时延、高可靠通信(uRLLC,UltraReliable&LowLatencyCommunication),主要面向智能无人驾驶、工业自动化等需要低时延高可靠连接的业务,能够为用户提供毫秒级的端到端时延和接近100%的业务可靠性保证。从中可以看出,相对于4G通信,5G通信能够提供覆盖更广泛的信号,而且上网的速度更快、流量密度更大,同时还将渗透到物联网中,实现智慧城市、环境监测、智能农业、工业自动化、医疗仪器、无人驾驶、家用电器和手持通讯终端的深度融合,换言之,就是万物互联。————————▲5G通信有哪些关键技术有媒体将中国华为主推的Polar在信道控制eMBB场景中击败美国主推的LDPC和法国主推的Turbo2.0,认为是华为掌握了5G的核心专利,并用“华为碾压高通,拿下5G时代”来形容。但这种描述是比较值得商榷的。本次高通和华为争夺的eMBB场景编码方案,就这件事情本身而言还不能成为核心专利。核心专利是由几个体系来组成的,一般来说,物理层都认为是最核心的关键技术,这其中就包括编码,编码一方面可以传递信号,同时编码技术也可以增加抗干扰能力,Turbo2.0、PolarCode、LDPC就是目前法国、中国、美国主推的编码方案。另外一个就是多址,多址技术指的是解决多个用户同时和基站通信的问题,怎么来分享资源的技术,第一代通信采用的是FDMA技术,第二代通信采用的是TDMA技术,第三代通信采用的是CDMA技术,第四代通信采用的是OFDMA技术,5G时代多址是一个很关键的争夺点,现在流行看法就是NOMA。不过,4G奠基性技术“软频率复用”的发明人杨学志不久前撰文《NOMA只是一个误解》,认为NOMA未必能问鼎5G时代,依旧存在一定变数。还有一项关键技术就是多天线,多天线是一种增加容量的技术,在理论上能把容量提高很多倍。简单的说,就是在现有多天线的基础上通过增加天线数,甚至配置数十根甚至数百根以上天线,支持数十个独立的空间数据流,实现用户系统频谱效率的大幅提升。现在比较火的是MIMO技术,大规模MIMO技术不仅能够在不增加频谱资源的情况下降低发射功率、减小小区内以及小区间干扰,还能实现频谱效率和功率效率在4G的基础上再提升一个量级。此外,射频调制解调技术也属于关键技术。————————▲为何说“华为碾压高通,拿下5G时代”名不副实所谓核心专利,是指能在物理层方面做出基础性的创新并掌握话语权的专利技术,所谓话语权就是,一旦技术商用后,就具备狮子大开口的技术实力。比如高通在3G时代掌握拥有软切换和功率控制两大核心专利以及两千项外围专利,具备了像爱立信、华为、诺基亚、中兴等全球通信厂商征收“高通税”的技术资本。华为如果仅凭一项Polar码是构不成核心专利的,何况Polar码也并非华为原创。美国高通主推的LDPC是由国际信息领域泰斗Gallager约五十年前提出的,经过50多年的发展和改进,技术已经非常成熟,虽然由于提出的时间较早,部分理念已经不能称之为先进,但经过多次改进和扩展,依旧是非常优秀的技术。法国主推的Turbo2.0是Turbo的延伸和发展,Turbo码是4G时代使用的编码之一,在技术上同样非常成熟。而中国主推的Polar码是由土耳其毕尔肯大学ErdalArikan教授(是Gallager的学生)在2008年首次提出,polar码的优势在于纠错能力强,而且是世界上唯一一种已知的能够被严格证明达到信道容量的信道编码方法,这对于高带宽网络的规范管理具有重要的意义,在某些应用场景中已经取得了和Turbo码和LDPC码相同或更优的性能。但劣势也非常明显,就是诞生时间太短,技术不够成熟。本次Polar码战胜LDPC码和Turbo码赢得的是eMBB场景短码控制信道。之前说过,3GPP定义了5G三大场景:增强型移动宽带(eMBB)、海量物联网通信(mMTC)、低时延、高可靠通信(uRLLC)。而华为这次仅仅获得了eMBB场景中短码的控制信道,而高通却斩获了eMBB场景的长码和短码的编码信道,而且mMTC和URLLC场景的编码方案还悬而未决。抛开之前提到的多址技术、多天线技术、射频调制解调技术等关键技术,仅仅凭华为在编码上取得了eMBB场景中短码的控制信道,一些媒体就声称“华为碾压高通,拿下5G时代”,这既不符合客观实际,也颇有捧杀的嫌疑。诚然,本次能够在编码标准的制定上占据一席之地是中国通信产业取得的胜利和实力的体现,但也不可忘乎所以,将取得的局部性胜利定义为“拿下5G时代”。内容来自:科普中国
⑤ 5G突围:国内率先启动,芯片自主可控是关键
回答市场疑虑:在各种不确定性背景下如何继续发展 5G 产业
我们认为 5G 发展应该分国内、国外分别看待。 华为、中兴在 5G技术与商用能力上领先全球,贸易等外部问题很难撼动华为在通信设备上的领先优势。
国内方面 ,工信部宣布近期将发放 5G商用牌照,体现了我国 5G建设进度没有受到明显影响。在牌照之后,运营商即可进行 5G商用,相比此前 2020年商用的目标,甚至会有所提前。网络的提前建设有利于华为,华为目前商用准备较充分,单月出货基站数已达 2万左右。而中兴也有望受益于国内 5G建设。诺基亚、爱立信在国内的 5G 建设中由于准备相对较慢,份额可能较低。
干货研报注: 本篇研报是6月5号发表的,但就在6月6号,我国直接发布了4张5G商用牌照,而不是4G时最初的试运营牌照,这将说明我们直接跳过5G试运营,直接进入大规模商用。这一个超预期的动作,也看出来了我们5G突围的决心。
国外方面 ,部分运营商如欧洲抉择是否采用华为 5G 设备将导致 5G 建设放缓,而日本等国放弃使用华为设备有可能导致华为 5G 份额下滑。 另外, 4G 网络由于海外存量较大,性价比高,替换成本高,因此华为在海外 4G 份额短期将不会明显下滑。
但 5G 网络的第一批建设主要围绕中美日韩,而欧洲等国家的 5G 本身并不紧迫,因此我们认为目前时点,我国 5G 的牌照对华为、中兴存在利好。但应跟踪美对于我国 5G 牌照可能做出的进一步反应。
图表 1: 通信基站结构
但5G 也带来了机遇与挑战,核心是:技术变革带动市场规模提升,半导体自主可控为突围重点
通信基站建设主要风险来自于 客户 与 供应链 两方面。我们认为中国5G 进展快于海外,利好国内产业链。但目前我国在半导体领域(芯片等)仍存在短板, 亟待自主可控。
机遇与挑战1:半导体领域自主可控为突围的主要方向。供应链角度,半导体领域存在短板,自主可控为解决方案。
中国大陆供应商在1)天线环节实力较强,2)在 PA/LNA、滤波器等射频前端拥有一定的市场地位、但仍有较大的进口替代空间。
3)国产替代空间较大的环节主要处于半导体领域,包括 PA、基带芯片、数字芯片、模拟芯片、电源芯片等。5G 相比 4G 的性能提升很大程度上依赖于芯片的设计和选用,我们认为芯片领域的自主可控是我国 5G 基站建设突围的重点。
机遇与挑战2:5G 特性带动 PCB、天线振子、PA、介质滤波器等基站器件需求提升。
5G 高频高速特点带动 PCB/CCL、天线、PA、滤波器的 材料与工艺发生变化 ,多通道/大带宽则主要带动 PCB、天线、PA、开关、滤波器等 用量显着提升。
全球通信设备市场规模随着技术的换代升级呈现波动趋势,而目前全球无线电信网络正在经历从 4G 向 5G 发展的转折点。随着 5G 建设期到来,市场规模出现提升趋势。
以基站及无线通信设备市场为例,Gartner 预测,从 2018 年起,全球无线设备市场规模将呈现提升趋势。根据 Gartner 的数据显示,2018 年通信设备市场中我国厂商华为、中兴市场份额排名领先,其中 华为排名第一,份额达到 27% 。
从技术方面来看,华为、中兴经过了 4G 时代的专业积累,在 5G 实现了技术反超。专利层面, 华为、中兴在 5G 专利比例方面排名全球第一和第五 。在商业化方面,中国企业也领先全球。19 年 5 月,华为宣布已经出货 5G 基站超过 10 万,中兴通讯 4 月也曾表示 5G 基站累计出货量超过 1 万站。
根据 GSA 统计,截至 4Q18,全球 4G 用户数达到 39.9 亿。全球 4G 在各洲的渗透率不同。而真正早期布局 5G 的国家主要将为韩国、美国、中国、日本、中东和欧洲部分国家等4G 渗透率较高国家。GSA 预测到 2023 年,全球预计有 13 亿 5G 用户。
截至 2019 年 4 月初,全球 4G 运营商 720 家,准备提供 4G 服务的运营商 116 家。5G 方面,88 个国家的 224 家运营商开启了 5G 网络的测试、试验、试商用或商用。其中试商用或商用的运营商达到 39 家,商用的运营商为 15 家。
华为 预计 2025 年全球将有 650 万个 5G 基站 、28 亿用户,覆盖全球 58%的人口。我们基于对产业链的调研和判断,认为 2019 年是 5G 基站出货的元年,而中国将成为未来三年5G 建设的主力。
► 中国: 三大运营商在全国各地的 5G网络建设热情高涨。北京截至 5月下旬建设了4700个 5G基站建设,年底将实现五环内 5G覆盖;上海电信 2019年将建设超过 3000 个 5G基站,到 2021年底建设 1万个 5G基站;广东截至 5月已建 5G基站超 14,200 个,其中广州 5G基站超过 7100个。广东移动在全省 21个地市已开通 5G网络;湖北移动 2019 年将在全省投资 10 亿元人民币,建设 2000 个 5G 基站;山东联通年内宣布在全省 16 地市正式开通 5G 试验网。
► 韩国: 三大运营商 KT、SK、LGU+ 2019年 4月 3日起开启了全国 5G运营,单月用户数突破 26 万。当时 LG U+共架设约 1.18 万个 5G 基站,主要供应商包括 华为 。而KT 和 SK 供应商包括 爱立信和三星 。
► 美国: 5G采用 28GHz、24GHz、37GHz、39GHz和 47GHz进行 5G部署。5月末美国完成了第二次频谱拍卖。目前美国的 5G主要用于家庭无线宽带接入。而近期美国FCC表示将批准国内第三大、第四大无线运营商 Sprint和 T-Mobile的合并。合并后的运营商在中频段将活动 130MHz带宽,可考虑用于 5G部署。美国目前 5G设备的提供商包括 爱立信、诺基亚和三星 。
► 日本: 5G 也在建设中,《朝日新闻》报道称,预计 2020年春天将提供服务。根据朝日新闻,日本三大运营商 NTTDocomoInc.,KDDICorp., SoftBankGroupCorp.以及新兴运营商乐天移动 RakutenMobileInc.将主要选择 爱立信、诺基亚、三星和本土公司 的 5G设备。
► 欧洲、中东: 部分运营商在进行 5G的试验和试商用过程。如欧洲运营商 Telia将在1-2个欧洲国家开展 5G服务。中东运营商 Etisalat1H19将会在 300个城市推出 5G 服务。
华为的角度, 通信设备产业链属于软硬件联合开发,目标是将板卡组合形成系统,通过测试实现商用。 而在板卡的设计制造中,原材料主要包括各类芯片和 PCB 板,通过代工的方式加工成商用板卡,而在 PCB 设计和芯片的设计过程中,需要使用 EDA 等软件开发环境。
目前国产替代空间较大的产业环节
►芯片环节: 基站通信系统的性能和稳定性的要求导致了其芯片选用十分苛刻。
►EDA等开发环境环节: 我们认为华为将主要通过现有已购软件实现生产。
►测试环境环节: 类似于 EDA 等开发环境,测试仪器仪表主要由海外厂商提供,但其中部分厂商如罗德史瓦茨等公司为非美国企业。
中国厂商如何应对
►短期依靠存货。 华为的芯片设计公司海思已经十分成熟,EDA、测试环境等规模已经可以支持现有研发。而芯片短板短期难以解决,需要通过存货的方式短期应对。但经历了 2018年中兴事件,华为在存货的准备上更加从容,原材料规模从 2017年末的 190 亿元提升至 2018 年末的 354亿元。以 FPGA为例,华为通过渠道不断积累FPGA 存货,导致 4FQ19,FPGA 提供商 Xilinx 通信板块收入达到 历史 最高水平。
►长期依靠国产化。 芯片的设计需要不断的投入和试错。而国内产业链也已经涌现出了一批可以在相关产业链提供备选方案的公司,通过不断打磨,国产化存在较大可能性。
4G 份额难以撼动
基站本身在中国移动等运营商的采购体系中被认为是非充分竞争领域,一个重要原因是现网基站需要不断维护、升级,难以更换现网基站供应商。华为在 4G基站领域排名前二, 服务运营商客户覆盖全球。目前情况难以判断持续性,现有 4G客户如更换供应商需要投入大量资本开支。对于华为的现有客户而言,客观上替换华为的基站存在一定难度。
另一方面,华为的产品在业内以高性价比闻名,在现有全球运营商增长乏力的背景下, 运营商客户主观上也不愿意放弃华为设备。一个典型的例子是沃达丰。沃达丰在其全球网络中选择了华为基站和核心网设备。但在贸易不确定性背景下,沃达丰不得不放弃华为的核心网设备,但保留其基站设备供应商资格。
对比 4 家主要无线厂商运营商板块各地区的业务结构,这里华为、中兴和诺基亚运营商业务不仅限于基站,光网络设备、IP 网络设备等产品也在其中。如果仅对比基站业务, 由于爱立信主要产品为基站产品,因此海外厂商占比应该略高。
中国区域 :市场规模为全球 31%。华为 2018 年占比 65%,市场稳定。
► 5G进度: 中国将于 2020年开启 5G建设,按照运营商最新的反馈 2020年正式开启5G商用的目标没有变化。而工信部表示,近期预计中国的 5G商用牌照将落地。随着年内 5G牌照的发放,我国网络建设将进入新阶段。中国移动 2019年即将在 40 个城市建设 5G网络。因此我国的 5G牌照发放没有受到华为事件的影响。
► 份额: 华为和中兴通讯作为本土供应商,2018年获得运营商市场份额超过 80%。而2018年中兴通讯二季度曾被美国发出 DenialOrder。然而爱立信、诺基亚的份额没有明显的提升。我国运营商和华为、中兴在研发等方面保持了紧密的合作,在 5G 领域的份额有望进一步提升。我国的 5G牌照近期发放,对技术领先厂商如华为、中兴进一步有利,因此牌照发放后如果建设速度加快,国内厂商的份额可能进一步提升。
亚太(不包括中国)区域: 市场规模为全球的 17%,华为 2018 年占比 45%,市场存在竞争。
► 5G进度: 不同国家 5G进度不一,领先者如日韩正在进行 5G建设,大部分国家正在进行 4G网络的建设和推广。5G建设需要等待时间。部分国家在 5G建设中可能考虑在华为事件落地后再进行 5G建设。此次事件无形中对 5G建设造成了影响。
► 份额: 可能由于贸易不确定性的影响,日本软银近期没有选择华为、中兴合作 5G 网络。因此日本没有同中国厂商合作。而韩国只有 LGU+选择了部分华为设备,其他运营商 SK、KT均没有和国内厂商合作,但韩国厂商并没有排斥华为的设备。两国基站的主要供应商为爱立信、诺基亚和三星。其他国家中,爱立信、诺基亚在澳大利亚、新加坡、越南等国份额较高;而华为、中兴通讯在柬埔寨、泰国、缅甸、孟加拉国等国份额较高。目前这些国家中没有明显受到华为事件的影响。目前这些国家还没有 5G 需求,4G 的选型部分原因在于华为和中兴设备的性能优异和价格适中。而长期发展中,这些国家的 5G 网络也预计将采用华为和中兴的设备。
其他区域: 市场规模为全球的 52%,华为 2018 年占比 39%,市场存在激烈竞争。
► 5G进度: 美国是 5G建设的先锋;欧洲的 5G建设类似于部分亚洲国家,存在因为贸易不确定性而短暂观望的情况,因此将对部分国家的 5G进度造成影响。部分国家如英国、德国、荷兰等欧洲国家仍然没有最后决定。近期英国运营商 EE采用华为5G设备进行了无线直播,获得良好效果。
► 份额: 华为在欧洲、中东和非洲市场 2018年营收 2045亿元人民币;美洲市场营收479 亿人民币。以上营收包含消费者业务和政企业务。华为事件有可能导致其中部分运营商在 5G 建设选择非华为的设备。 但由于华为在现网中的应用,部分国家难以瞬间转换。
注:标*公司为中金覆盖,采用中金预测数据;其余使用市场一致预期收盘价信息更新于北京时间 2019年 6月 4 日
半导体:5G 推动射频前端及基带芯片发展
半导体是基站的核心部件,是基站价值量占比最大的组成部分 。5G 宏基站主要以 AAU+ DU+CU 的模式呈现,其中 AAU 是原本的射频部分 RRU 叠加有源天线所组成,同时基带部分 BBU 分立成 CU 中央单元以及 DU 分布处理单元。
其中 AAU 主要半导体芯片隶属于模拟大类,如射频芯片(滤波器、功率放大器、射频开关等),而DU/CU主要以数字芯片为核心(如基带处理芯片等,具体形态为ASIC或FPGA)。DU/CU/AAU都配以电源管理芯片以保证供电持续稳定。基站内光纤传输,光电接口芯片同样必不可少。
随着 5G 基站的建设强度提升,基站用半导体市场也将迎来高速成长期。而根据 STMicro 的预测,2021 年单个基站内,射频相关/数字相关半导体价值占总半导体元素比重均达到32%,而高性能模拟及光电/功率及传感器价值占比分别为 26%/10%。
基站相关半导体国产化进展现状: 目前国内厂商在基站相关半导体器件实现了部分“自主可控”。
数字部分来看,1)国内主要的通信设备商华为、中兴在基站领域有多年经验, 已经均拥有 ASIC 自行设计能力,可以通过台积电等合作伙伴代工生产,
2)对于基带处理/接口用的 FPGA 芯片,目前主要依靠海外厂商供应,但设备商华为也在先前进行了大量的存货积累。我国 紫光同创、安路信息、高云半导体 分别都有商用产品推出,但产品性能及出货规模与 Xilinx、Altera、Lattice 等头部厂商仍存在巨大差距;虽然部分国内厂商有布局功率放大器业务,如苏州能讯(未上市)、三安光电(600703.SH),但基站供应商采购核心器件领域中国与海外仍然存在较大差距;
滤波器方面,风华高科(000636.SZ)、武汉凡谷(002194.SZ)生产的陶瓷介质滤波器已可以用于 5G 基站;
数模转换/电源管理芯片方面,随着技术实力的不断提高,圣邦股份(300661.SZ)在未来有望进一步切入基站侧市场。
光器件方面,目前低速(100G 以下)芯片已经实现国产替代,主要厂商涉及光迅 科技 (002281.SZ),昂纳光通信(0877.HK)等,但高速芯片仍然空缺。
您是否面对海量研报不知道如何买卖?是否总是错过最佳投资时机?研报大作手应时应势而生,替您筛选市场最有投资价值的研报信息,明确交易策略,开垦研报宝藏里“价值洼地”。
在端午节放假期间,研报交流群为大家精心准备学习资料,方便大家学习。可复制 ghyb201808 联系小秘书,进群领取。
⑥ 5G射频前端核心器件之一——射频滤波器向高频化、模组化方向发展
姓名:刘轩 学号:19020100412 学院:电子工程学院
转自:https://blog.csdn.net/wusuowei1010/article/details/102914239?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%%7Edefault-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%%7Edefault-1.control
【嵌牛导读】滤波器是射频前端中最重要的一个部件,其价值占据射频前端价值总量的50%
【嵌牛鼻子】射频前端 滤波器
【嵌牛提问】射频滤波器向高频化、模组化方向发展的优势和劣势?
【嵌牛正文】
摘要 :射频前端是移动通信设备中的核心部件,其细分元器件包括:滤波器(Filter)、功率放大器(PA)、射频开关(Switch)、低噪声放大器(LNA)、天线调谐器等,而滤波器是其中最重要的一个部件,其价值占据射频前端价值总量的50%。
目前,市场上的射频滤波器产品主要包括:SAW(声表面滤波器)、BAW(体声波滤波器)、陶瓷滤波器(LTCC滤波器)、IPD(Integrated Passive
Devices)等。衡量滤波器性能的指标有:Q值和插入损耗,其中SAW、BAW滤波器凭借高Q值、低插入损耗的优良性能已成为射频滤波器的主流选择。
SAW 滤波器在 2.5GHz 以下频段性能更好 SAW滤波器是采用石英晶体、压电陶瓷等压电材料,利用其压电效应和声表面波传播的物理特性而制成的一种滤波专用器件,广泛应用于电视机及录像机中频电路中以取代LC中频滤波器,使图像、声音的质量大大提高。SAW滤波器的主要特点是:设计灵活性大、模拟/数字兼容、群延迟时间偏差和频率选择性优良、输入输出阻抗误差小、传输损耗小、抗电磁干扰性能好、可靠性高、制作的器件体积小、重量轻且能实现多种复杂的功能。
SAW滤波器的特征和优点,符合现代通信对高频化、数字化、高性能、高可靠等方面的要求。其不足之处是:热稳定性较差,高频特性有待改善。但通过使用温度补偿材料生产的TC-SAW滤波器具有更好的热稳定性,更适合移动端使用,可是工艺更复杂、制造成本相对较高;日本村田公司改良的I.H.P-SAW滤波器克服了SAW低频的弱点,产品频率在3.5GHz,并兼具BAW的温度特性和高散热性优点,可部分替代BAW滤波器。
BAW 滤波器更适合高频通信要求 BAW滤波器内的声波主要是垂直传播,产品主要有BAW-SMR技术、FBAR技术两种,压电材料与SAW的石英材料不同,常用AlN(氮化铝)、PZT(锆钛酸铅)、ZnO(氧化锌)等材料。BAW与SAW相比性能更好、成本也更高,当频段越来越多,甚至开始使用载波聚合的时候,就必须得用BAW技术才能解决频段间的相互干扰问题。
BAW滤波器的尺寸随频率升高而缩小,适合要求更高的3G和4G通信,对于5G通信依然游刃有余。此外,即便在高宽带设计中,BAW对温度变化并不敏感,同时还具有极低的损耗和非常陡峭的滤波器裙边。
射频滤波器向微型化、高频化、模组化方向发展 滤波器产品主要向着低功耗、低成本、高性能三个目标发展,目前市场上主要呈现出两种技术发展趋势。一种是提高现有产品技术性能,例如改良的TC-SAW及FBAR滤波器产品,解决了产品本身的技术缺陷,提高了热稳定性和多频干扰难题,并通过专利壁垒进一步拉大与竞争对手的差距。另一种发展趋势是研发体积更小、成本更低的整体射频前端芯片。这种滤波器采用晶圆与晶圆的键合,通过成熟的TSV和电镀工艺、硅工艺结合在一起,滤波器的成本和体积都得到了大幅的减少,同时将滤波器与PA、射频开关等器件进行整体封装,向模块化、集成化方向发展,这一趋势未来将推动了整个射频行业的整合。
我国在滤波器技术的发展情况 目前,射频滤波器市场主要被村田、TDK、博通、Qorvo等美日几大巨头垄断,国内自给率较低。我国射频滤波器整体发展处于技术研发、初步量产阶段,产品主要应用在国内手机厂商中低端手机中,不论是产能还是技术水平都与国外厂商差距较大。国内从事滤波器的企业主要有德清华莹、中电26所、北京长峰、中讯四方、中科非鸿等,SAW产品方面主要有无锡好达、锐迪科、天通股份等公司,而适合高频的BAW滤波器国内还没有可以量产的公司。
结语 随着人们对移动通信的要求越来越高,全面屏及手机轻薄化、高频通信、频率资源拥挤化等都对滤波器的性能提出更高的要求,适应高频通信、热稳定性好、体积小、集成度高的滤波器将是未来的主要发展方向。
⑦ 5G给射频前端芯片带来哪些新的变革
这是颠倒黑白的提法,应该是射频前端芯片的变革为5G的诞生提供了支持
⑧ 5G给射频前端芯片带来哪些新的变革
你说的前端芯片应该就是指射频收发芯片,总的来说应该是射频前端芯片。基带芯片是合成即将发射的信号和对收到的信号进行解调。射频芯片是接收和发射混频后的信号。在中国,不同的网络模式使用的射频频段不一样
⑨ 国产5G射频芯片落地!华为手机迎来转机,正式步入量产
美国修改半导体芯片市场新规,导致华为智能手机因缺少5G射频模组芯片而暂时丢失5G功能。这对麒麟芯片遭到断供的华为来说是“雪上加霜”。缺少5G功能的华为新机P50系列,让不少“花粉”感到遗憾,不过,这一问题很快会得到解决。
2022年1月14日消息。国内 科技 巨头富满微于2022年1月11日正式官宣:公司自研的5G射频前端芯片步入量产阶段,国产5G射频芯片正式落地。相比较GPU、CPU;5G射频模组芯片的研发难度要低一些。但因射频芯片模组零部件繁多,想要实现射频芯片模组的自给化,还是具备一定难度的。
不过伴随着国产厂商芯片自研项目的展开,我们在5G射频模组中取得了相当不错的进展。距离华为手机5G功能重回的时间也越来越近。例如金信诺与华为就射频连接器、射频线缆、射频组件、高速线缆等5G射频芯片项目开展合作。飞骧 科技 推出100%国产化射频芯片解决方案,助力国产厂商加速实现射频芯片自给自足的目标。大富 科技 破冰基站滤波器壁垒,推出了技术、性能卓越的5G基站滤波器,获得国家级制造业单项冠军并成为华为的核心供应商。
回到富满微 科技 这里,据了解,富满微 科技 量产的射频模组芯片,主要应用范围是以智能手机为主的各类电子设备。补充一点,对于国内供应商来说,通讯天线和射频模组都不是问题,难就难在射频前端模组上。目前国产供应商需要向国外进口射频前端芯片,而这也是导致华为手机无法使用5G的原因,好在这一问题很快被富满微 科技 解决。
换句话说,富满微 科技 推出的前端射频芯片,补足了国产射频芯片的最后一块拼图。这对华为等国产芯片商来说十分重要。有了它,华为手机有望在今年重回5G功能。值得一提的是:关于射频芯片自研项目,华为海外市场负责人在2021年11月举办的华为大会中表示:目前华为上海海思研发机构正进行5G射频芯片项目的研发,华为手机很快会重回5G。
对于国产芯片产业来说,富满微 科技 实现前端射频芯片的量产,将带动国产自研芯片项目的发展,尤其是国产智能设备厂商的发展。毕竟在解决了射频芯片卡脖子问题后,国产商的设备成本将会大幅降低,而与之相伴的则是附加值的提高。营收高了,发展自主权掌握在自己手中,有利于国产商的更好、更快发展。
祝愿国产半导体厂商能够早日解决核心技术卡脖子难题,掌握核心技术的发展自主权。对于富满微 科技 前端射频模组芯片正式投产这件事情,大伙有什么想说的呢?结合目前我国的射频芯片发展现状,到2022年,我们能否实现射频芯片自给自足的目标呢?